
Dynamic web service deployment in a cloud environment

Marc Kemps-Snijders, Jan Pieter Kunst, Matthijs Brouwer, Tom Visser

Meertens Institute Sara
Joan Muyskensweg 25, Science park 140,
1096 CJ Amsterdam 1098 XG Amsterdam
 Netherlands Netherlands

Marc.kemps.snijders@meertens.knaw.nl, janpieter.kunst@meertens.knaw.nl, matthijs.brouwer@meertens.knaw.nl,
tom.visser@sara.nl

Abstract
E-infrastructure projects such as CLARIN do not only make research data available to the scientific community, but also deliver a
growing number of web services. While the standard methods for deploying web services using dedicated (virtual) server may suffice
in many circumstances, CLARIN centers are also faced with a growing number of services that are not frequently used and for which
significant compute power needs to be reserved. This paper describes an alternative approach towards service deployment capable of
delivering on demand services in a workflow using cloud infrastructure capabilities. Services are stored as disk images and deployed
on a workflow scenario only when needed this helping to reduce the overall service footprint.

Keywords: web services, cloud, CLARIN

1. Introduction
A number of e-infrastructure projects have been underway
in the past couple of years aiming to provide an integrated
and interoperable research infrastructure. These projects
must tackle a large number of subjects including legal,
organizational and technical challenges to ensure
persistent, secure and reliable access to data and services
that is easy to use by researchers. Rather than being a one-
time effort, building these infrastructures is a continuous
process of convergence towards acceptable standards of
operations to all parties involved. These project do not
operate in isolation but are part of a much wider landscape
of related infrastructure projects and initiatives, involving
user communities, data services and cross domain
activities such as security and curation. For a project such
as CLARIN the technological challenges fall into three
main categories: data, tools/services and infrastructure.
While there is much experience with data management
(metadata, publication, persistency, security) that relies on
many of the infrastructural services, such as persistent
identifiers, the situation for tools/services is less mature.
Projects such as CLARIN have seen a large increase in
the number of services that are being made available, such
as speech recognizers, NLP tools or annotation tools,
questions on how to make these available in a sustainable
manner over a period of many decades is still a largely
unsolved challenge. While the standard method of
deploying services on a (virtual) web server is common
practice this often is not the most efficient deployment
model when considering usage patterns. Many services
currently being deployed have not (yet) found a broad
user basis or are only used occasionally in a research
environment. This paper describes an alternative
deployment model that allows services to be available on
demand while reducing the amount of resources necessary
to make them available to the community. While the focus
in this paper is a technical one, other issues must also be
taken into consideration when deploying or using web
services. In particular legal issues are of importance since
in many cases data is migrated across national boundaries.
The impact of this is not limited to the use of cloud

infrastructures, but is relevant when using any type of web
service.

2. Background

In the TTNWW (TST Tools voor het Nederlands als
Webservices in Workflow) project a long-standing
collaboration between the Netherlands and Flanders,
spanning more than 10 years and including projects such
as CGN and STEVIN, tools and data for the Dutch
language domain are prepared for integration in the
emerging national and European CLARIN eScience
infrastructure. One of the preconditions for the CLARIN
infrastructure is the establishment of centers providing
persistent access to stable, highly available services of
various types. These centers must free researchers
providing data and tools from all non-primary scientific
tasks such as additional bureaucratic, administrative and
technical tasks associated with centers operation. Goal of
the TTNWW project is to incorporate language
components in a workflow system using web services, to
ensure that all these components are hosted by reliable
CLARIN centres and to provide access to these
workflows to Humanities and Social sciences (HSS)
researchers with little or no technical background. In the
TTNWW project at least 9 new services will be made
available, including corpus cleanup, tagging, parsing,
alignment, NER, coreference, semantic role labeling,
spatiotemporal analysis and speech recognition. These
services are made available by a range of Dutch and
Flemish research institutes. To lower that barriers for
using these web services they will be combined in task
specific workflows that are offered to the researchers in a
web enables user interface.

