
Further Developments in Treebank Error Detection Using Derivation Trees

Seth Kulick, Ann Bies, Justin Mott

Linguistic Data Consortium
University of Pennsylvania

Philadelphia, PA 19104
{skulick,bies,jmott}@ldc.upenn.edu

Abstract
This work describes how derivation tree fragments based on a variant of Tree Adjoining Grammar (TAG) can be used to check treebank
consistency. Annotation of word sequences are compared both for their internal structural consistency, and their external relation to the
rest of the tree. We expand on earlier work in this area in three ways. First, we provide a more complete description of the system,
showing how a naive use of TAG structures will not work, leading to a necessary refinement. We also provide a more complete account
of the processing pipeline, including the grouping together of structurally similar errors and their elimination of duplicates. Second, we
include the new experimental external relation check to find an additional class of errors. Third, we broaden the evaluation to include
both the internal and external relation checks, and evaluate the system on both an Arabic and English treebank. The evaluation has been
successful enough that the internal check has been integrated into the standard pipeline for current English treebank construction at the
Linguistic Data Consortium

Keywords: Quality control, treebanking, Tree Adjoining Grammar

1. Introduction
Treebank annotation, consisting of syntactic structure with
words as the terminals, is by its nature more complex and
thus more prone to error than many other annotation tasks,
such as part-of-speech tagging. However, as with other
types of annotation, it is crucial that annotation consistency
be high in order to provide reliable training and testing data
for parsers and linguistic research. Recent work has there-
fore focused on the importance of detecting errors in the
treebank (Green and Manning, 2010), and methods for find-
ing such errors automatically, e.g. (Dickinson and Meurers,
2003b).
In Kulick et al. (2011), we introduced a new approach to
this problem that improves upon Dickinson and Meurers
(2003b) by decomposing the full syntactic tree into smaller
units, utilizing ideas from Tree Adjoining Grammar (TAG)
(Joshi and Schabes, 1997). This allows the comparison to
be based on meaningful syntactic units instead of string n-
grams. In this paper we develop this earlier work in three
ways:

1. We expand on the earlier description. First, we ex-
plain how a naive use of TAG structures will not work,
and give our solution to this problem. Second, we
give a more complete account of the entire process-
ing pipeline, placing the use of the TAG-based com-
parison in the context of how the tree fragments to be
compared are determined. We now call this compari-
son an “internal relation check”, to distinguish it from
the following new search.

2. We discuss a class of errors that the earlier work - the
internal relations check - would not find, and how we
have experimented with a new error search, the “exter-
nal relation check”.

3. We broaden the evaluation, to include both the internal
and external checks as well as additional large English
corpora.

The evaluation has been successful enough that the “in-
ternal” check has now been integrated into the standard
pipeline for current English treebank annotation at the Lin-
guistic Data Consortium (Bies et al., 2012).

2. Background
In this section we present an overview of the system as de-
scribed in Kulick et al. (2011). The goal of our system is to
detect sequences that are annotated in inconsistent ways by
comparing local syntactic units.
The example in Figure 1 is from the Penn Arabic Tree-
bank (ATB) (Maamouri et al., 2010), using the Buckwalter
(2004) transliteration. The three trees in the top half of the
figure each represent a differently annotated instance of the
string qmp $rm Al$yx. The annotation in (A) and (B) is
inconsistent because (A) is fully right-branching, whereas
(B) is not. In contrast, although (B) and (C) look dissimilar,
the annotation in (C) is consistent with that in (B), with re-
gard to qmp $rm Al$yx. Undoing the adjunction in (C)
and removing the modifier mSr yields a tree that is identical
to (B).
Following the TAG approach, we decompose the full phrase
structure into smaller syntactic chunks called elementary
trees (henceforth, e-trees), with certain operations compos-
ing them with one another. Our method uses the three op-
erations in Figure 2: (1) substitution, which substitutes one
tree for a target node in another tree, (2) adjunction, which
attaches one tree to a target node in another tree by creating
a copy of the target node1, and (3) sister adjunction, which
attaches one tree (often only a single node) as a sister to a
target node in another tree. (The operations in Figure 2 are
somewhat different from those used in standard TAG, and
the formalism underlying our system is properly speaking
a variant of Tree Insertion Grammar, closely related to the
system in Chiang (2003).)

