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Abstract
Relation extraction (RE) is an important text mining task which is the basis for further complex and advanced tasks. In state-of-the-art
RE approaches, syntactic information obtained through parsing plays a crucial role. In the context of biomedical RE previous studies
report usage of various automatic preprocessing techniques applied before parsing the input text. However, these studies do not specify
to what extent such techniques improve RE results and to what extent they are corpus specific as well as parser specific. In this paper,
we aim at addressing these issues by using various preprocessing techniques, two syntactic tree kernel based RE approaches and two
different parsers on 5 widely used benchmark biomedical corpora of the protein-protein interaction (PPI) extraction task. We also
provide analyses of various corpus characteristics to verify whether there are correlations between these characteristics and the RE
results obtained. These analyses of corpus characteristics can be exploited to compare the 5 PPI corpora.

Keywords: relation extraction, parsing, preprocessing.

1. Introduction
Relation extraction (RE) is an important text mining task
which is the basis for further complex and advanced tasks
(e.g. event extraction, literature based discovery, . . . ). The
goal of RE is to identify all the relations of interest that
hold between two (or more) entities inside a given text. For
example, consider the following sentence:

“Native C8 also formed a heterodimer with
C5, and low concentrations of polyionic ligands
such as protamine and suramin inhibited the in-
teraction.”

After identification of the relevant named entities (NE,
in this case Proteins) C8 and C5, the RE task determines
whether there is a PPI relationship between the entities
(which is true in the example above).

Biomedical RE (henceforth, bio-RE) approaches have
evolved from the exploitation of statistics about co-
occurrences of entities, and the use of shallow linguistic
information and patterns, to methods that take advantage
of full syntactic parsing (Zweigenbaum et al., 2007). The
importance of syntactic relationships among words for
bio-RE is evident in the state-of-the-art techniques. This is
also due to the fact that currently state-of-the-art parsing
techniques achieve on biomedical texts performance not far
from the best achieved on newspaper articles (McClosky,
2010; Rimell and Clark, 2009; Sagae et al., 2008).1

Statistical parsers obviously rely on the sentence con-
structions found in the corresponding treebanks used
for training. One of the issues regarding treebanks is
that they (practically) cannot have examples that cover

1However, portability of syntactic parsing between different
domains and text genres remains an open issue.

all the types of linguistic constructions. Furthermore,
since state-of-the-art parsers exploit probabilities, certain
syntactic structures which are found only a few times in
treebanks might be ignored in favor of syntactic structures
which are more frequent. A further element is that natural
language sentences, especially in biomedical texts, are
often long and ambiguous.

The objective of various automatic preprocessing tech-
niques2 is to fix (as much as possible) inconsistencies
or irregularities (which are not necessarily erroneous or
wrong sentence constructions) inside the input sentences.
In other words, the goal is to make the sentence construc-
tions as much uniform as possible. Such preprocessing
techniques could be helpful to “adapt” the sentences to
the idiosyncrasies of the treebank on which the parser
was trained. This could reduce the errors produced by
tokenization and POS (part-of-speech) tagging, leading to
the reduction of parsing errors and thus contributing to the
overall performance on the target NLP task (e.g. RE) that
uses a syntactic parser as a component.

Obviously, how to preprocess the input text is itself related
to the target NLP task in which the parse trees will be used.
Simplifying or removing some parts of the sentences as
preprocessing might risk losing important information as
well as distorting the originally intended meaning of the
sentence. But for a task like RE, this could actually help to
reduce redundant or non informative information. Because,
not all the words (and not whole parse tree) are exploited
by RE approaches. RE approaches usually focus on the
words or the parts of the sentence which might contain
possible cues.

