Suffix Trees as Language Models

Casey Redd Kennington'

Martin Kay?

Annemarie Friedrich®

LUniversitit Bielefeld, Bielefeld, Germany, ckennington @cit-ec.uni-bielefeld.de
2Stanford University, Stanford, California, USA, kay @stanford.edu
3Universitit des Saarlandes, Saarbriicken, Germany, afried@coli.uni-sb.de

Abstract
Suffix trees are data structures that can be used to index a corpus. In this paper, we explore how some properties of suffix trees naturally
provide the functionality of an n-gram language model with variable n. We explain how we leverage these properties of suffix trees for
our Suffix Tree Language Model (STLM) implementation and explain how a suffix tree implicitly contains the data needed for n-gram
language modeling. We also discuss the kinds of smoothing techniques appropriate to such a model. We then show that our STLM
implementation is competitive when compared to the state-of-the-art language model SRILM (Stolcke, 2002) in statistical machine

translation (SMT) experiments.

keywords: language model, suffix tree, machine translation

1. Introduction

Suffix trees and suffix arrays can be used to index a text in
such a way as to give access to a remarkable number of its
properties. Not only can they be used to locate arbitrary
substrings at very low cost, but they can be used, among
other things, to find palindromes, n-grams of arbitrary size
and long repeated substrings. Suffix trees can be used for
data compression, since they make it convenient to allow
the second and subsequent occurrences of repeated sub-
strings to be replaced by a reference to the first. For some
of these purposes, suffix arrays have sometimes been pre-
ferred in natural language processing (NLP) because they
require less space and are thought of as easier to implement.
In this paper, we explore how some properties of suffix trees
naturally provide the functionality of an n-gram language
model with variable n. Specifically, the efficient construc-
tion of suffix trees relies on suffix links which play a crucial
role when using our STLM for evaluation.

One of the first uses of suffix trees was plagiarism detection
(Monostori et al., 2000). Suffix trees provide a fast way
of finding long strings which occur more than once, thus
exposing parts of a text which may have been plagiarized.
This is done simply by concatenating the text in question
with the text that may have been plagiarized. After creat-
ing a suffix tree, non-terminal nodes which represent long
substrings indicate overlaps.

Parameterized suffix trees have been used to find code du-
plication in software systems (Baker, 1997).

Suffix trees have been well used in information retrieval,
more recently with Chinese documents (Huang and Pow-
ers, 2008). Because the vocabulary on which a suffix tree is
based can consist of words or characters, suffix trees are es-
pecially useful when working with languages such as Chi-
nese which do not use white-space as word boundaries. In
a suffix tree, each character sequence is fully represented,
unlike in other approaches which require error-prone word
segmentation.

In this paper, we present an application of suffix trees as
n-gram language models with variable n. n-gram language
models are used to determine how probable it is for a string

to belong to the language of a training corpus. From a
list of candidate text representations that possibly repre-
sent an utterance, automatic speech recognition (ASR) uses
language models to find the most probable text represen-
tation of that list. Machine Translation (MT) can produce
a large list of possible translations of a text, all of which
are checked against a language model to see how probable
they are. Language modeling is discussed in more detail in
Section 3.1.

The implementation of the STLM relies on a compressed
version of a suffix tree, which is enriched by suffix links.
Suffix links are edges that are added incrementally at build-
ing time to each node and that connect a node represent-
ing a string and the node representing its longest suffix. At
evaluation time, we perform a tree traversal depending on
the input string and leverage the suffix links for an elegant
implementation of back-off. With each node, we keep the
number of terminal nodes in its subtree as the node’s suf-
fix count. We show that these counts naturally provide n-
gram counts of variable length, and add several versions of
smoothing. Most language models limit the context in how
the probabilities are calculated. We offer a language model
that has no such limit. (Kneser, 1996) was successful in
using unlimited context, but no evaluation was done in a
practical domain, like ASR or MT.

We evaluate STLM within the setting of SMT and show
state-of-the-art performance for some language pairs. For
German to English and French to English, we achieve re-
sults better than the well-known state-of-the-art language
model SRILM (Stolcke, 2002) when being trained using
standard SRILM settings. SRILM outperforms STLM for
several other language pairs, but STLM is still competitive.

The following section gives a brief explanation of suffix
trees and then shows how they can be used as n-gram
language models. We then discuss smoothing techniques
and present the results of evaluating STLM and SRILM in
machine translation experiments. We also speculate how
our implementation allows for a dynamic language model
which can learn by interaction.