1Also known as Chomsky adjunction.

1840

#c4 NP

mSr
Egypt

qmp
summit

#a1

su
bs

t

NP

NP^

$rm
Sharm

#a2

NP

NP^

Al$yx
The Sheikh

NP

#a3

qmp
summit

#b1
NP

NP^

$rm
Sharm

#b2

NP

Al$yx
The Sheikh

#b3

qmp
summit

NP

$rm
Sharm

NP

Al$yx
The Sheikh

NP

(A)

qmp
summit

NP

$rm
Sharm

NP

Al$yx
The Sheikh

(B)

qmp
summit

NP

$rm
Sharm

NP

Al$yx
The Sheikh

(C)

NP

NP

()mSr
Egypt

(A) and (B) have inconsistent
annotation. Therefore their derivation
tree fragments are different.

(B) and (C) have consistent
annotation for qmp $rm Al$yx. The
derivation tree fragments are the
same, with no interference from
adjunction.

==

su
bs

t

su
bs

t

si
st

er
ad

jo
in

qmp
summit

#c1
NP

NP^

$rm
Sharm

#c2

NP

Al$yx
The Sheikh

#c3

su
bs

t

si
st

er
ad

jo
in

ad
jo

in

Figure 1: Examples of inconsistent and consistent annotation

Substitution

XP ZP
XP

XP

ZP

Adjunction

X

Y Z
Y

X

Z

Sister Adjunction

Figure 2: Three TAG Operations

The relationship of the e-trees underlying a full phrase
structure tree to each other is recorded in a derivation tree,
which specifies how the e-trees combine to form the origi-
nal full tree. The bottom half of Figure 1 shows the deriva-
tion trees corresponding to the phrase structure trees in the
top half. Without walking through all the details, each node
in the derivation tree is an e-tree, related to its parent node
in the derivation tree by one of the three composition op-
erations. In general, we are not concerned with derivation
trees for entire sentences, but rather derivation tree frag-
ments: just those nodes (i.e., e-trees) that contain a word in
the string being compared. These derivation tree fragments
are the basis for our system’s comparison of different in-
stances of the same string.

For example, the derivation tree fragments for our three in-

stances of qmp $rm Al$yx are the structures consisting
of (a1, a2, a3), (b1, b2, b3) and (c1, c2, c3), along with
the operations relating them. The structures in (A) and (B)
are reported as inconsistent, since their derivation tree frag-
ments (a1, a2, a3) and (b1, b2, b3) are different, with a dif-
ference in both the e-trees and the composition operations
relating them. But (B) and (C) are reported as consistent,
since the e-trees for the string, (b1, b2, b3) and (c1, c2, c3),
as well as the operations relating them are identical. Be-
cause we are evaluating qmp $rm Al$yx, the modifier
in (C) is not relevant to the evaluation, and because of the
TAG tree decomposition, it correctly does not interfere with
the comparison.

In Kulick et al. (2011), we compare our approach to that

1841

seats

#a2

NP
#a1

13

13

QP
#b2

#b3
about

seats

NP
#b1

sis
te
r

ad
jo
in sis

te
r

ad
jo
in

sis
te
r

ad
jo
in

Figure 3: Derivation tree fragments corresponding to (1ab)

of the DECCA system2, based on Dickinson and Meurers
(2003b). We discuss there the advantages of basing a com-
parison on tree fragments instead of string n-grams.
We would like to stress that there is no one correct way to
extract elementary trees from the full phrase structure tree.
The decomposition can be done in different ways, based on
choices of which (parent,head) relationships to use, or of
what constitutes an argument, or even whether substitution
nodes should be used at all (Shen et al., 2008). We have
chosen a fairly traditional approach, although it is possible
that we may modify this in the future to more closely fit the
needs of this work. The reason that we make heavy use of
sister adjunction is because this allows us to create a deriva-
tion tree that can be used to exactly reconstruct the original
phrase structure tree as it exists in the treebank. Due to the
focus of this work, on identifying inconsistencies in the ex-
isting treebank, we did not want to follow some earlier TAG
work that, in order to make heavier use of recursive adjunc-
tion, first manipulated the structure of the phrase structure
trees before doing the extraction.