2For example, to simplify them, to add relevant punctuation
wherever possible, to organize sentence structure in a better way,
. . .
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Previous studies (Bui et al., 2010; Miwa et al., 2009; Miwa
et al., 2008) report usage of various preprocessing tech-
niques for bio-RE, specifically for exploiting syntactic in-
formation for Protein-Protein Interaction (PPI) extraction,
the most widely studied information extraction task in the
BioNLP field. However, these studies do not explicitly ad-
dress the following research questions:

1. To what extent do preprocessing techniques improve
RE results?

2. To what extent are preprocessing techniques corpus
specific?

3. To what extent are preprocessing techniques parser
specific?3

Moreover, since these studies apply different preprocessing
steps before exploiting different RE methodologies, it is
difficult to distinguish between the contribution of the
preprocessing steps and the one of the RE methodologies
to the final result.

Therefore, our aim is to study the impact of preprocessing
techniques based on a specific target task using the same
RE methodology. In this paper we primarily focus on the
first two questions above and partially to the third question.
To the best of our knowledge, no such empirical study of
evaluation regarding various preprocessing steps has been
reported yet.

We select the PPI extraction task for our study since most
of the bio-RE work are done in this context and also
due to relevance of this task for understanding biological
processes. Previous PPI studies that evaluated their RE
systems on multiple PPI corpora showed a considerable
difference among the results on different corpora even
for the same system. Pyysalo et al. (2008) observed
that the F1-score performance of a state-of-the-art PPI
extraction method varies on average 19% when evaluated
on 5 benchmark PPI corpora. Nevertheless, there has
been no attempt by these studies to analyse and compare
these corpora to understand why there is such performance
variation.4 Part of this study attempts to shade light on the
variation of different corpus characteristics which could be
used for corpora comparison.

For the evaluation on multiple corpora (which concerns
the second research question mentioned above) we use
the 5 benchmark PPI corpora (more in Section 4.) that are
used in various PPI extraction studies. The decision of
using multiple corpora is motivated by the need to evaluate
whether the impact of a certain preprocessing technique

3Syntactic parsers can differ in approaches (e.g. lexicalized,
unlexicalized, self-trained, . . . ) and in methodologies (e.g. phrase
structure parsing, dependency parsing, . . . ).

4Some of these studies used cross-corpus evaluation (i.e. hold-
ing out one corpus as test set and training on the other remaining
multiple corpora) without justifying whether these different cor-
pora are similar and could be merged together for training.

is consistent across different corpora, and, if not, then to
explain why it is so.

To partially address the third research question mentioned
at the beginning, we exploit two widely used parsers for
bio-RE: Charniak-Johnson reranking parser (henceforth,
Charniak parser) (Charniak and Johnson, 2005) along with
a self-trained biomedical parsing model (McClosky, 2010)
and Stanford parser (Klein and Manning, 2003) (version
1.6.8). Both the parsers use the Genia (biomedical) tree-
bank (Tateisi et al., 2005) as part of their training data. The
aim is to verify our working hypothesis that preprocessing
steps are parser specific.

The remainder of the paper is organized as follows. In
Section 2., we briefly review previous work. Then, in
Section 3., we describe the preprocessing techniques used
in the experiments. Section 4. lists the datasets. Section 5.
describes the empirical results. Finally, we conclude with
a summary of our study.

2. Related Work
There is some earlier work on the benchmarking of natural
language parsers on biomedical data (e.g. Clegg and
Shepherd (2007)). However, the first work that we are
aware of on evaluating contributions of parsers to a specific
bio-RE task is the one performed by Miyao et al. (2009).
They studied how the choice of different syntactic parsers
(as a component of a PPI extraction system) and their
output representations can influence bio-RE results on
AIMed, a PPI corpus. Another related work is by Miwa
et al. (2009). As part of their study, they evaluate their
system on the AIMed corpus using two different 10-fold
splittings and two preprocessing steps (tag fixes and
sentence splitting). Their objective was to verify whether
the choice of different corpus splittings affects the results.
Since their system is composed of multiple parsers (and
multiple kernels), and since they do not report the result
without preprocessing, it is difficult to estimate the impact
of the two preprocessing steps used.