446

2. Suffix Trees

In this section, we give an overview of suffix trees and ex-
plain how they can be built with limited time and space
requirements.

2.1. Overview

A suffix tree is constructed on the basis of a text which we
will refer to as its corpus. The size of the tree is a linear
function of that of the corpus. It allows access to all sub-
strings of the corpus in time that is a linear function of the
length of the substring in question. The time required to
build a suffix tree is also linear to the size of the corpus.
Each arc of the structure is labeled, directly or indirectly,
with a substring of the corpus, and the labels on the arcs
from the root of the tree to a leaf, when concatenated, spell
out a suffix of the corpus.

A suffix tree can be based on any unit - for instance charac-
ters or words - into which the corpus can be uniquely and
exhaustively segmented. In our application, the units are
words. However, we will base our initial examples on char-
acters purely in the interest of saving space in our diagrams.
The first words on the labels of the arcs leaving each node
are pair-wise distinct. Consequently, the string of words
that spells out the path from the root to any given node is
unique and we will use the concatenation of the labels on
the path as the name of the node. Before a suffix tree is
constructed, a so-called sentinel word or character, which
does not occur elsewhere in the corpus, is added to the end.
This ensures that every suffix ends at a terminal node.

If an arc with a label consisting of two non-empty strings,
say af3, is replaced by a pair of arcs labeled « and 3, with
an intervening node, the resulting tree is equivalent to the
original. However, it does not meet the definition of a suffix
tree because it is required that there be at least two arcs out
of each node (except the root) in a suffix tree. Arcs with
multi-word labels are introduced precisely in order to meet
this requirement. In fact, one way to construct suffix trees
would be to first construct the equivalent structure with
single-word labels (a trie in the sense of Fredkin (1960),
see Figure 1) and then remove non-branching nodes, con-
catenating the labels on the arcs that enter and leave them.
It is sometimes convenient to speak of the branching nodes
as explicit, and of the locations between the words in an
arc label as implicit, nodes. Clearly, implicit nodes can be
named in the same way as explicit nodes in that the path to
each of them from the root spells a unique string.

Note that whereas the number of arcs in a suffix trie for a
corpus of m words is (m;' 1), there can be no more than
2m — 1 arcs in the corresponding suffix tree, for this is the
number of arcs in a binary tree with m terminal nodes.
Figure 1 shows a simple suffix tree representing the text
mississippi$.

2.2. Compression

In this section, we describe techniques that help to reduce
the memory size required by a suffix tree, as proposed by
Ukkonen (1995). These techniques give rise to a so-called
compressed tree. We have already described the most im-
portant step in this process in which non-branching nodes

Figure 1: Suffix Tree for mississippi$

are eliminated. However, this can clearly give rise to situ-
ations in which many arcs are labeled by very long strings.
The second step therefore consists in replacing each of
these strings with a pair of integers identifying the loca-
tion in the corpus of their first occurrence. The first integer
gives the position within the corpus where the string begins
and the second gives either the position where it ends (a)
or its length (b). We modify the standard scheme so as to
eliminate the second of these integers. Observe that in case
(a), there must be an arc emanating from the node at which
the current arc ends with a label containing that position as
its first integer, or the current arc ends at a terminal node.
In the latter case, the second integer is simply the last po-
sition within the corpus (or the length of the corpus). For
the former case, it suffices to ensure that we can locate the
arc that carries the key piece of information, which we re-
fer to as the distinguished arc. There are several ways of
doing this. If the outgoing nodes are maintained as a list,
for example, then it can be arranged that the distinguished
arc always occupies its first position.

Figure 2: Compressed Suffix Tree for mississippi$

Figure 2 shows the suffix tree for the letters of the corpus

447

mississippi$, with $ being the sentinel character. Since the
tree is compressed, the labels on the arcs are not explicit
parts of the data structure but are shown only for conve-
nience. The distinguished arc out of each nonterminal node
is shown with a heavier line. The node labels, which are
part of the data structure, are the upper numbers in the cir-
cles representing the nodes. The lower numbers in the cir-
cles are the suffix counts, which we will explain in section
3.2.. The root of the tree is shown in Figure 2 just to the
right of the leftmost node, which we will refer to as the base
of the tree. It is labeled _L and it has one arc, labeled > and
ending at the root. This arc allows a transition from the base
node to the root over any word, regardless of whether it oc-
curs in the corpus. One might object to the inclusion of this
node on the grounds that it is not strictly necessary and that
it gives rise to a structure that is no longer strictly a tree.
However, as we shall see, it is a convenience, both during
the construction of the tree and in our proposed application.

