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Abstract 

Speech and hand gestures offer the most natural modalities for everyday human-to-human interaction. The availability of diverse 
spoken dialogue applications and the proliferation of accelerometers on consumer electronics allow the introduction of new 
interaction paradigms based on speech and gestures. Little attention has been paid however to the manipulation of spoken dialogue 
systems through gestures. Situation-induced disabilities or real disabilities are determinant factors that motivate this type of 
interaction. In this paper we propose six concise and intuitively meaningful gestures that can be used to trigger the commands in any 
SDS. Using different machine learning techniques we achieve a classification error for the gesture patterns of less than 5%, and we 
also compare our own set of gestures to ones proposed by users. Finally, we examine the social acceptability of the specific 
interaction scheme and encounter high levels of acceptance for public use. 
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1. Introduction and motivation 
According to (Hauptmann, 1989), people prefer a 
combination of speech and gestures over speech and 
gestures alone while interacting with a computer system. 
The proliferation of mobile devices imposes new 
patterns of interaction as these devices usually compete 
for the same human resources needed for other mobility 
tasks (Kristoffersen and Ljungberg, 1999) and as users, 
whilst mobile, perceive information differently 
(Mustonen et al., 2004). Although previous work 
provides some guidelines regarding gesture-based 
interfaces (Kane et al, 2011)(McGookin et al, 2008), 
little attention has been paid to the question of how to 
control spoken dialogue systems with gestures; most 
efforts have been directed towards seamlessly combining 
these two distinct input modalities in order to control 
multimodal interfaces (Liu and Kavakli, 2010), (Lim et 
al., 2008). A notable exception is the newly introduced 
feature of iPhone’s Siri that permits the user to initiate 
speech recognition with a movement. 
This paper describes an approach similar to that used by 
Siri but more elaborate, in which concise and intuitively 
meaningful gestures are used to trigger the core SDS 
commands. Specifically, we use a set of six gestures for 
moving forward and backward in the dialogue flow, 
starting and stopping speaking, getting help and aborting 
an ongoing action. As a proof of concept we have 
incorporated these gestures in the mobile version of our 
CALL-SLT system (Bouillon et. al, 2011), which is a 
spoken conversational partner designed for beginner- to 
intermediate-level language students who wish to 
improve their spoken fluency in a limited domain.  
Although our move in this direction was motivated by 
feedback from normally enabled people who have used 
the application, it becomes apparent that all the 
arguments apply even more strongly to users who are 
vision-impaired or lack fine motor control. According to 
the World Report on Disability 2011 
(http://www.who.int/), the number of disabled people in 
the world is presently estimated at around one billion, 

corresponding approximately to 15% of the current 
world population. The coordination required to use a 
normal button-controlled interface is experienced as 
challenging by many normally-enabled people, and 
would be beyond the reach of almost all users who 
experience problems with sight or fine motor skills.  
On the other hand special kind of disabilities related to 
user’s current situation can pose hurdles to the efficient 
usage of a mobile speech system. Anyone who has tried 
using a similar application with one hand while carrying 
a child, reading the screen display during a sunny day, or 
interacting with the screen, while wearing gloves knows 
how he or she can become “effectively” impaired. The 
concept of “situation induced disabilities” (Sears and 
Young, 2003) has been introduced to describe similar 
non-optimal conditions where the user’s behavior is 
dictated by both the environmental conditions and the 
characteristics of the device. 
In contrast, we think it likely that the gesture-based 
interface like the one described here could be operated in 
many of these situations. If, for example, the device is 
strapped to the user’s hand, it can be operated using only 
gross motor movements. The fact that gesture 
identification is trained from the user’s own repertoire of 
movements means that it can potentially be adapted to a 
wide range of conditions. It would also be 
straightforward to add a “speech-only-output” mode 
which could be used even by completely blind people. 
In this work, apart from introducing the gestures, we 
asked 8 users to perform and to evaluate them. Using 
machine learning techniques, we tried to quantify how 
well we can separate each gesture pattern and thus obtain 
a good estimate of what we can expect of a future 
deployed system. We also asked participants to propose 
their own set of gestures and evaluate the ones presented 
by us. The social acceptability of this type of interaction 
was also examined, since handheld devices are part of 
our public appearance. Finally, we provide to the 
community a corpus  of data gathered from users. 
The rest of the paper is organized as follows. Section 2 
describes the CALL-SLT gesture-based interface, and 
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Section 3 the data collection protocol. Section 4 presents 
a series of experiments designed to evaluate performance 
issues. The final section concludes. 