The BiGGrid project (led by partners NCF, Nikhef and
NBIC) aims to set up a grid infrastructure for scientific
research. This research infrastructure contains compute
clusters, data storage, combined with specific middleware
and software to enable research that needs more than just
raw computing power or data storage. The project has
advanced beyond its original grid infrastructure and has
made part of hardware cloud accessible.

2941

3. Description of work

In collaboration with the BiGGrid project a dynamic web
service deployment pilot project was conducted where
services and workflows are dynamically deployed and
executed without the need for maintaining multiple
dedicated servers over a long period of time. This
technique relies heavily on virtualization and takes
advantage of cloud infrastructure capabilities that are
delivered by the BiGGrid project. The cloud infrastructure
(OpenNebula) provides the possibility to manage virtual
machines and images in a cloud environment. This
includes assignment of memory usage, number of cpu’s,
disk and network configuration. Each cloud user is
assigned a workspace in which virtual machine images
may be uploaded, managed and deployed without
interfering with the needs of other users.

In the setup for this pilot project two services were chosen
to provide the proof of concept, a corpus cleanup service
(TICCLOPS) and a memory-based morphosyntactic
tagger and parser for Dutch (FROG1[FROG]). Both
services had already been delivered as part of the
TTNWW project and were considered to be stable enough
for the operational phase. Both TICCLOPS and FROG are
software packages that were originally designed for
standalone usage and as such not directly usable in a
Service Oriented Architecture (SOA) environment. To
make the original software packages available as web
services they were converted to web services using
CLAM2. The CLAM (Computational Linguistics
Application Mediator) software package assists in making
standalone applications available as a RESTful web
service and also makes the original functionality available
as a web application. It has successfully been employed in
a number of CLARIN-NL projects. CLAM distinguishes a
number of discrete operations guiding the execution
process of the wrapped software. The basic steps involved
in executing a wrapped service consist of:

1. creating a project; a project serves as a container
for all artefacts collected during an execution
process. It contains input files, output files and is
identified by a unique name.

2. uploading the necessary input files,

3. specifying additional parameters; each service
may have process specific parameters that must
be supplied before execution.

4. starting the process

5. checking process status, a polling mechanism
allows for basic monitoring of the process status.

6. downloading the results once the process has
finished

1 http://ilk.uvt.nl/frog/
2 http://ilk.uvt.nl/clam/

7. removal of the project; this includes removal of
any input and output files residing on the server

These steps are reflected in a number of web service
operations that are exposed to the outside world. After the
CLAM wrapping process, each of the resulting services
was installed on a separate virtual server and disk images
of each of the servers were created. These disk images
provide a snapshot of the state of the server at the time it
was made and may be used to quickly restore a server’s
state. These server images were subsequently uploaded
into a cloud workspace for further use.

To combine web service operations into a sequence of
connected steps a workflow management system was used
that monitors and controls the order in which web services
are executed. Within the TTNWW project the decision
was made to use TAVERNA3[TAVERNA-
1][TAVERNA-2][TAVERNA-3] consisting of a number
of tools to support the creation, execution and monitoring
process of workflows. Workflows are created using the
TAVERNA workbench while execution may either be
done locally from the workbench or remotely using the
TAVERNA server. For our purposes the TAVERNA
server was used making it possible to execute workflows
directly without the need for locally installing the
TAVERNA workbench. After installation and
configuration of the TAVERNA server a disk image was
created and uploaded into the cloud’s workspace.

For both the TICCLOPS and FROG services ‘mini’
workflows were created that encapsulate the individual
web service steps of CLAM wrapper (project creation,
upload, etc.). These workflows are further combined into
larger workflows thus allowing for reuse of previously
created partial workflows. Configuration parameters and
data sources can be specified in such a manner that these
may be set as part of the execution process. Normally the
web service end points are known in advance. For the
purposes of this project the locations of the web services
were also externalized to make it possible to execute the
workflow without knowledge of the location of the web
service at design time.