2.3. Linear-Time Construction and Suffix Links

(Ukkonen, 1995) developed an algorithm for constructing
suffix trees with a complexity that is linear in the length of
the corpus. The dotted lines in Fig. 2 show explicit parts
of the data structure know as suffix links. Only a few of
them are shown. They play a crucial role in guaranteeing
linear time bounds for the construction of the tree. In many
applications, the suffix links can be discarded once the tree
has been constructed. However, they are important for our
application and we therefore retain them.

There is just one suffix link from each internal node in the
tree. If the name of the node is ac, where a is a character,
and « is a, possibly empty, string of characters, then the
suffix link from that node ends at node «. It is easy to see
that such a node must always exist; if the corpus contains
a string a« leading to an internal node, it must occur more
than once in the corpus and be followed by different charac-
ters. If this is true of ac, it must also be true of a. Explicit
suffix links are stored only for explicit nodes. Note that
they are defined also for implicit nodes. They can be found
using suffix links in the following way. If i = aa/3 names
an implicit node and e = a« is the longest prefix of this
that names an explicit node, then the suffix link from the
implicit node points to the node, implicit or explicit, that
is found by following the suffix link from e, and moving
forward from there over arcs whose labels spell 5.

In Fig. 2 there are two paths of suffix links, both termi-
nating at the root. In general, the suffix links themselves
constitute a tree in which the links are oriented from the
leaves towards the root.

3. n-gram Language Modeling using Suffix
Trees

In this section, we explain n-gram language modeling and
show how a suffix tree can be applied as a language model.
This section ends with an explanation of smoothing, point-
ing out differences between our implementation and the
current standard method.

3.1. n-gram Language Modeling

Language models provide an estimate of the probability
that a given string belongs to the language of a particular
reference corpus. The idea is to base the estimate of the
probability of each word in a new text on the number of
times that it was observed in a similar context in the refer-
ence corpus. In an attempt to minimize sparse data prob-
lems, the context of a word is routinely taken to be just
the n — 1 preceding words. The probability of the string
wy, ...wg 1S approximated by using the Markov assumption

(here shown for n=2).
P(wy,...,wg) = P(wy) * P(wa|wy) * P(ws|ws) * ...
Lk P(wk|wk,2, ’wk,1>

The maximum-likelihood estimate of the probability of the
word w; given previous words w;_p+1, ..., w;—1 (the his-
tory) is computed as

C(Wi—py1, ey W)
C(Wimng1s ey Wi—1)

P(wi|wi—pt1, ..., wi—1) =~

where C(s) is the number of occurrences of the string s
in the corpus. But cutting off the history to a pre-defined
length n clearly does not eliminate the data sparseness
problem entirely because many texts contain sequences of
n words or less that occur nowhere in the training corpus.
In these cases, a back-off to a lower-order n-gram model
can be performed. On the other hand, when a matching
string is found in the training corpus that is longer than n,
there is a strong intuition that it could provide very valuable
additional information. This is the intuition that motivates
the present investigation.

3.2. Suffix Tree Language Model

In this section, we show how properties of suffix trees can
be used to estimate the probability that an arbitrary text be-
longs to the language of the corpus, and how suffix links
naturally provide back-off. As described in section 2.,
suffix trees provide the possibility to determine whether a
given sequence of words occurs in a corpus. In the follow-
ing, we show how probabilities for arbitrary sentences are
computed from a language model based on a suffix tree. We
assume that the elementary unit of the arc labels are words
unless otherwise indicated.