2. A Gesture-Based Interface 
CALL-SLT is a generic multilingual Open Source 
platform based on the “spoken translation game” idea of 
(Wang and Seneff, 2007). The core idea is to give the 
student a prompt, formulated in their own (L1) language, 
indicating what they are supposed to say; the student 
then speaks in the learning (L2) language, and is scored 
on the quality of their response. When the student has 
practiced sufficiently on the current prompt, they can ask 
for the next one. At any time, they can request help; the 
system responds by giving textual and/or spoken 
representations of a correct response to the current 
prompt. A detailed overview of CALL-SLT functionality 
can be found in (Bouillon et. al, 2011) and the top-level 
software architecture of the system in (Fuchs et al., 
2012). 
The system also offers several ways to control both the 
flow of prompts and the way in which the matching 
process is performed. For example, prompts are grouped 
into lessons, each of which will typically be arranged 
around a theme, and recognition can be adjusted so as to 
make it more or less forgiving of imperfect 
pronunciation. The student will sometimes use these 
features, perhaps selecting a new lesson or making the 
recognition more forgiving if they are having difficulties. 
Most of the time, however, they will be in an interaction 
loop which only uses a small set of core commands.  
They get the next prompt, optionally ask for help, start 
recognition, stop it when they have finished speaking, 

and see whether the system accepted their spoken 
response. If it did, they move to the next prompt; 
otherwise, they try again. It is consequently very 
important to make the core commands ergonomically 
efficient. Figure 1 shows a screenshot of the GUI for the 
mobile version of the CALLSLT system. 

 
Figure 1: CALL-SLT application running on the Samsung 
Galaxy Tab. The middle pane shows the prompt; the top 
pane, the recognition result; the bottom pane, text help 
examples. Button controls are arranged along the bottom 

    

   

   

Figure 2: From left to right, bottom down next, previous, start recognize, stop recognize, help, abort
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Figure 3: Separation of gestures in acceleration-space: RMS (left) and mean (right) values of the X and Y components 

of acceleration for Subject 1 
 
For the mobile version of the system, a button-controlled 
interface poses many problems. Few users will have a 
headset, and the majority will use the tablet’s onboard 
microphone; this involves lifting the tablet to the user’s 
mouth while speaking, and makes a push-and-hold 
interface extremely inconvenient. 
Another important point is that there is no tactile 
feedback from the touch screen, increasing the user’s 
uncertainty about the interaction status. All of these 
problems become more acute when one considers that 
one of the points of deployment on a mobile device is to 
be able to access the system in outdoor environments, 
where the screen is less easily visible and the user may 
be walking or inside a moving vehicle. 
For these reasons, we have recently begun investigating 
the use of an interface which controls the key CALL-
SLT functionalities using the intuitive gestures shown on 
Figure 2. The current version of the interface supports 
six gestures. “Get next prompt” and “Return to previous 
prompt” are signaled by tipping the tablet right and left. 
“Start recognition” is triggered by moving the tablet so 
that the microphone is in front of the user’s mouth (this 
involves rotating the device by about 90 degrees, since 
the Galaxy Tab’s microphone is on the upper left side), 
and “End recognition” is triggered by moving the tablet 
away from the mouth again. “Help” is requested by 
moving the device so that the speaker is next to the 
subject’s ear, the natural position for listening to spoken 
help in a noisy environment. “Abort” is signaled by 
shaking the device from side to side. 

3. Data collection 
We used the Galaxy Tab’s onboard accelerometer, which 
returns measurements of the G-force experienced by the 
device along each of the three component axes, and 
sampled these values every 50 ms for one second while 
performing examples of the six commands. We collected 
20 examples of each command from eight subjects, half 
male and half female, between 20 to 50 years old with 

higher academic education; half of them had no IT 
background. The eight right-handed subjects used the 
device as depicted in the diagram, holding it in their left 
hand while seated. The registration of each gesture was 
initiated after pressing a start button. This had the benefit 
that each interaction starts from the initial position. 
This configuration is the natural one for a right-handed 
person; they hold the tablet in their left hand, since they 
wish to press the buttons with the fingers of their right 
hand. The two left-handed subjects held the device in 
their right hand, and used their left hand to manipulate 
the controls. We also collected similar data for eight 
common non-gesture conditions shown in Table 1. 
 