4. Dynamic web service deployment

To be able to use web services they must be deployed. As
indicated above, only the server images are uploaded into
the cloud’s workspace and workflow specifications have
been created that are able to connect the various steps of
the execution process. For the deployment process two
deployment types were used. The TAVERNA image was
deployed as a dedicated server, the TICCLOPS and
FROG images were to be deployed as dynamic web
services. We wanted to keep the footprint of the combined
services as low as possible and only deploy services when
they were needed.

In order to achieve the dynamic deployment scenario, i.e.
that services are only deployed when they are requested
for use as part of a workflow, two additional services were

3 http://www.taverna.org.uk/

2942

created that manage the workflow configuration and
manage the image deployment and destruction process.
When a workflow is sent to the first service it will assess
whether any of the services specified in the workflow
process is dynamic in nature. Images of these services are
expected to have been stored in the cloud’s workspace. In
our current setup this was achieved by adding service
annotations to the workflow specification document using
standard TAVERNA features. Once it is determined that
there are indeed services that must be deployed requests
are sent to the deployment service which interacts with the
OpenNebula interface. Here, the images are loaded from
disk and deployed on one of the cloud’s compute nodes.
Assignment of memory usage, number of cpu’s, disk and
network configuration are also part of this process.
Network configuration ensures that the deployed services
are only accessible by processes from within the cloud
workspace environment. Once the service(s) are up and
running the workflow configuration manager receives the
locations for each of the services (IP addresses are
dynamically assigned) and forwards this information plus
the original workflow specification, configuration
parameters and data sources to the TAVERNA server.
The TAVERNA server interacts with the previously
deployed services and returns the results to the original
client who requested the workflow execution. Upon
completion all services participating in the workflow
process are destroyed.

5. End user experience

The average end user is not interested in where services
are located and how they are. As part of the project a web
interface was developed encapsulating the intricacies of
the SOA and deployment architecture. A small front end
web application (see figure 2) was developed allowing
users to interact with the services in a transparent manner.
To make it easier for users interaction with the web
services does not go directly but is mediated through a
workflow. Each workflow consists of a number of
interlinked services that are designed to complete a
specific task. For the purposes of the TTNWW project
NLP processing and speech recognition pipelines are
created. These perform a specific series of tasks such as
tokenization, POS tagging, NER recognition,
coreferencing and spatio temporal relation detection. To
the end user each of these workflows is represented as a

single task. The current interface allows upload of
workflow specifications as a whole, which will be
replaced in the final interface with a set of menu bar
commands that are associated with predefined workflow
specifications. In the current user scenarios where novels
and year books are analyzed the processing time for
executing the individual processing services can be
considerable. To accommodate for this the web
application will store the results in a user’s workspace
where they may be retrieved upon the user’s return. Given
this, startup time of the images in the cloud environment
does not significantly reduce user expectancy. Start up of
FROG image takes under 30 sec. Moreover, in the current
setup all services are deployed at startup of the workflow.
As a result services are generally ready to go once the
workflow engine requests access (with the exception of
the first).

6. Relation to metadata

The possibility of using disk images also opens alternative
approaches towards web service publication.
Traditionally, web services are associated with WSDLs or
WADLs containing the service end points. Although
efforts have been made to make full service descriptions
available, for example using UDDI and EbXML, none of
these approaches have been able to meet the requirements
from an e-infrastructure perspective. In CLARIN services
are therefore described using CMDI meta data[CLARIN
D2R-6b][CLARIN D2R-7b] that is also used for
describing (language) resources. This provides not only a
shared technological basis for publishing both data and
services but also provides a high degree of flexibility
capable of describing the service’s capabilities. Each
service must announce its capabilities and whereabouts
using the same component based mechanisms that also
apply to metadata publication of data resources. Similar to
resources, the location of a web service can be described
by pointing to a dedicated web server location or may be
made flexible by pointing to a deployment agent with the
appropriate image specification. Also, the image itself
may be published allowing users to download the image
and run the service. The latter option is particularly useful
for organizations who do not have the capabilities or
desire to maintain a dedicated web server but also have
sensitive data that is not expected to leave institutional
grounds.