In a suffix tree, the number of terminal nodes reachable
from a given nonterminal node is the number of occur-
rences in the corpus of the string that names that nontermi-
nal node. For example, the string s occurs four times in mis-
sissippi$, and four terminal nodes are reachable from the
node that it names in Figure 2. The suffix counts are shown
in the diagram as the lower numbers within the nodes. The
strings ss and ssi each occur twice in the corpus and there
are two terminals in the subtrees rooted at the nodes that
they name. Note that the node named by ssi is an explicit
node while the node named by ss is implicit. The number
of terminal nodes reachable from each nonterminal node
can be computed in a single walk of the tree and added to
the representation of the nodes as suffix counts. The suf-
fix count of leaf nodes is 1, while the suffix count of any

448

n = root; b =e =20
p =1
while e < length (text)

m = n.get_branch (text[e])

if m !'= NIL
p *= m.suffix_count / n.suffix_count
e += 1; n =m

else
n = suffix_link(n); b +=1

end

end

Figure 3: Algorithm: STLM-Evaluation

other node is the sum of the suffix counts of its direct de-
scendants. The count associated with a nonterminal node
is simply the number of terminals encountered between the
first and second times that the node is visited.

With the suffix count given, we can compute the probabil-
ity of the first word on an arc as the suffix count of the
destination node of the arc divided by the suffix count of
the origin node. For example, the probabilities of P(p|ssi)
and P(s|ssi) are both estimated as 1/2. The probability
P(pli) is estimated as 1/4. By the same reasoning, the
probability of edges starting at implicit nodes is always 1,
e.g. P(i|ss) =1.

Based on the suffix counts, our algorithm delivers the esti-
mated probability of traversing an arc, given the label on the
node at its origin. This estimated probability corresponds to
traditional n-gram language model probability estimates.
The algorithm presented in Figure 3 for computing the
probability of a sentence text assumes operating on the
non-compressed tree where each node is represented ex-
plicitly.

Each time the variable e is incremented, a new substring,
longer then the last one, is considered. When this happens,
we will say that the algorithm advances. Each time b is
incremented, a shorter substring is considered and we say
that the algorithm backs off. We use the term depth of the
process to refer to the current value of e —b, i.e the length of
the current history. Notice that if the depth of the process is
prevented from exceeding some fixed value, n, by forcing
back-off, we have a classical n-gram model '.

3.3. Smoothing

Discounting is easy to implement in this framework, and
amounts to a simple initial smoothing approach. The model
we have described is well behaved in the face of texts con-
taining words that do not occur in the corpus, thanks to
the base node. Failing to find the word at the root node,
the algorithm repeatedly backs off until it reaches the base
node, where it finds an arc that can be taken over any word
whatsoever back to the root. Since the number of terminals
reachable from the base and the root nodes are the same,
namely |X|, the number of words in the corpus, the proba-
bility associated with this arc will be 1. This is clearly un-
satisfactory. We can, however, easily arrange to associate

'This was convenient in comparing our variable-order model
with standard fixed-order models.

S 1] 1 S S 1

1 |e P(s) =4/11

2 € > P(ils) = 3/4

3 | > P(plsi) =1/2

4 < > P(i|sip) = ? Backoff
5 > P(ilip) = ? Backoff
6 € > P(ilp) =1/2

7 € P(s|pi) = ? Backoff
8 > P(sli) =2/4

9 > P(slis) =1

10 < > P(iliss) =1

1_[~ 0.034

Figure 4: Matching and computation of the probability of a
string

a much more reasonable probability with this arc. Sup-
pose that, instead of |X|, we provide the base node with
a suffix count of |¥2|. This will associate a probability of
1/|%| with the transition. If we do this, we should, strictly
speaking, adjust the computations of all other probabilities
so as to normalize them properly. But, as has frequently
been observed, if the corpus is large enough to be useful
for the present purpose, this correction will be too small
to be worth making. However, normalization can be easily
achieved by subtracting 1/|X]| from the suffix count of each
node in the tree. This kind of simple smoothing facilitates
a model that is potentially dynamic, which is discussed in
section 5.

STLMs are hospitable to most of the other variations in
the basic n-gram scheme, notably Kneser-Ney smoothing
(Kneser and Ney, 1995), in its original and modified vari-
ants (Chen and Goodman, 1998). The structure naturally
allows for raw counts and back-off information. It also pro-
vides much of what is required to count histories so that
they can be added to the structure along with, or in place
of, the raw counts. Observe that the internal nodes of the
suffix trees correspond exactly to the set of histories. It
therefore suffices to walk the tree and, whenever a word w
is encountered at depth d, add the pair < w, d > to a file or
list. Then sort this collection to bring all the records for a
given word together and, within those, all the records for a
given depth. Word w has k histories at depth d iff the file
contains k records of the form < w, d >.