State-of-the-art PPI extraction approaches are based on hy-
brid kernels5 (Miwa et al., 2009; Chowdhury and Lavelli,
2012). These approaches use tree and graph kernels, apart
from feature-based kernels, in the formation of the hybrid
kernels. Since our evaluation is focused on evaluating the
changes in the parser output, we use two syntactic tree
kernels rather than the hybrid kernels, more precisely (i)
the Phrase Structure Tree (PST) kernel (Moschitti, 2004)6,
and (ii) the Mildly Extended Dependency Tree (MEDT)
kernel (Chowdhury et al., 2011). Both kernels use only
syntactic information.

One of our evaluation goals includes to study the changes
of the contribution of syntactic dependencies due to the

5The term “hybrid kernel” refers to those kernels that combine
multiple types of kernels.

6Also known as path enclosed tree (PET) kernel or shortest
path-enclosed tree (SPT) kernel.
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application of different preprocessing steps. Miwa et
al. (2010) presented a task-oriented comparison of five
parsers, measuring their contribution to bio-molecular
event extraction. They used domain models with three dif-
ferent dependency formats – Stanford Dependency (SD),
the CoNLL-X dependency and the predicate-argument
structure formats. They obtained very similar performance
for all the formats. Among these dependency formats, SD
is arguably the most widely used format in bio-RE because
of its choice to express more fine–grained relations such as
apposition (Miyao et al., 2009). This format is originally
proposed for extracting dependency relations useful for
practical applications (de Marneffe et al., 2006) and can
be obtained from the Penn Treebank-style phrase structure
tree output (produced by both the Charniak-Johnson and
Stanford parsers). We exploit this possibility and use the
SD format during the experiments.

3. Preprocessing Techniques
We consider the following popular preprocessing tech-
niques mentioned in literature for our experiments:

• Entity blinding: It refers to replacing all mentioned
entity names with a place holder. For example, the
sentence “Jun mediates a physical association with
the TATA box-binding protein” would become “EN-
TITY1 mediates a physical association with the EN-
TITY2”. There are two versions of blind entity names:

– place holders with all capital letters (henceforth,
blind entities with all capital letters or BEAC),
e.g. ENTITY1

– capitalized place holders with mixed case letters
(henceforth, blind entities with mixed case letters
or BEMC), e.g. Entity1

• Insertion of spaces at entity name boundaries
(henceforth, IS): This refers to the case when entity
names are part of a larger token, i.e. they are subto-
kens and attached with some other characters (exclud-
ing comma, full-stop, semi-colon, exclamation mark
and question mark). By applying IS, empty spaces are
inserted before/after the boundary characters of such
subtoken entity name. For example, in the following
sentence “We took advantage of previously collected
data to conduct a secondary analysis of the RBP/TTR
ratio” the two entities RBP and TTR are part of a sin-
gle token.

• Removal of parenthetical comments/remarks
containing no entity names (henceforth, RPC):
Sometimes sentences contain additional informa-
tion/remarks/comments inside parentheses, more
specifically between ‘(’ and ‘)’. The objective of this
preprocessing step is to remove such comments if
the comments do not contain any entities that are of
interest for the target RE task (i.e. proteins in case
of PPI extraction). For example, in the sentence
“Insulin-induced hypoglycemia increased by 2-fold
(peak vs. baseline) plasma AVP and OT levels” such a
candidate comment for removal is (peak vs. baseline).

Corpus Sentences Positive pairs Negative pairs
BioInfer 1,100 2,534 7,132
AIMed 1,955 1,000 4,834
IEPA 486 335 482

HPRD50 145 163 270
LLL 77 164 166

Table 1: Basic statistics of the 5 benchmark PPI corpora.

The versions of the benchmark corpora used in our
experiments contain splitted sentences7. So, we do not
need to split text into sentences (which is another type of
preprocessing).