3. Reduced derivation tree fragments
3.1. The problem
The naive use of the derivation tree fragments as just de-
scribed does not however give entirely appropriate results.
The reason is that the e-trees might encode more informa-
tion than is relevant for the comparison of annotation for
a different instances of a string. We solve this problem
by (automatically) mapping down the representation of the
e-trees in a derivation tree fragment to form a “reduced”
derivation tree fragment, optimized for annotation compar-
ison.
We describe here two main aspects of this problem, as
briefly mentioned in Kulick et al. (2011). These are both
related to the fact that the tree decomposition does not lose
any information, and so every node in the original tree must
be in some e-tree in the resulting decomposition.

(A) Because of rules in the annotation guidelines, partic-
ularly regarding single vs. multi-word constituents, struc-
tures can differ in extra structure in a way that does not mat-
ter for error detection. For example, consider the nucleus
13 seats appearing as an instance in two sentences, with
the two constituents in (1ab).

2http://decca.osu.edu/

seats

#a2

NP
#a1

13

#b3
about

seats

NP
#b1

sis
te
r

ad
jo
in sis

te
r

ad
jo
in

sis
te
r

ad
jo
in

#b2
13

Figure 4: Reduced derivation tree fragments corresponding
to (1ab)

(1) (a) NP

13 seats

(b) NP

QP

about 13

seats

In (1b), the QP node is present because it is the covering
node for a multi-word constituent. However, in (1a), the QP
node is not present because it would be the covering node
for a single-word constituent, and by the Penn Treebank
(and similar) guidelines (Bies et al., 1995), the QP is left
“implicit” in such cases.
The result in terms of the e-trees and derivation tree is
shown in Figure 3. The two derivation tree fragments for
the string 13 seats would be (a1,a2) and (b1,b2) (b3 is
not included because it is not included in the string). Al-
though the difference between a2 and b2 would cause these
two derivation tree fragments to be characterized as incon-
sistent, the difference is not in fact an annotation error.

(B) The nature of the e-tree extraction process might lead
to nodes being included in an e-tree that are irrelevant for
the nucleus being examined. For example, a verb might ap-
pear in a corpus with different labels for its objects, such as
NP or SBAR, etc., and this would lead to its having differ-
ent e-trees, differing in their node label for the substitution
node. If the nucleus under comparison includes the verb
but not any words from the complement, the inclusion of
the different substitution nodes would cause irrelevant dif-
ferences for that particular nucleus comparison.3

3.2. The solution
We solve these problems by mapping down the represen-
tation of the e-trees in a derivation tree fragment to form
a “reduced” derivation tree fragment. These reductions are
(automatically) done for each nucleus comparison in a way
that is appropriate for that particular nucleus comparison.
A particular e-tree may be reduced in one way for one nu-
cleus, and then a different way for a different nucleus. This
is done for each e-tree in a derivation tree fragment.
First, all substitution nodes that do not include words in
the nucleus are deleted. This is case (B). Second, start-

3It is interesting to note that extracting the elementary trees in
a different way, as in (Shen et al., 2008), would avoid this problem
since substitution nodes are not used at all. We will explore this
option in the future.

1842

ing from the root, all nodes with only one child are deleted,
with the procedure stopping when a node is not deleted.
This is case (A), and would eliminate the QP node from e-
tree b2 in Figure 3. After this reduction, the two instances
of the nucleus 13 seats, one arising from (NP 13
seats) and the other arising from (NP (QP about
13) seats), would have the same reduced derivation
tree fragments, namely (a1,a2) and (b1,b2) in Figure 4.
In addition, we also include the POS tags for each word in-
cluded in the nucleus (and therefore in the derivation tree
fragment).4 This allows us to check for consistency of POS
tags at the same time as checking the structure, because
whenever the POS tags on words affect the tree decomposi-
tion, this will result in differing derivation trees.5 Examples
showing the ability to find POS errors will be seen in Sec-
tion 6.

4. Internal check of nuclei
The reduced derivation tree fragments described in Sec-
tion 3 are the basis for the “internal” check of each nu-
cleus found. We call this an “internal” check because it
checks for consistency of the internal structure of the re-
duced derivation tree fragments for all instances of some
nucleus.