When the process has reached a depth d, it has the prob-
ability estimates for the last d words, which it can use to
compute a probability estimate for the current substring.
In principle, this can be done using standard interpolation
methods. However, it requires that meaningful constants
for use in the interpolation be available for substrings that
are much longer than those considered in classical n-gram
models. Our experiments gave better results when all of
the distributions for different n were given equal weight.
On the other hand, we found that a relatively crude way of

449

assigning differential weights gave dramatically improved
results.
The probability of a string wi,...,.w; is computed as
P(wy) * P(wa|h2) * ... % P(wg|hi) where h; is the longest
history found in the suffix tree for w;, the next word in the
test sequence. During the traversal of the tree, the length
of history h; plus the current word in question defines the
current depth in the tree. As a modification (the boosted
model), we propose the following formula, which rewards
strings that were able to match longer sequences of the
training corpus:
swn) = [Plwilhs) * (tength(h;) + 1)
i=1

Score(wy, ...

Our implementation also incorporates a version of Kneser-
Ney smoothing with boosting. The diversity of histories
is interpolated with the raw counts at all depths. It made
essentially no difference whether the Chen and Goodman
discount values were computed at depth 2 or 6, at least for
the English Europarl corpus. Diversity of history and raw
counts are given weights of 0.05 and 0.95 respectively at
all depths, which is quite different from standard Kneser-
Ney. Interpolation as defined in Kneser-Ney was not used
because it consistently made the model perform worse.

4. Evaluation

In this section we present our evaluation of the STLM using
MT experiments. First, we show some properties of the
STLM. We then determine the best settings for STLM and
the SRILM, and use those in several MT experiments.

4.1. Information Represented in the STLM

In order to investigate some properties of the STLM, we
trained the STLM using 100,000 lines of the English Eu-
roparl corpus. Key statistics are given in Table 1.

| Corpus | SUFFIX TREE \
Lines 100,000 | Nodes 3,533,984
Words 3,005,366 | Leaf 2,806,210
% Leaf 20.6
Internal 727,774
% Internal 79.4

Table 1: Statistics for STLM instantiation using Europarl
(EN).

The JRC-Acquis corpus (Steinberger et al., 2006) was used
for the evaluation and the relevant statistics of this are given
in Table 2. Maximum depth refers to the depth reached be-
fore any back-off was performed. Observe that there was
at least one string of 15 words in the evaluation text that
also occurred in the training text. The table also gives the
average depth per word that the evaluation process reached.
5.2% of words led to an implicit node in the tree so that the
following transition was assigned a probability of 1. Table
3 shows examples of these multi-word nodes found in Eu-
roparl. The left column gives the number of occurrences
of the multiword expression in the training corpus. The
number of words which did not occur in the training corpus

(unseen) made up 3.4%, so they caused a transition from
the base to the root node. In 91.4%, the probability of the
next token was computed based on the suffix counts of the
child and mother nodes.

| CORPUS | STLM EVALUATION |
Sentences 4,108 | Max. depth 15
Av. length 31.37 | Av. depth 3.38
Words 128,879 | Back-offs 100,688
implicit nodes 5.2%
regular 91.4%
unseen 3.4%

Table 2: Statistics for test corpus (JRC Acquis).

String

Substantially Less Interference by Members
overstepping the

callous disregard
five-legged sheep
nautical miles
non-economically active
oriental carpets
revitalization of the
sportsman or woman
Camp David

[N o o SRV BN NG N NSV S N @)

)
=

Table 3: Multiword expressions of arcs having implicit
nodes in Europarl

Table 4 gives a breakdown of multi-word arcs leaving the
root. The columns titled 'L’ give the depth of the sequence
and the columns titled ’C’ the number of such nodes. Not
surprisingly, the distribution fits Zipf’s law fairly closely.

L c,L Cc|L C| L C
2 12371 9 14|16 3|24 1
3 359110 8|17 3|25 2
4 142 | 11 9118 3|26 3
5 69 |12 9|19 1|27 4
6 44113 620 3|28 1
7 27114 3121 5

8 16|15 922 1

Table 4: Multi-word arcs

We motivated our use of suffix trees by appealing to the in-
tuition that long repeated strings, even if not repeated very
often, could contribute valuable information to a variable-
order language model that fixed-order models routinely
throw away.

