
A Rule-based Morphological Analyzer for Murrinh-Patha

Melanie Seiss

University of Konstanz
Konstanz, Germany

melanie.seiss@uni-konstanz.de

Abstract
Resource development mainly focuses on well-described languages with a large amount of speakers. However, smaller languages may
also profit from language resources which can then be used in applications such as electronic dictionaries or computer-assisted language
learning materials. The development of resources for such languages may face various challenges. Often, not enough data is available
for a successful statistical approach and the methods developed for other languages may not be suitable for this specific language. This
paper presents a morphological analyzer for Murrinh-Patha, a polysynthetic language spoken in the Northern Territory of Australia.
While nouns in Murrinh-Patha only show minimal inflection, verbs in this language are very complex. The complexity makes it very
difficult if not impossible to handle data in Murrinh-Patha with statistical, surface-oriented methods. I therefore present a rule-based
morphological analyzer built in XFST and LEXC (Beesley and Karttunen, 2003) which can handle the inflection on nouns and adjectives
as well as the complexities of the Murrinh-Patha verb.

Keywords: Finite-state morphological analyzer, under-resourced languages, morphologically rich languages

1. Introduction
Resource development mainly focuses on well-described
languages with a large amount of speakers. However,
smaller languages may also profit from language resources,
which can then be used in applications such as electronic
dictionaries or computer-assisted language learning materi-
als. The development of resources for such languages may
face various challenges. Often, not enough data is avail-
able for a successful statistical approach and the methods
developed for other languages may not be suitable for this
specific language.
In this paper, I present a morphological analyzer for
Murrinh-Patha, a polysynthetic language spoken in the
Northern Territory of Australia. Murrinh-Patha currently
has around 2500 speakers, but the speech community is
healthy and expanding, and is thus not considered endan-
gered by Australian standards. While nouns in Murrinh-
Patha only show minimal inflection, verbs in this language
are very complex. This complexity makes it very difficult if
not impossible to handle data in Murrinh-Patha with statis-
tical, surface-oriented methods. I therefore present a rule-
based morphological analyzer built in XFST and LEXC
(Beesley and Karttunen, 2003), which can handle the in-
flection on nouns and adjectives as well as the complexities
of the Murrinh-Patha verb.
The paper is structured as follows. First, section 2 presents
related work. Then, section 3 describes some sample com-
plexities of the Murrinh-Patha verb to show what chal-
lenges a morphological analyzer for Murrinh-Patha has to
face and why a statistical approach is very difficult for this
language. Section 4 deals with the implementation for the
Murrinh-Patha verb. It shows how the rule-based meth-
ods can be used to model the details of the complexities
as closely as possible.
How the implementation can be put to use in a success-
ful morphological analyzer is the topic of section 5. It de-
scribes how a refined lookup strategy is used for a success-

ful morphological analyzer, i.e., one with large coverage
and high precision at the same time. Section 6 then eval-
uates the approach described in section 4 on a small Bible
corpus. Section 7 concludes the paper.

2. Related work
Since Koskenniemi (1983) introduced the two-level ap-
proach to computational morphology and applied the for-
malism to Finnish morphology, finite state morphologies
have been developed for a number of diverse languages,
language families and language types. Some examples are
the treatment of South Asian languages such as Bögel et al.
(2007) for Urdu or Veerappan et al. (2011) for Kannada,
the treatment of Indonesian by Larasati et al. (2011) as a
representative for Austronesian languages or for Estonian
(Uibo, 2005) and Finnish (e.g. Lindén and Pirinen (2009))
from the Uralic language family.
Semitic languages have traditionally been in the focus of
finite-state methods for the treatment of their morphology
due to the special challenges the root-and-pattern morphol-
ogy poses. Some examples of treatments of the Semitic
languages are, e.g., Beesley (1996) and Attia et al. (2011)
for Arabic as well as Yona and Wintner (2008) for Hebrew.
While all these approaches face different challenges posed
by the respective morphology of the language, to my
knowledge so far no finite state implementation of an Aus-
tralian language with such a complex templatic verbal mor-
phology as is found in Murrinh-Patha has been proposed.
Closest to the implementation of Murrinh-Patha described
here is probably the treatment of Basque by Alegria et
al. (1996) and the treatment of Persian by Megerdoomian
(2004).
The implementation of the Persian morphology proposed
by Megerdoomian (2004) is concerned with problems in-
volving tokenization, phonological rules and long-distance
dependencies. However, it seems that the long-distance de-

751

pendencies for Persian, which are modeled with flag dia-
critics of the U-type, are simpler than the ones found in
Murrinh-Patha.
Alegria et al. (1996) in their implementation for Basque
propose a formalism for long-distance dependencies, but
treat only simple long-distance dependencies. Their imple-
mentation is, however, relevant because it proposes a 3 step
lookup strategy similarly to the lookup strategy used in this
paper. The lookup strategy for Basque involves a standard
analyzer, an analyzer of linguistic variants such as dialectal
uses and a guesser.
Most recent projects either use XFST (Beesley and
Karttunen, 2003), or the open-source alternatives Foma
(Hulden, 2009) or HFST (Lindén et al., 2011). XFST is, for
example, used in the implementations by Yona and Wintner
(2008) for Hebrew or by Bögel et al. (2007) for Urdu. On
the other hand, Attia et al. (2011) and Larasati et al. (2011),
for example, explicitly state that they use Foma because of
licensing issues.