4.1. Overall processing
The overall procedure is as follows:6

(1) All constituents are identified. The set of strings that
make up these constituents is the set of nuclei.
(2) For each nucleus (a string of words), we find all other
instances of that nucleus (whether they are constituents or
not) in other trees.
(3) For each nucleus, for each instance, we form the
derivation tree fragment for that instance (reduced as
appropriate for the nucleus). We identify the highest node
in the highest e-tree in the derivation tree fragment. We
call this our “internal context” (meaning the context for the
internal check).
(4) For each nucleus, we partition the instances based on
the internal context.
(5) We compare the derivation tree fragments for the
instances in each partition. If there is any difference, then
there is an inconsistency for that partition group (as defined
by the internal context) for that nucleus, and thus for the
nucleus as a whole.

4There are some other details of this e-tree reduction that we
do not discuss in detail here. The most notable one is that we
replace Gorn addresses to indicate substitution/modification loca-
tions with the name of the node that is the locus of substitution/
modification. The reduced derivation tree fragment comparisons
therefore abstract away from irrelevant node address differences
which can be caused by additional material on top (e.g., SBAR
instead of S when comparing instances of a nucleus containing a
verb).

5This therefore also captures in a natural way the POS-
checking work in Dickinson and Meurers (2003a).

6Steps (1) and (2) are identical to that in the DECCA system,
while all the following steps are different.

4.2. Example
Consider again the three instances of the nucleus qmp $rm
Al$yx in Figure 1. They have the same internal context
NP, and for exactly this reason are compared as part of the
same (nucleus, internal context) partition. This compari-
son allows us to capture a reported inconsistency due to the
differences in the derivation tree fragments.
An important benefit of viewing inconsistencies as differ-
ing derivation tree fragments is that it lets us group together
different nuclei as having the same type of annotation in-
consistency. We illustrate this in the context of full actual
results, in Section 6.1.1.

4.3. Categorizing duplicate nuclei
It is often the case that a nucleus is contained within a
larger nucleus. For example, while the nucleus qmp $rm
Al$yx will contain, as just discussed, a comparison of the
instances in Figure 1, the smaller nucleus $rm Al$yx
will also trigger such a comparison. In particular, the
larger nucleus, within the group for the internal context NP,
will compare the derivation tree fragments (a1,a2,a3) and
(b1,b2,b3) from Figure 1, thus finding the difference in an-
notation.7 The smaller nucleus, within the group for the
internal context NP for the smaller nucleus, will compare
the derivation tree fragments (a2,a3) and (b2,b3), also find-
ing the difference in annotation.
Obviously they are finding the same difference in annota-
tion, and it would be redundant and annoying to report both
nuclei as having inconsistent annotation. However, elimi-
nating such duplicate information from the report is not just
a matter of testing whether the smaller nucleus is contained
as a string in the larger nucleus. It can happen that a larger
nucleus will contain structural inconsistencies that are not
just redundant to the structural information in a smaller, en-
closed nucleus.
For each such pair of nuclei, we base the test for duplicate
information on the instances and their derivation tree frag-
ments for each (nucleus, internal context) partition group as
discussed in steps (4, 5) in Section 4.1. Step (5), the exami-
nation of the derivation tree fragments for the instances, can
be viewed as a mapping from instances to derivation tree
fragments. If there is an isomorphism of the mappings in
the (larger nucleus, internal context) group and the (smaller
nucleus, internal context) group, then the information is re-
dundant. For example, the two instances of the larger nu-
cleus qmp $rm Al$yx map, respectively, to (a1,a2,a3)
and (b1,b2,b3). The two instances of smaller nucleus $rm
Al$yx map, respectively, to (a2,a3) and (b2,b3). This is
an isomorphism between the mappings, and so the larger
nucleus is considered redundant, and listed as being in the
same “group” as the smaller nucleus.

5. External relation check
The consistency checking described in Sections 2 and 3 will
miss cases in which the annotation inconsistency is not be-
cause of a structural difference internal to the derivation tree

7Actually it compares the reduced derivation tree fragments,
as discussed in Section 3.