4.2. Statistical Machine Translation Experiments

The quality of language models is often evaluated using
perplexity, which is a measure of the likelihood of a given
test corpus. Perplexity is only meaningful when being cal-
culated for a normalized model, which the boosted version

450

n | BLEU | Settings

7 | 10.40 | kndiscount, interpolate, unk
5 | 10.37 | kndiscount, interpolate, unk
4 | 10.45 kndiscount, interpolate, unk
4 | 10.51 | kndiscount, interpolate

4 | 1041 | kndiscount

Table 5: SRILM Settings Comparison

of STLM is not. We therefore favored a fask-based evalu-
ation, which shows the quality of the language model in a
real application setting.

We evaluated the STLM in the setting of machine transla-
tion using the Moses MT System (Koehn et al., 2007) and
compared it to the SRI language model (SRILM) (Stolcke,
2002). Suffix array language models such as SALM (Zhang
and Vogel, 2006) and (Stehouwer and Van Zaanen, 2010)
were not compared due to time constraints, though a com-
parison certainly would have been interesting and informa-
tive. We also didn’t compare against SALM implementa-
tions because they don’t use Kneser-Ney smoothing in any
variant, which is the current state of the art in smoothing
for MT. SRILM and STLM both have a version of Kneser-
Ney implemented. Another practical difference was that
SRILM can be used directly with Moses (notably in the
Experiment Management System), and we created a ver-
sion of Moses that directly uses STLM in the same way as
it uses SRILM. It suffices to compare STLM against the
state-of-the-art SRILM to estalish its effectiveness in MT.
We used the BLEU (Papineni and Et al, 2002) and ME-
TEOR (Lavie and Denkowski, 2010) scoring metrics. Both
metrics calculate a score which compares the MT output
hypothesis with a reference text. BLEU calculates a modi-
fied form of precision using n-gram overlap, and METEOR
uses the harmonic mean between precision and recall in un-
igrams, as well as stemming and synonymy matching. A
useful script that produces these scores given the machine
translation hypotheses along with the reference target trans-
lation is provided by Kenneth Heafield?.

The established standard for SRILM in MT is to use
Kneser-Ney smoothing with interpolation. The training
corpora used were Europarl (Koehn, 2005), an evaluation
set of JRC-Acquis (Steinberger et al., 2006), and the new-
stest2009 corpus. In all experiments, a phrase-based trans-
lation model was trained on the parallel parts of Europarl
of the two languages in question, and the language models
were trained using the target language corpus.

We ran some simple small-scale tests to establish the best
settings for the two language models. Tables 5 and 6 show
the BLEU scores for various settings using the first 200k
lines of Europarl (German to English) for training, and the
newstest2009 corpus for evaluation.

It shouldn’t be surprising that the higher n-gram models
don’t work as well in practice. This seems like a major
blow to the concept of variable length n-grams, but it is
due to data sparsity. We return to this issue in Section 5.

In Table 6 the difference between the first and second lines
show when boost was not used (line 1), and when boost

*http://kheafield.com/code/mt/

BLEU | Settings

9.26 kndisc, interpolate, unk, no depth limit

11.55 | kndisc, interpolate, unk, no depth limit, boost
11.96 | kndisc, interpolate, unk, depth limit 4, boost

451

Table 6: STLM Settings Comparison

was used (lines 2 and 3). This shows that our implementa-
tion of Kneser-Ney did not work as well as SRILM’s. The
boost, however, resulted in a remarkable performance im-
provement.

With the best setting for each model established, we per-
formed experiments for various language pairs. The en-
tire Europarl corpus (1,540,549 sentences) was used for
training and the JRC-Acquis corpus (4,108 sentences) was
used for evaluation. Table 7 shows the results for Ger-
man, French, and Spanish where English was the source
language, and Table 7 where English was the target lan-

guage.

LM LANG | METEOR | BLEU
STLM | DE 56.27 26.93
SRILM | DE 51.34 21.92
STLM | FR 66.65 37.29
SRILM | FR 66.62 36.69
STLM | ES 64.08 33.73
SRILM | ES 64.24 33.93

Table 7: English as target language, training: full Europarl,
test: JRC Acquis.

LM LANG | METEOR | BLEU
STLM | DE 24.76 23.17
SRILM | DE 25.48 23.96
STLM | FR 20.45 33.61
SRILM | FR 22.42 35.11
STLM | ES 30.01 31.15
SRILM | ES 30.32 32.35

Table 8: English as source language, training: full Eu-

roparl, test: JRC Acquis.