Lying  The device is lying on the table 

Sitting, holding 
The user is sitting, holding the 
device in front of him 

Standing, holding 
The user is standing, holding the 
device in front of him 

Standing, relaxing  The user is standing, holding the 
device vertically 

Running  The user is running 

Climbing 
The user is climbing a flight of 
stairs 

Descending  The user is descending a flight of 
stairs 

Walking The user is walking 

 
Table 1: Non-gesture movements used in experiment 
 
We extracted the mean and Root Mean Square (RMS) 
values for the X-, Y and Z-axis components, and used 
these six values as our features. The plots in Figure 3 
show the data-points for the X-Y plane, tagged by 
gesture, for one of the subjects. Even with our very basic 
feature-space, Figure 3 suggests that the gestures should 
be easy to separate from each other. 
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Classifier 6 Features (X-Mean, Y-Mean, Z-Mean, X-RMS, Y-RMS, Z-RMS) 

 Correctly 
Classified 

Precision% Recall F-Measure 

Naïve Bayes 91.61% 92.48% 91.61% 91.64% 
END 90.18% 91.14% 90.20% 89.71% 
SVM 92.50% 92.81% 92.50% 92.34% 
Decision Tree C4.5 87.14% 88.45% 87.15% 86.45% 
Functional Trees 90.89% 91.75% 90.90% 90.81% 
Random Forest 89.82% 90.44% 89.84% 89.4% 
Nearest Neighbor 93.39% 94.45% 93.41% 93.01% 
Multilayer Perceptron 92.50% 93.19% 92.51% 92.29% 

 
Table 2: Classification error (percentage) on gesture recognition using 8 classifiers 

 

 Movements 
(gestures - nongestures)  

  a b c d e F g H i J K l m n 
a Next 38 0 0 0 2 0 0 0 0 0 0 0 0 0 
b Previous 0 37 2 1 0 0 0 0 0 0 0 0 0 0 
c Help 0 3 36 1 0 0 0 0 0 0 0 0 0 0 
d Abort  0 0 1 39 0 0 0 0 0 0 0 0 0 0 
e Start recognition  0 0 0 0 38 2 0 0 0 0 0 0 0 0 
f Stop recognition 1 0 0 0 3 34 0 0 1 0 0 0 1 0 
g Lying 0 0 0 0 0 0 40 0 0 0 0 0 0 0 
h Sitting, holding 0 0 0 0 0 0 0 40 0 0 0 0 0 0 
i Standing, holding 0 0 0 0 0 0 0 0 40 0 0 0 0 0 
j Standing, relaxing 0 0 0 0 0 0 0 0 0 40 0 0 0 0 
k Running 0 0 0 0 0 0 0 0 0 0 40 0 0 0 
l Climbing 0 0 0 0 0 0 0 0 0 0 0 32 8 0 
m Descending 6 0 0 0 0 1 0 0 0 0 0 9 24 0 
n Walking 0 0 0 0 0 0 0 0 0 0 0 0 0 40 

 
Table 3: Confusion matrix for the Support Vector Machine classifier 

 

Classifier Use the X, Y, Z acceleration frames (sampled every 50 msec for 1 sec) 

 Correctly 
Classified 

Precision% Recall F-Measure 

HMM 
95.54% 96.36% 95.53% 95.34% 

 
Table 4: Classification error (percentage) on gesture recognition using Hidden Markov Models 

 

 Movements 
(gestures - nongestures)  

  a b C d e F g H i J K l m N 
a Next 40 0 0 0 0 0 0 0 0 0 0 0 0 0 
b Previous 1 38 0 1 0 0 0 0 0 0 0 0 0 0 
c Help 0 1 37 1 1 0 0 0 0 0 0 0 0 0 
d Abort  0 0 1 39 0 0 0 0 0 0 0 0 0 0 
e Start recognition  0 0 0 1 39 0 0 0 0 0 0 0 0 0 
f Stop recognition 0 1 0 0 0 39 0 0 0 0 0 0 0 0 
g Lying 0 0 0 0 0 0 40 0 0 0 0 0 0 0 
h Sitting, holding 0 0 0 0 0 0 0 40 0 0 0 0 0 0 
i Standing, holding 0 0 0 0 0 0 0 0 40 0 0 0 0 0 
j Standing, relaxing 0 0 0 0 0 0 0 0 0 40 0 0 0 0 
k Running 0 0 0 0 0 0 0 0 0 0 40 0 0 0 
l Climbing 0 0 0 0 0 0 0 0 0 0 0 40 0 0 
m Descending 2 0 2 2 4 0 0 0 0 0 7 0 23 0 
n Walking 0 0 0 0 0 0 0 0 0 0 0 0 0 40 