1843

(a)
S

NP-SBJ

the security situation

VP

is ADVP

still

NP-PRD

the same

(b)
S

NP-SBJ

the symptoms

VP

are ADJP-PRD

ADJP

the same

PP

as NP

...

Figure 5: Phrase structure trees for the security situation is still the same and the symptoms
are the same as ...

#a4

S

is

NP-SBJ^

#a1

the

VP

NP-PRD^

still

ADVP#a2

same

NP
#a3

#b4

S

are

NP-SBJ^

#b1

the

VP

ADJP-PRD^

same

ADJP
#b3

as

PP

NP^

#b2

sist
er adjoin

su
b
st

sis
te

r

ad
jo

in

su
bst

sis
te

r

ad
jo

in

adjoin

Figure 6: Derivation tree fragments for the phrase structure trees in Figure 5.

fragment, but rather in the constituent labels covering dif-
ferent instances of a string. Therefore we also implement
an “external relation check” to consider how that node in-
teracts with the rest of the tree, regardless of the internal
structure it may contain, in contrast to the “internal check”
of Sections 2 and 3, which essentially checks for consistent
node label projection.

We use the same idea of a derivation tree fragment as for the
internal check, except that instead of comparing the struc-
tures of the corresponding fragments, we compare only
the information at the highest node label in the fragments.
Since the same string can project to different constituents,
we only compare instances of that string if they have the
same “context”, which is a shorthand description of how
the derivation tree fragment interacts with the full deriva-
tion tree - e.g., whether it substitutes into another e-tree, or
modifies (adjoins into) it, etc.

Figure 5 shows the phrase structure trees for the sen-
tences the security situation is still
the same and the symptoms are the same
as.... The NP the same is inconsistently annotated,
being a NP in (a) and an ADJP in (b). Figure 6 shows

the derivation tree structures for these two trees, and the
derivation tree fragment for the nucleus string the same
consists of the e-trees (a3,a4) and (b3,b4), respectively.
In both cases the context for the same is substitution into
another e-tree. The two instances are therefore compared
by our external relation check, and the NP/ADJP difference
is flagged as an inconsistency. The presence of still
in one but not the other prevents Dickinson and Meurers
(2003b) from finding this difference, but because our sys-
tem deals with structural locality, it is able to find this in-
consistency.

6. Results on test corpora
We developed our system using a small test corpus of 30000
words, a pre-release version of an English corpus of trans-
lated Arabic broadcast news (Bies et al., 2009). Exam-
ple (1) and the derivation tree extractions in Figure 6 were
taken from this corpus.8

For evaluation, we used two corpora. The first is the Penn
Arabic Treebank (ATB), for which we used the same ver-
sions and subset as used for the discussion of annotation

8We do not discuss this corpus further since it was so small.

1844

Check Nuclei Non-duplicate Types of
found nuclei found inconsistency

internal 9984 4272 1911
external 191 unknown n/a

Table 1: Annotation inconsistencies reported for the ATB

consistency in Green and Manning (2010).9 Their work is
ideal for this comparison, since they provide what can be
considered “gold” errors. with a manual examination of a
sample of 100 nuclei to determine whether they were in fact
annotation errors. For our second corpus, we used a subset
of the English treebank newswire section of the Ontonotes
4.0 release (Weischedel et al., 2011).

6.1. Penn Arabic Treebank results
The corpus consists of 598,000 tokens. Our system found
54,496 nuclei, consisting of 605,906 instances.10 The num-
ber of reported inconsistencies is shown in Table 1. Our
system identified 9984 nuclei as having inconsistent anno-
tation using the internal check, and another 191 using the
external check. However, as described in Section 4.3, some
of these are redundant, due to nuclei contained within larger
nuclei, and eliminating such duplicates leaves 4272 nuclei
as having inconsistent annotation.