STLM performs better in DE-EN and FR-EN in both eval-
uation metrics. SRILM outperforms STLM in both met-
rics for all other language pairs. These results show that
STLM was perhaps over-tuned to work with DE-EN cor-
pora, which was used for the intitial development, but it is
still a competitive language model in our MT experiments
when compared to SRILM, which is the result of many
years of language modeling research and tuning.

Table 9 shows a final evaluation which was done on STLM
using German-English, where the depth was limited to 4 as
before (same as in Table 7), and where the depth was unlim-
ited. The same training and evaluation data sets as before
were used. Though the depth-4 model still performs bet-
ter for BLEU, METEOR awards a slightly higher score for
the unlimited depth STLM. Compared to the experiments
related to the initial settings determination, we can see that
more training data helps resolve the data sparseness prob-

Version METEOR | BLEU
depth limit 4 | 56.27 26.93
unlimited 60.03 26.20

Table 9: German to English STLM

lem.

4.3. Memory Usage

It is important to compare the memory usage of the two lan-
guage models. The STLM grows linearly over time during
training, peaking at 32 times the corpus size. During eval-
uation it uses 21 times the corpus size. SRILM in contrast
only uses 1.066 times the size of the corpus during train-
ing (for a 4-gram, which is the model we used) and runtime
memory usage is about one-fourth the size of the corpus.
However, as the SRILM training n-gram order increases, it
requires more memory for training. For STLM, the mem-
ory usage stays constant, but for SRILM when the n-gram
order is above 11, it uses more memory than STLM. Dur-
ing evaluation, however, the memory necessary for SRILM
is still much lower than STLM. It should also be noted that
suffix array language model implementations are known to
use significantly less memory than suffix trees during train-
ing and evaluation.

5. Discussion

The STLM is able to accommodate unlimited n-gram
lengths, but it was shown that a 4-gram model performs
better overall than an unlimited model in some MT exper-
iments. This mostly due to data sparseness (see (Kneser,
1996)). Figure 9 shows that an unlimited model regains
ground when more training data is used, and that using
longer histories is rewarded at least when comparing the
METEOR scores.

Only the boosted version of the STLM can compete with
SRILM, which points to the potential weaknesses of our
implementation. Ideally, without boost, it should perform
reasonably well against SRILM. It would be informative to
see how well SRILM performs with similar boosting, or if
it is something that is uniquely helpful to this kind of struc-
ture. Another criticism of the boost is that it potentially re-
wards longer sentences by including more integer multipli-
cations in the sentence score. While this is a valid criticism,
large boosts will only occur when longer word histories are
present in the training corpus, which is the very motivation
of the suffix tree as a language model. A long sentence
which has words represented in the tree, but where none
of the sequences are represented, will have no boost at all
(each word probability is multiplied by 1), despite being a
long sentence.

There is another benefit to using STLM as opposed to tra-
ditional n-gram language models. The STLM differs from
traditional language models in that it is inherently dynamic
when using simple smoothing. This is because it allows
all of the back-off pointers and node counts to be up-to-
date and usable at any given moment during training. This
means the tree can be trained, used for evaluation, then
given more data to improve the model in a dynamic way.
Imagine a virtual agent that uses a language model to aid

in utterance generation, then reads in a response from a hu-
man user, which is assumed to be a well-formed represen-
tation of the language. This new information can be used
to improve the language model of the virtual agent by sim-
ply appending onto the STLM data structure, which would
result in better counts and improved generated utterances.
Normal n-gram models can be made to be used dynami-
cally, but that ability is again implicit in this structure. It is
arguably not dynamic in that, for the tree to be complete, it
requires the final sentinel character, but in a language model
application neglecting to add this final character at the end
does not affect the counts and branching of the model to
completely and accurately represent the corpus. Only the
suffix counts need to be updated, which is normally done
once by a simple walk of the tree after the tree is built. It
would cost a lot computationally to always need to walk
the entire tree even after a small addition of information.
However, count updating can also be performed in an effi-
cient way by updating the counts of any branch affected by
newly added data by simply following parent nodes, updat-
ing each count, up to the root node.

6. Conclusions

Suffix trees contain properties that are useful when process-
ing natural languages. Evidence of this was further estab-
lished in this paper by a language model implementation.
The STLM offers true variable-length n-grams as a lan-
guage model. It is comparable in most language pairs in
some MT experiments, and is significantly better for DE-
EN. Another useful point of the STLM is that the data struc-
ture naturally holds its state such that it can be trained dy-
namically, which may be useful in some applications.