 
Table 5: Confusion matrix for the Hidden Markov Model classifier
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4. Experiments 

4.1 Gestures classification 
In this subsection we present some results for gesture 
recognition.  Different models have been proposed in the 
literature for this task, e.g. Dynamic Bayesian Networks 
(Cho et al., 2006), Support Vector Machines 
(Vitaladevuni et al., 2006) and Hidden Markov Models 
(Kauppila et al., 2007). Experimentation with some 
standard machine-learning algorithms confirmed this 
intuitive impression that the gestures could easily be 
separated from each other, and also showed that the 
gestures could be separated reasonably well from the 
non-gesture conditions. For each subject, we used 75% 
of the data (both gesture and nongesture) for training and 
25% for testing. Classification was performed using 
Naive Bayes, Ensembles of Nested Dichotomies (Dong 
et al, 2005), Multilayer Perceptron with back-
propagation (one hidden layer with 10 hidden nodes, 
learning rate 0.3 and momentum 0.2, 500 epochs 
sigmoid for activation), Decision Trees implementing 
C4.5 pruned algorithm, Random Forest of 10 trees 
considering 4 random features classifiers and Functional 
Trees (Gama, 2004), Support Vector Machines 
(polynomial kernel and trade-off between training error 
and margin 5000) and Nearest-neighbor using non-
nested generalized exemplars (Brent 1995). 
The results of the different classification methods using 
the Weka Toolkit (Hall et al., 2009) are shown in Table 2, 
where we can see that most of the methods offer low 
error rates. Table 3 provides a better overview of the 
classification task for SVMs with the corresponding 
confusion matrix. 
The methods presented earlier use features extracted 
from the sampled acceleration frames. The immediate 
benefit of feature extraction is the dimensionality 
reduction, which can offer faster processing times and 
reduced storage sizes. However, when these issues are 
not of prime importance the exploitation of every single 
data element by statistical models like Hidden Markov 
Models can offer better results. HMMs have been 
extensively used in speech recognition systems and due 
to their ability to classify temporal data of no fixed 
length are a good candidate for gesture recognition.  
The results shown in Table 4 were produced after 
training a left-to-right HMM with 6 states in the Weka 
Toolkit, for each gesture and user. Once again the 
confusion matrix in Table 5 shows of the responsible for 
most errors. 

4.2 Gestures survey 
Before providing the data analyzed in the previous 
subsection, the same users were asked to participate in an 
evaluation of the proposed gesture set. After a short 
introduction of the nongesture GUI and the presentation 
of a short video clip, they had to improvise gestures that 
would provide the same functionality. We tried to 
emphasize that the help is acoustic as well as visual and 
that one had to speak close to the microphone of the 
device. After the presentation of our own gesture 
repertoire, they were asked to fill out a questionnaire that 

asked how difficult it was to perform each gesture, if it 
was intuitive or not, and if they preferred it to their own 
suggestion. The results of this survey are shown in 
Figure 4. 

 

 

 
Figure 4: Charts of the easiness, impression and 
preference for each one of the proposed gestures 

 
As we can observe, most of the subjects agree that the 
proposed gestures are easy to perform and  are intuitive. 
They also prefer our set compared to theirs, with a small 
exception on the “abort” gesture. We believe that this has 
to do with the user’s personal feelings concerning the 
specific movement. As matter of fact three of them had 
chosen the same gesture for “abort”; just flip the device, 
related to the metaphor of how to hang up a telephone 
set. According to another user this metaphor should also 
apply  when you are using the system inside a car; you  
put the device down to signify “stop recognizing”.
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In which locations would you use this gesture?  
(check all that apply): 

 Home        
 Pavement or Sidewalk        
 While Driving 
 As a Passenger on a Bus or Train  
 Pub or Restaurant  
 Workplace 

Who would you perform this gesture in front of? 
(check all that apply): 

 Alone        
 Partner        
 Friends 
 Colleagues  
 Strangers  
 Family 

 
Table 6: Location and audience checklist 

 
We have also encountered cultural differences as one 
subject proposed for “help” the hand gesture that 
signifies “question” for many Greeks (rotating the palm 
clockwise close to the face). Apart from one subject, all 
participants recommended gestures that were easy to 
execute. Finally, one of the participants suggested that he 
would prefer an interface that combined both hand-
gestures and voice commands. 