6.1.1. Inconsistencies grouped by structure
For the purposes of understanding and correcting inconsis-
tencies, it is advantageous to examine together different nu-
clei with the same structural inconsistency, even with dif-
ferent lexical strings. Our grouping by inconsistency type
allows for different nuclei (i.e., different strings) with the
same structural patterns to be viewed as a single group, thus
making it much easier to examine the results.
Across all variation nuclei, there are only a finite number
of derivation tree fragments and thus ways in which such
fragments indicate an annotation inconsistency. We cate-
gorize each annotation inconsistency by the inconsistency
type, which is simply a set of numbers representing the dif-
ferent derivation tree fragments. We can then present the
results not by listing each nucleus string, but instead by the
inconsistency types, with each type having some number of
nuclei associated with it.
For example, instances of $rm Al$yx might have just the
derivation tree fragments (a2,a3) and (b2,b3) in Figure 1,
and this pair is the “inconsistency type” for this (nucleus,
internal context) inconsistency. There are nine other nu-
clei reported as having an inconsistency based on the ex-
act same derivation tree fragments (abstracting only away
from the particular lexical items), and so all these nuclei
are grouped together as having the same “inconsistency
types”. This grouping results in the 4272 non-duplicate nu-

9This is the usual training section of three sections of ATB123
(Maamouri et al., 2008a; Maamouri et al., 2009; Maamouri et al.,
2008b). Note however that these are not the current versions of
the corpora.

10The nuclei can different lengths, and it is possible for a single
word to be therefore be included as an instance of more than one
nucleus.

(a)
ADJP

noun
gyr

det+adj
AlHkwmyp

(b)
NP

noun
gyr

NP

det+adj
AlHkwmyp

(c)
NP

noun
gyr

NP

det+noun
AlHkwmyp

Figure 7: Three instances of gyr AlHkwmyp (non-
governmental)

Check Nuclei Non-duplicate Types of
found nuclei found inconsistency

internal 3609 3012 1186
external 859 unknown n/a

Table 2: Annotation inconsistencies reported for Ontonotes

clei found by the internal check being grouped into 1911
inconsistency types.
This grouping of results into inconsistency types if a crucial
of using of integrating this work into an annotation project,
since it facilitates more efficient manual examination of the
results.

6.2. Precision and recall
The grouping of internal checking results by inconsistency
types allows for a high precision in reporting inconsistency
results.11 Because we can view inconsistencies by struc-
tural annotation types, we can examine large numbers of
nuclei at a time. Of the first 10 different types of derivation
tree inconsistencies, which include 266 different nuclei, all
10 appear to real cases of annotation inconsistency, and the
same seems to hold for each of the nuclei in those 10 types,
although we have not checked every single nucleus.
Measurement of recall is ongoing at the present, along with
the experimental external relation check precision and re-
call. Initial results however are promising and will inform
future work. Consider the examples examples (a,b,c) in
Figure 7, which (Green and Manning, 2010) found. The in-
consistency between (b) and (c) was found by the internal
check, since they are both in the NP internal context for the
nucleus gyr AlHkwmyp, but the POS tag on AlHkwmyp
is different, which resulted in a difference in the e-tree rep-
resentation. The inconsistency between (a) and (bc) was
found by the external check, because of the ADJP/NP dif-
ference, since the context (substitution into another e-tree)
was the same in all three cases.

6.3. Ontonotes English treebank results
The corpus excerpt consists of 524,845 tokens. Our system
found 30,497 nuclei, consisting of 619,415 instances. Our
system identified 3,609 nuclei as having inconsistent anno-
tation using the internal check, reducing to 3,012 when tak-
ing into account duplicates, with 1186 inconsistency types.
The external check identified another 859 nuclei.
Preliminary investigation shows though that the internal

11“Precision” here means the percentage of reported variations
that are actually annotation errors.

1845

(2) (a)
ADJP

RB
high

HYPH
-

VBN
powered

(b)
ADJP

RB
high

HYPH
-

JJ
powered

(3) (a)
NP

DT
the

NML

NNP
National

NNP
Security

NNP
Council

(b)
NP

DT
the

NNP
National

NNP
Security

NNP
Council

(4) (a)
NP

DT
the

NML

JJ
Latin

JJ
American

NN
economy

(b)
NP

JJ
other

ADJP

JJ
Latin

JJ
American

NNS
countries

(5) (a)
NP

NML

NNP
Postal

NNP
Service

NNS
contracts

(b)
NP

DT
the

NNP
U.S.