7. Future Work

In the future, we plan on improving the smoothing further
and exploiting more properties of the data structure. Due
to time constraints, the language model was trained on Eu-
roparl and tested in the news domain. Running in-domain
MT experiments would be beneficial. We also hope to test
the model in other applications such as speech recognition
or information retrieval. We further desire to test the lan-
guage model in a dynamic environment, such as on-line di-
alogue processing.

The STLM toolkit, written in C++, is available to anyone
by e-mail request. We also have a version of the Moses
decoder that can directly use the STLM.

Acknowledgements: This work was partially funded
by the DFKI ACCURAT project. Thanks to Jia Xu for
access to corpora and computing resources. Thanks also to
the various reviewers.

8. References

Brenda S Baker. 1997. Parameterized Duplication in
Strings: Algorithms and an Application to Software
Maintenance. SIAM J. Comput., 26(5):1343-1362, Oc-
tober.

Stanley Chen and Joshua Goodman. 1998. An Empirical
Study of Smoothing Techniques for Language Modeling.

452

Technical Report TR-10-98, Computer Science Group
Harvard University, August.

Edward Fredkin. 1960. Trie memory. Communications of
the ACM, 3(9):490-499.

Jin Hu Huang and D Powers. 2008. Suffix Tree Based
Approach for Chinese Information Retrieval. In Eighth
International Conference on Intelligent Systems Design
and Applications.

Reinhard Kneser and Hermann Ney. 1995. Improved
backing-off for m-gram language modeling. In In
Proceedings of the IEEE International Conference on
Acoustics, Speech and Signal Processing, volume I,
page 1814[U+0080] [U+0093]184, Detroit, Michi-
gan, May.

R Kneser. 1996. Statistical language modeling using a
variable context length. In Proceeding of Fourth Interna-
tional Conference on Spoken Language Processing IC-
SLP 96, volume 1, pages 494-497. Ieee.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran, Richard
Zens, Chris Dyer, Ondrej Bojar, Alexandra Constantin,
and Evan Herbst. 2007. Moses: Open Source Toolkit
for Statistical Machine Translation. In Proceedings of
the 45th Annual Meeting of the Association for Compu-
tational Linguistics Companion Volume Proceedings of
the Demo and Poster Sessions, pages 177-180, Prague,
Czech Republic, June. Association for Computational
Linguistics.

Philipp Koehn. 2005. Europarl: A Parallel Corpus for
Statistical Machine Translation. In Conference Proceed-
ings: the tenth Machine Translation Summit, pages 79—
86, Phuket, Thailand. AAMT, AAMT.

Alon Lavie and Michael Denkowski. 2010. The METEOR
Metric for Automatic Evaluation of Machine Transla-
tion. In Machine Translation.

K Monostori, A Zaslavsky, and H Schmidt. 2000. Identi-
fying Overlapping Documents in Semi-Structured Text
Collections. Australasian Computer Science Confer-
ence.

Kishore Papineni and Salim Roukos Et al. 2002. BLEU:
A Method for Automatic Evaluation of Machine Trans-
lation. In Proceedings of the 20th Annual Meeting of the
Association for Computational Linguistics.

H Stehouwer and M Van Zaanen. 2010. Using Suffix Ar-
rays as Language Models: Scaling the n-gram. Proceed-
ings of the 22nd Benelux Conference on Artificial Intel-
ligence BNAIC.

Ralf Steinberger, Bruno Pouliquen, Anna Widiger, Camelia
Ignat, TomaZ Erjavec, Dan Tufis, and Déniel Varga.
2006. The JRC-Acquis: A Multilingual Aligned Parallel
Corpus with 20+ Languages. In Proceedings of the 5th
International Conference on Language Resources and
Evaluation (LREC’2006). LREC.

Andreas Stolcke. 2002. SRILM - An Extensible Language
Modeling Toolkit. International Conference on Spoken
Language Processing.

Esko Ukkonen. 1995. On-line construction of suffix trees.
ALGORITHMICA.

453

Ying Zhang and Stephan Vogel. 2006. Suffix Array and its
Applications in Empirical Natural Language Processing.
Technical report, CMU, Pittsburgh PA, December.