4. Data
As stated earlier, there are 5 benchmark corpora for the
PPI task that are frequently used: HPRD50 (Fundel et al.,
2007), IEPA (Ding et al., 2002), LLL (Nédellec, 2005),
BioInfer (Pyysalo et al., 2007) and AIMed (Bunescu et
al., 2005). These corpora adopt different PPI annotation
formats. For a comparative evaluation Pyysalo et al. (2008)
put all of them in a common format which has become
the standard evaluation format for the PPI task. In our
experiments, we use the versions8 of the corpora converted
to such format. Table 1 shows various statistics regarding
the 5 (converted) corpora.

5. Results and Discussions
Since one of our goals is to investigate whether there is
any correlation between certain corpora characteristics and
specific preprocessing techniques, we measured the values
of different characteristics of the 5 corpora as shown in
Table 2. Figure 1 shows these values in a chart converted
in log linear scale for better understanding. As the values
show, the corpora have quite different characteristics. This
partially explains why the empirical results reported in
previous literature (as well as in this paper) show so much
variation despite the fact that all the corpora are specifically
annotated to facilitate PPI extraction.

Our assumption is that, among these characteristics,
AvWordPerEnt (avg. no. of words per entity name),
AvEntPerSen (avg. no. of entities per sentence) and
AvEntWordPerSen (avg. no. of words in all entity
names per sentence) might be directly related to the perfor-
mance increment/decrement because of Entityblinding
(i.e., BEMC and BEAC) preprocessing. While
AvWordBetEntPair (avg. no. of words between each
entity pair), AvNonEntWordPerSen (avg. no. of words
per sentence excluding entities) and AvWordPerSen
(avg. no. of words per sentence) might influence the
outcome because of the removal of parenthetical com-
ments/remarks having no entity names (RPC). We also

7We observed some sentence splitting errors in these corpora,
especially in AIMed.

8Available from http://mars.cs.utu.fi/PPICorpora/
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Corpora
Charactersitics Description LLL IEPA HPRD50 AIMed BioInfer

AvWordBetEntPair Avg. no. of words between each entity pair 10.46 8.89 7.11 6.92 8.44
AvWordPerEnt Avg. no. of words per entity name 1.05 1.22 1.21 1.29 1.24
AvEntPerSen Avg. no. of entities per sentence 3.10 2.30 2.79 3.25 4.05

AvEntWordPerSen Avg. no. of words in (all) entity names per sent. 3.26 2.80 3.38 4.19 5.03
AvNonEntWordPerSen Excluding entities avg. no. of words per sent. 22.57 26.07 20.93 19.71 21.93

AvWordPerSen Avg. no. of words per sentence 25.83 28.87 24.31 23.90 26.96

%OfSubtokEnt Percentage of subtoken entities 15.06% 12.18% 6.91% 14.23% 11.6%

Table 2: Statistics of different characteristics of the 5 benchmark PPI corpora. All sentences (in each corpus) are considered
during analyses.

Preprocessing Preprocessed data parsed by Charniak parser Preprocessed data parsed by Stanford parser
type LLL IEPA HPRD50 AIMed BioInfer LLL IEPA HPRD50 AIMed BioInfer

Without Prec. 64.1 68.3 71.2 45.7 71.9 68.1 69.3 62.3 44.1 67.3
preprocessing Rec. 90.2 76.1 63.8 64.4 72.5 84.8 72.2 69.9 57.9 69.7

(WP) F1 74.9 72.0 67.3 53.5 72.2 75.5 70.8 65.9 50.1 68.5

BEMC Prec. 66.7 69.9 65.5 43.9 72.1 71.0 69.1 56.7 43.0 71.3
Rec. 91.5 77.0 69.9 73.5 75.4 92.7 75.5 85.3 67.2 70.9
F1 77.1 73.3 67.7 55.0 73.8 80.4 72.2 68.1 52.4 71.1