NNP
Postal

NNP
Service

POS
’s

Figure 8: Example system output for Ontonotes

check is finding many POS inconsistencies12. An exam-
ple is shown in (2). As with the results in the ATB, the
differing derivation tree fragments are grouped together as
an inconsistency type (abstracting from the actual words,
although including the POS tags), and the nuclei well
- developed and well - known pattern the same
as high - powered, and so are reported as having the
same annotation inconsistency type.
We also find structural inconsistencies, relating to the use
of the NML node label. For example, of the four cases of
the National Security Council appearing with
the internal context NP, three have the annotation (3a), and
one has the annotation (3b).13 While there is clearly much
more to do to evaluate the precision (and recall, to the extent
that we can) of our results, we note that DECCA does not
find any of the Ontonotes inconsistency examples described
in this section.
The increased number of external check nuclei reported
compared to the ATB needs explanation. Some of the nu-
clei do appear to be annotation inconsistencies. For exam-
ple, the nucleus Latin American is annotated as either
NML or ADJP in similar contexts in (4). However, about
half the cases are due to annotation differences caused by
the POS (possessive) part-of-speech tag. For example,
Postal Service is reported as inconsistent, as in (5),
even though the guidelines state that the presence of the
(POS ’s) cause the entire NP to be flat, as in (5b). We

12Without “gold” errors, it is difficult to score recall at all.
13Four other nuclei have the same inconsistency.

can adjust the definition of external context to differentiate
this properly, but we are reluctant to do this, since we find
such cases interesting as contexts that might be difficult for
a parser. In the future we might choose different notions of
external context depending on different purposes.

6.4. Manual Adjudication
As mentioned in the introduction, we are currently us-
ing this work in the ongoing English treebank annotation
pipeline at LDC. While the precision results in the eval-
uation are good, they of course cannot be assumed to be
perfect in a real-life application. We therefore include an
extensive manual adjudication process in the annotation
pipeline to distinguish actual errors from spurious results,
and to correct the actual errors as necessary in the trees.
We are also currently working on improved software in-
frastructure to integrate the quality control output with the
tree annotation software.

7. Future work
A related approach is taken by (Kato and Matsubara, 2010),
who compare partial parse trees for different instances of
the same sequence of words in a corpus, resulting in rules
based on a synchronous Tree Substitution Grammar (Eis-
ner, 2003). There are two main differences that we can see,
pending a future comparison: (1) we extract out interfer-
ence from adjuncts, for the reasons discussed in Section 2,
and (2) we focus on identifying inconsistent annotations of
word sequences, for which the corpus developers can then
select the correct annotation.14

While we are continuing the evaluation work, in particu-
lar for the external check, our primary concern now is to
improve the integration of the internal check into the anno-
tation pipeline, as discussed in Section 6.4. There are also
additional potential methods of integrating this work into
an annotation pipeline. For example, instead of running
this process on the result of the manual annotation, it could
be run first on the output of the parser, before any manual
annotation, allowing the possibility of automatically iden-
tifying parser errors. There are also many possibilities for
further improving this work, such as backing off from re-
liance on word identity to something less brittle, perhaps
relying on POS tags.
We are also intending to use this approach for inter-
annotator agreement analysis during treebank construction,
comparing multiple annotations of the same text. This
should be a natural fit since the identical strings used for
nuclei are present by definition.

8. Acknowledgements
This work was supported in part by the Defense Ad-
vanced Research Projects Agency, GALE Program Grant
No. HR0011-06-1-0003. The views, opinions and/or find-
ings contained in this article/presentation are those of the
author/presenter and should not be interpreted as represent-
ing the official views or policies, either expressed or im-
plied, of the Defense Advanced Research Projects Agency

14As discussed in Section 6.1.1, we do group nuclei with the
same structural inconsistencies together, but such identical incon-
sistencies are always linked to specific nuclei.

1846

or the Department of Defense. We would also like to thank
Mohamed Maamouri, Colin Warner, Aravind Joshi, and
Mitch Marcus for valuable conversations and feedback.

9. References
Ann Bies, Mark Ferguson, Karen Katz, and Robert MacIn-

tyre. 1995. Bracketing guidelines for Treebank II-style
Penn Treebank project. Technical Report MS-CIS-95-
06, University of Pennsylvania.

Ann Bies, Justin Mott, and Colin Warner. 2009. English
Translation treebank - EATB part3 v2.0. Linguistic Data
Consortium LDC2009E55, June.