Figure 1: User interface showing execution of
several complex tasks and the structure and results
of one of them.

Figure 2: Architecture and interaction patterns
during service deployment

2943

Since the workflow specifications are XML documents
they can also be published in the same manner using
CMDI. Workflow specifications have similar
characteristics as data resources except that they also
specify input and output characteristics comparable to a
service’s input and output parameters. Using the CMDI
mechanisms it is thus possible to publish (partial)
workflows as well as the data resources and services that
are used in the execution chains.

7. Discussion
This approach of dynamic service deployment has a
number of advantages. Firstly it reduces the amount of
necessary resources to keep a set of services available
over a period of time. Particularly for services that are
seldom used or in the early stages of adoption of the
process this presents an interesting possibility of gradual
scaling. Time needed to deploy a service depends upon

the size of the image. This method of service deployment
will also, as a side effect, ensure that any files uploaded to
the service or generated by the service are automatically
destroyed once the service is destroyed. While the CLAM
service wrapper also provides the possibility to remove all
uploaded and generated files this must be explicitly
initiated by the client. No residual data is thus left behind
on the service instance.
To publish the service’s capabilities standard CMDI
mechanisms may be used. Service descriptions can be
extended by announcing the service’s dynamic
deployment end point, i.e. the deployment service and the
location of the disk image. This provides capabilities of
flexible remote or local execution scenarios. Workflow
specifications that chain the services can be published and
reused in this manner as well, thus making it possible to
make data resources, services and workflows widely
available and reusable throughout the infrastructure.

8. Acknowledgements

We would like to express our gratitude to the Stichting
Nationale Computer Faciliteiten who provided the
necessary computing and storage facilities for this project.

9. Bibliographic References

[CLARIN D2R-6b]Adam Funk , Nuria Bel, Santi Bel,
Marco Büchler, Dan Cristea, Fabienne Fritzinger, Erhard
Hinrichs, Marie Hinrichs, Radu Ion, Marc Kemps-
Snijders, Yana Panchenko, Helmut Schmid, Peter
Wittenburg, Uwe Quasthoff, Thomas Zastrow.
Requirement specification web services and workflow
systems. Available at: http://www-sk.let.uu.nl/u/D2R-
6b.pdf
[CLARIN D2R-7b] Marc Kemps-Snijders. Web services
and workflow creation. Available at: http://www-
sk.let.uu.nl/u/D2R-7b.pdf
[TAVERNA-1] P. Missier, S. Soiland-Reyes, S. Owen,
W. Tan, A. Nenadic, I. Dunlop, A. Williams, T. Oinn, and
C. Goble, “Taverna, reloaded,” in SSDBM 2010,
Heidelberg, Germany, 2010.
[TAVERNA-2] D. Hull, K. Wolstencroft, R. Stevens, C.
Goble, M. Pocock, P. Li, and T. Oinn, “Taverna: a tool for
building and running workflows of services.,” Nucleic
Acids Research, vol. 34, iss. Web Server issue, pp. 729-
732, 2006.
[TAVERNA-3] T. Oinn, M. Greenwood, M. Addis, N.
Alpdemir, J. Ferris, K. Glover, C. Goble, A. Goderis, D.
Hull, D. Marvin, P. Li, P. Lord, M. Pocock, M. Senger, R.
Stevens, A. Wipat, and C. Wroe, “Taverna: lessons in
creating a workflow environment for the life sciences,”
Concurrency and Computation: Practice and Experience,
vol. 18, iss. 10, pp. 1067-1100, 2006.
[FROG] Antal van den Bosch, Bertjan Busser, Sander
Canisius, Walter Daelemans. An efficient memory-based

morphosyntactic tagger and parser for Dutch. Available
at: http://ilk.uvt.nl/downloads/pub/papers/tadpole-
final.pdf

2944