4.3 Social acceptability 
As well as trying to determine how well gesture 
recognition works or if users prefer our set of gestures to 
theirs, another follow-up question was whether users 
would be willing to execute these gestures in public. 
Although much work has been carried out on the 
technical aspects of gesture recognition, little attention 
has been paid to the social acceptability of interacting 
with gestures. Notable exceptions are (Rico and 
Brewster, 2010) and (Ronkainen et al., 2007). Social 
factors have an influence on technology acceptance (Lee 
et al., 2003) so it is necessary to offer guidelines for the 
design and evaluation of socially acceptable gestures. We 
therefore continued our study by the asking the same 
subjects as before to identify in which location (6 
alternatives) and in front of which audience (6 
alternatives) they would be willing to execute each  of 
the proposed gestures. The relevant checklist is shown in 
Table 6. 
Their answers are summarized in Figure 5. As we can 
observe, our set of gestures receives a high level of 
acceptability even in public places. Pavements, public 
transportation and workplaces don’t impose any usage 
limitations. On the other hand users seem reluctant to 
interact with gestures while driving; several of them 
made that this was for safety reasons. Concerning the 
audience of usage, there was universal positive 
agreement with a small exception of the “abort” gesture, 
which as we saw above was the most controversial one. 
Compared to the aforementioned studies the intuitiveness 
of our gestures for the specific application task has a 
beneficial impact on their social acceptability. During the 
design phase we tried to make them as simple as possible 
and also to exploit commonly acceptable interaction 
pattern. By putting the device close to the ear (help) or in 
front of the mouth (start recognition) we just reuse 
already accepted patterns. Likewise, the execution of 
“next” and “previous” commands resembles playing a 
mobile video game. Conversely, executing “abort” in 
public areas may attract undesired attention. In order to 
verify statistically the differences presented in Figure 
5(down) we performed a significance test. The response 
variables of Table 6 can take only two possible outcomes 

(coded as 0 and 1) so we executed a Cochran’s Q test. 
We found that there exist significant differences in 
gesture usage in diverse places (X2(5) = 106.9, p < 
0.001). A pairwise comparison using continuity corrected 
McNemar’s tests with Bonferroni correction revealed 
what the significant differences are, shown in Table 7. 

 

 

 

Figure 5: Average percentage of the gestures 
acceptability in different locations and in front of 

different people (error bars show one standard deviation) 
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 Home Pavement Driving Bus/Train Bar/Restaurant Work 
Home  1 <0.001 0.653 <0.001 1 
Pavement   <0.001 0.992 <0.001 1 
Driving    <0.001 0.017 <0.001 
Bus/Train     <0.001 0.147 
Bar/Restaurant      <0.001 
Work       

 
Table 7: Significance difference of places in pairwise comparisons using continuity-corrected McNemar’s tests with 

Bonferroni correction
 

5. Conclusions 
We have described a prototype version of a speech-
enabled conversation partner hosted on a mobile tablet 
computer, and presented a series of evaluation tasks. 
Specifically, we have introduced a concise and 
intuitively meaningful gesture set that can be used to 
trigger commands to any SDS. We also performed a 
series of classification tests for this application task and 
provided guidelines for designing socially acceptable 
gestures.  
Possible future extensions of this work include follow-up 
studies where subjects interact using their own set of 
gestures and also perform testing in public settings. 
Feedback from less represented target groups (e.g. 
elderly people) would also be beneficial. Finally, 
experimentation with other classification techniques or 
by combining different set of features could provide 
more accurate results and more efficient usage of the 
device’s resources. 
Applications emanating from the game industry have 
made everyone aware of the potential of interfaces based 
on motion sensing; but speech-enabled applications on 
mobile devices have only become common within the 
last year or two, and connections between the two 
technologies have not yet been widely discussed. We are 
surprised to see what rich synergies are available, and 
plan to explore them further in the near future. 
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