BEAC Prec. 67.3 72.2 56.8 43.5 72.7 72.2 71.3 55.5 42.7 70.6
Rec. 91.5 76.7 79.1 74.3 75.0 90.2 75.5 83.4 66.1 71.7
F1 77.5 74.4 66.2 54.9 73.8 80.2 73.3 66.7 51.9 71.1

IS Prec. 62.0 66.4 65.5 46.4 68.8 70.8 67.6 59.4 43.6 66.8
Rec. 92.7 74.3 67.5 64.3 72.1 93.3 72.8 71.8 61.3 70.3
F1 74.3 70.1 66.5 53.9 70.4 80.5 70.1 65.0 51.0 68.5

RPC Prec. 65.1 70.3 60.7 47.1 72.0 67.5 68.3 64.2 41.9 66.9
Rec. 90.9 79.7 71.2 59.7 72.3 84.8 75.2 73.6 60.8 69.4
F1 75.8 74.7 65.5 52.7 72.2 75.1 71.6 68.6 49.6 68.1

Table 3: Comparison of the results using the PET kernel (constructed on the phrase structure tress) on different prepro-
cessed data. The 5 corpora are preprocessed separately and then each of them is parsed using either Charniak or Stanford
parser. Bold F1 score indicates performance improvement with respect to the results obtained without preprocessing.

assume that %OfSubtokEnt (percentage of subtoken
entities) might help to understand the changes in the results
for the insertion of spaces at entity name boundaries (IS).

Tables 3 and 4 show a comparison of the PPI extraction
results without and with the preprocessing techniques.
Each of the preprocessing steps is applied on the sentences
before parsing them using the two parsers. We limit our
study on the usage of single preprocessing technique rather
than applying multiple techniques together.

Figures 2, 3, 4, 5 and 6 illustrate a graphical representation
of the results on different individual corpora using different
parsers and the two syntactic tree kernels.

5.1. Using phrase structure tree output of the two
parsers

5.1.1. How preprocessing affects tokenization of
subtoken entities

Among all the 5 corpora, AIMed and LLL have compar-
atively higher %OfDisconEnt. Interestingly, when the

IS preprocessing is applied on the corpora, the results
improved only for AIMed and LLL. For AIMed this
improvement is observed for both of the parsers, while for
LLL only Stanford parser’s output has managed to produce
better results.

During analysis of the parsed data, we observed that
Charniak parser is more robust on providing correct POS
tags than Stanford parser. We also found that sometimes
IS causes errors by parsers. For example, consider
the noun phrase (NP) “sigmaB- and sigmaF-dependent
promoters” (which actually means “sigmaB-dependent
and sigmaF-dependent promoters”). The ideal POS and
tokenization output for it should be “sigmaB-/JJ and/CC
sigmaF-/JJ dependent/JJ promoters/NNS”. However, the
parsers give the following output for this NP. Here, red text
indicates tokenization error, while blue text indicates POS
tagging error.
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Figure 1: Chart of different corpora characteristic values in
log scale.

• By Stanford parser:

– Without preprocessing: sigmaB/JJ -/: and/CC
sigmaF-dependent/JJ promoters/NNS

– After applying IS: sigmaB/JJ -/: and/CC sigmaF/JJ -/:
dependent/JJ promoters/NNS

• By Charniak parser:

– Without preprocessing: sigmaB-/JJ and/CC sigmaF-
dependent/JJ promoters/NNS

– After applying IS: sigmaB/NN -/CC and/CC sig-
maF/NN dependent/JJ promoters/NNS

Note that the values of AvWordPerEnt and
AvEntPerSen are lower for LLL than for AIMed.
As a result, despite IS has enabled separation of different
entities (which otherwise would be part of a larger token)
in separate tokens, AvWordPerEnt and AvEntPerSen
might be not significant enough for LLL to compensate
POS tagging and tokenization errors introduced by IS
when Charniak parser is used.

5.1.2. When parenthetical remarks are removed
As we can see, only the results (using both parsers) on
the IEPA corpus improve when RPC preprocessing is ap-
plied. We assume this is because AvWordBetEntPair ∗
AvNonEntWordPerSen for IEPA is considerably
higher than for other corpora.