Ann Bies, Justin Mott, Colin Warner, and Seth Kulick.
2012. Google Web Treebank, v1.0. Linguistic Data
Consortium LDC2012R22.

Tim Buckwalter. 2004. Buckwalter Arabic morphologi-
cal analyzer version 2.0. Linguistic Data Consortium
LDC2004L02.

David Chiang. 2003. Statistical parsing with an automat-
ically extracted Tree Adjoining Grammar. In Data Ori-
ented Parsing. CSLI.

Markus Dickinson and Detmar Meurers. 2003a. Detect-
ing errors in part-of-speech annotation. In Proceedings
of the 10th Conference of the European Chapter of the
Association for Computational Linguistics (EACL-03),
pages 107–114, Budapest, Hungary.

Markus Dickinson and Detmar Meurers. 2003b. Detect-
ing inconsistencies in treebanks. In Proceedings of the
Second Workshop on Treebanks and Linguistic Theories
(TLT 2003), Sweden. Treebanks and Linguistic Theories.

Jason Eisner. 2003. Learning non-isomorphic tree map-
pings for machine translation. In The Companion Vol-
ume to the Proceedings of 41st Annual Meeting of the
Association for Computational Linguistics, pages 205–
208, Sapporo, Japan, July. Association for Computa-
tional Linguistics.

Spence Green and Christopher D. Manning. 2010. Bet-
ter Arabic parsing: Baselines, evaluations, and analy-
sis. In Proceedings of the 23rd International Conference
on Computational Linguistics (Coling 2010), pages 394–
402, Beijing, China, August. Coling 2010 Organizing
Committee.

A.K. Joshi and Y. Schabes. 1997. Tree-adjoining gram-
mars. In G. Rozenberg and A. Salomaa, editors, Hand-
book of Formal Languages, Volume 3: Beyond Words,
pages 69–124. Springer, New York.

Yoshihide Kato and Shigeki Matsubara. 2010. Correcting
errors in a treebank based on synchronous tree substitu-
tion grammar. In Proceedings of the ACL 2010 Confer-
ence Short Papers, pages 74–79, Uppsala, Sweden, July.
Association for Computational Linguistics.

Seth Kulick, Ann Bies, and Justin Mott. 2011. Using
derivation trees for treebank error detection. In Proceed-
ings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Technolo-
gies, pages 693–698, Portland, Oregon, USA, June. As-
sociation for Computational Linguistics.

Mohamed Maamouri, Ann Bies, Seth Kulick, Fatma Gad-
deche, Wigdan Mekki, Sondos Krouna, and Basma

Bouziri. 2008a. Arabic treebank part 1 - v4.0. Linguis-
tic Data Consortium LDC2008E61, December 4.

Mohamed Maamouri, Ann Bies, Seth Kulick, Fatma Gad-
deche, Wigdan Mekki, Sondos Krouna, and Basma
Bouziri. 2008b. Arabic treebank part 3 - v3.0. Linguis-
tic Data Consortium LDC2008E22, August 20.

Mohamed Maamouri, Ann Bies, Seth Kulick, Fatma Gad-
deche, Wigdan Mekki, Sondos Krouna, and Basma
Bouziri. 2009. Arabic treebank part 2- v3.0. Linguistic
Data Consortium LDC2008E62, January 20.

Mohamed Maamouri, Ann Bies, Seth Kulick, Sondos
Krouna, Fatma Gaddeche, and Wajdi Zaghouani. 2010.
Arabic Treebank Part 3 - v3.2. Linguistic Data Consor-
tium LDC2010T08.

Libin Shen, Lucas Champollion, and Aravind Joshi. 2008.
LTAG-spinal and the Treebank: A new resource for in-
cremental, dependency and semantic parsing. Language
Resources and Evaluation, 42(1):1–19.

Ralph Weischedel, Martha Palmer, Mitchell Marcus, Ed-
uard Hovy, Sameer Pradhan, Lance Ramshaw, Nianwen
Xue, Ann Taylor, Jeff Kaufman, Michelle Franchini,
Mohammed El-Bachouti, Robert Belvin, and Ann Hous-
ton. 2011. OntoNotes 4.0. Linguistic Data Consortium
LDC2011T03.

1847