5.1.3. When entities are blinded
As the results show, even minor differences in seemingly
the same preprocessing can have different impact on the
outcome. For example, for entity blinding technique, the
experiments show that the usage of BEAC (e.g. ENTITY1)
and BEMC (e.g. Entity1) produces different results.

After checking the parsed data we have found in most cases
that Stanford parser attaches the POS tag NNS (noun, com-
mon, plural) to tokens like “Entity1” and NN (noun, com-
mon, singular or mass) to tokens like “ENTITY1”. We have

Figure 2: Graphical representation of results on LLL cor-
pus.

Figure 3: Graphical representation of results on IEPA cor-
pus.

also noticed that Stanford parser can do better NP identifi-
cation when BEMC is used instead of BEAC. For ex-
ample, consider the following sentence preprocessed using
BEMC:

“Cotransfection of Entity0 and Entity1 in
embryonic kidney 293 cells activated the anti-
apoptotic transcription factor Entity2.”

Stanford parser correctly recognizes the NP “Entity0 and
Entity1 in embryonic kidney 293 cells” (which forms a
larger NP with “Cotransfection of”). However, if BEAC
is adopted as a preprocessing step instead of BEMC, the
parser fails to recognize the NP “ENTITY0 and ENTITY1
in embryonic kidney 293 cells” as a whole.

In the case of Charniak parser, we have observed that in
most cases it attaches either NNP (noun, proper, singular)
or NN tag to tokens like “Entity1”, and NN to tokens like
“ENTITY1”. Like Stanford parser, better NP identification
by Charniak parser is noticed when BEMC is used instead
of BEAC. For example, consider the following sentence
preprocessed using BEMC:

“We tested this point by cotransfecting CHO
cells with the genes encoding F beta alpha and
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Figure 4: Graphical representation of results on HPRD50
corpus.

Figure 5: Graphical representation of results on AIMed cor-
pus.

the Entity0 subunit or the Entity1 and Entity2
monomer.”

Charniak parser correctly recognizes that “the Entity0
subunit or the Entity1 and Entity2 monomer” is an NP
which later forms a larger NP with “F beta alpha and”.
However, if BEAC is applied instead of BEMC, the
parser wrongly identifies “F beta alpha and the ENTITY0
subunit” as an NP and then forms the larger NP with “or
the ENTITY1 and ENTITY2 monomer”.

In addition, we also observe that:

• In all of the corpora, using both parsers, BEMC pre-
processing produced improved results (with respect to
the results doing no preprocessing). An almost similar
trend is seen for BEAC except that the usage of the
output of Charniak parser on HPRD50 produced lower
results.

• Interestingly, regardless of the corpus and of the blind-
ing technique used (i.e. BEAC or BEMC), improve-
ment of results (with respect to the results when no
preprocessing is done) using Stanford parser output is
always higher than that using Charniak parser output.

Figure 6: Graphical representation of results on BioInfer
corpus.

• It is also noticeable that, without preprocessing, re-
sults are always better when Charniak parser output is
exploited rather than Stanford parser output. But when
entity blinding is applied the results using Stanford
parser either gets better (in case of LLL and HPRD50)
or closer to that using Charniak parser.

5.2. Using dependency trees obtained through the
syntax tree output of the two parsers

As mentioned in Section 2., previous studies show that
different dependency formats provide very similar perfor-
mance. SD is arguably the most widely used dependency
format in bio-RE. So, we used the SD format (which
are obtained from the phrase structure trees) during our
experiments with the MEDT kernel.

Empirical results show that the application, before parsing,
of a preprocessing technique which might have improved
the results when phrase structure trees are used, does
not necessarily guarantee that the exploitation of the
dependency trees derived from those phrase structure trees
would lead to a better result as well.

However, we note that there are significant improvements
of the results on BioInfer, AIMed and HPRD50 corpora
when BEMC, BEAC and IS are used before parsing
with Charniak parser.

5.3. Other observations

As the empirical outcomes show, results on AIMed and
HPRD50 are much lower than on the other corpora.
Perhaps, this can be partly explained by the fact that these
two corpora have lower values for AvWordBetEntPair,
AvNonEntWordPerSen and AvWordPerSen. How-
ever, HPRD50 has less AvEntPerSen than AIMed which
might have enabled to obtain slightly better results on
HPRD50.
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Preprocessing Preprocessed data parsed by Charniak parser Preprocessed data parsed by Stanford parser
type LLL IEPA HPRD50 AIMed BioInfer LLL IEPA HPRD50 AIMed BioInfer

Without Prec. 62.6 67.4 56.6 50.2 44.5 60.3 55.0 53.9 42.6 47.6
preprocessing Rec. 87.8 64.2 60.7 57.4 69.7 100.0 60.9 59.5 57.2 61.8

(WP) F1 73.1 65.8 58.6 53.6 54.3 75.2 57.8 56.6 48.8 53.8

BEMC Prec. 52.8 62.0 60.7 58.1 46.9 58.0 60.0 58.7 45.8 50.1
Rec. 97.6 70.2 64.4 60.3 70.6 97.0 69.3 64.4 54.5 63.3
F1 68.5 65.8 62.5 59.2 56.4 72.6 64.3 61.4 49.8 56.0

BEAC Prec. 53.7 63.5 60.3 55.4 52.2 57.2 54.7 54.9 51.8 45.2
Rec. 96.3 67.5 64.4 61.7 69.5 98.8 67.8 65.0 53.1 67.0
F1 69.0 65.4 62.3 58.4 59.6 72.5 60.5 59.6 52.4 54.0

IS Prec. 60.7 63.2 58.1 50.5 51.9 59.6 53.8 48.1 44.8 46.0
Rec. 86.6 66.6 63.8 62.5 62.0 98.8 62.4 54.0 55.2 62.1
F1 71.4 64.8 60.8 55.9 56.5 74.3 57.8 50.9 49.4 52.9

RPC Prec. 62.6 68.2 56.6 50.3 44.7 60.3 57.4 53.0 43.0 47.9
Rec. 87.8 66.6 60.7 56.7 68.4 100.0 61.5 60.1 55.7 60.8
F1 73.1 67.4 58.6 53.3 54.1 75.2 59.4 56.3 48.5 53.6

Table 4: Comparison of the results using the MEDT kernel (constructed on the dependency graphs obtained using the
phrase structure tress) on different preprocessed data. The 5 corpora are preprocessed separately and then each of them
is parsed using either Charniak or Stanford parser. Bold F1 score indicates performance improvement with respect to the
results obtained without preprocessing.

6. Conclusion
In this paper, we have presented an empirical evaluation of
various preprocessing techniques (before parsing) and their
contribution in a specific bio-RE task, i.e. PPI extraction,
using a phrase structure tree based and a dependency tree
based syntactic kernels. We have also provided analyses
of different corpora characteristics of the 5 corpora used
in our experiments. Based on the empirical results of our
study and analyses of the output of two different parsers,
we have made an attempt to relate different characteristics
of a corpus with the different preprocessing techniques
used. We have provided supporting examples to show how
the preprocessing techniques affect output of the parsers.

We speculate that some of the preprocessing steps might
complement some of the other steps and would produce
larger gains in results if they are combined. However, in
this paper we have limited our study to the contribution
of individual techniques. Empirical results show some
interesting findings, e.g. even apparently minor differences
in seemingly same preprocessing can have different impact
on the outcome. Also, it turns out that having an improve-
ment (due to preprocessing) using phrase structure trees
do not necessarily implies that an improvement would be
also obtained using dependency trees. Finally, we present
analyses of different corpora characteristics which can be
exploited to compare the 5 PPI corpora.
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