3. Complexities of the Murrinh-Patha verb
Only very limited language data is available for Murrinh-
Patha. In fact, the corpus of Bible translations used in the
evaluation (see section 5) with approximately 22 000 words
is the only easily available collection of texts so far. This
is not enough for a statistical approach for a morphological
analyzer. Moreover, this section presents some complexi-
ties of the Murrinh-Patha verb which show that a statistical
approach, involving counts of full word forms or of mor-
phemes, would face many difficulties even if there were
enough text available.
Nouns in Murrinh-Patha may be case-marked and inflected
with discourse markers, but are not difficult for morpho-
logical analysis. In contrast, verbs in Murrinh-Patha are
morphologically very complex. They may consist of up
to 9 morphemes and complex interdependencies between
the morphemes exist. Additionally, phonological rules may
apply when the morphemes combine. In the following,
some selected examples of the complexities of the Murrinh-
Patha verb are presented. For a more detailed overview, see
Blythe (2009), Nordlinger (2010), Seiss (2011) and Street
(1987).
Figure 1 shows the Murrinh-Patha verbal template. The
lexical meaning of the verb is determined jointly by two
morphemes, the so-called classifier stem (in slot 1) and lex-
ical stem (in slot 5). The classifier stem encodes rather
generic meaning and is traditionally glossed with a number.
In contrast, the lexical stem encodes more specific meaning.
Restrictions on the combinatorial possibilities exist, i.e. not
every classifier stem can combine with every lexical stem
and vice versa.
While lexical stems are noninflecting, classifier stems in-
flect for tense as well as for subject number and person. The
inflection on the classifier stem is encoded in portmanteau
forms. This results in more than 50 forms per paradigm,
i.e. in forms which have a very different surface realization
although underlyingly, the same classifier stem is used. An
example involving classifier stem 13 in combination with
the lexical stem ngkardu ‘see’ is given in (1).

(1) a. bam - ngkardu
1sgS.13.nFut - see
‘I saw him/her.’

b. ngube - ngkardu - dha
1plS.13.PImpf - see - PImpf
‘We saw him/her.’

Because of the different surface forms of the classifier
stems, statistical methods which operate on the surface
form of strings would require a very large amount of data.
Other verbal template slots contribute to variation in the
surface form of the verb, too. Body parts may be incor-
porated in slot 4 and adverbials and particles may be at-
tached in slot 7 and 9. This means that even more differ-
ent surface forms of a classifier and lexical stem combina-
tion exist which, without a detailed morphological analysis,
cannot be linked to the same underlying information. The
complexity of the verbal template thus results in a low fre-
quency of surface form realizations in any given text.
A further complexity is added by a high degree of syn-
cretism. As (1) and (2) show, the surface form bam can
be classifier stem 13 or 18. However, only the classifier 18
can combine with the lexical stem bat ‘fall’. Thus, in this
case, bam can only be interpreted as classifier 18.

(2) bam - bat
1sgS.18.nFut - fall / *1sgS.13.nFut - fall
‘I fell.’

This shows that detailed modeling of the morphology
which takes the dependencies between the classifier stem
and the lexical stem into account may thus help to restrict
choices and so restrict overgenerating of the analyzer.
As has been stated above, the classifier stems are inflected
for tense. Additionally, all tenses, except the non-future
tense, require an additional tense marker in slot 6 which
agrees with the tense marking on the classifier stem. For
example, the verb in (3a) needs a future marker in slot 6
because the classifier stem is in future tense. No tense
marker, or an alternative tense marker, e.g., a past imper-
fective marker as in (3b), is ungrammatical.

(3) a. ba - ngkardu - nu
1sgS.13.Fut - see - Fut
‘I will see him/her.’

b. *ba - ngkardu - dha
1sgS.13.Fut - see - PImpf

While the tense marker dependencies are quite simple
agreement dependencies, more complex dependencies ex-
ist as well in which the relative position of the morphemes
to each other plays a role. This has lead to the claim that
the Murrinh-Patha verbal morphology is a templatic system
(Nordlinger, 2010). As can be seen in (4a), for example,
the dual subject number marker ngintha normally attaches
in slot 2, between the classifier and lexical stem. However,
if an object marker is present as in (4b), the subject number
marker has to be realized in slot 8, after the lexical stem.
As (4c) shows, this is impossible if the object marker is not
expressed in slot 2.

752

1 2 3 4 5 6 7 8 9
Class. SubjN/ RR IBP Lex TNS Adv/Prt SubjN/ Adv/Prt

Obj APPL ObjN

Class: classifier stem, marked for tense, aspect & subject number
SubjN: subject number markers for dual & paucal subject
Obj/ObjN: object markers / object number markers
RR: reflexive / reciprocal marker
IBP: incorporated body part
Lex: lexical stem
TNS: tense marker
Adv/Prt: Adverbial / Particle

Figure 1: Murrinh-Patha verbal template (adapted from Blythe (2009))

(4) a. bam - ngintha - ngkardu
3sgS.13.nFut - du.f - see
‘They two (non-siblings) saw him/her.’

b. bam - ngi - ngkardu - ngintha
3sgS.13.nFut - 1sgDO - see - du.f
‘They two (non-siblings) saw me.’

c. *bam - ngkardu - ngintha
3sgS.13.nFut - see - du.f

Dealing with Murrinh-Patha data is further complicated by
phonological processes which apply when morphemes are
combined. These phonological processes thus disguise the
fact that different surface realizations may involve the same
underlying morpheme. For example, in (5), the same lex-
ical stem ngkardu ‘see’ is used. However, the nasalization
is lost in (5a) because of the preceding /m/ of the classi-
fier stem. In contrast, the nasalization is retained in (5b)
which involves the same classifier stem but which has an
intervening subject number marker between classifier and
lexical stem. As in this case the nasal /ng/ is not preceded
by /m/, the nasalization is retained.

(5) a. bamkardu
bam - ngkardu
3sgS.13.nFut - see
‘He/she saw him/her.’

b. bamnginthangkardu
bam - ngintha - ngkardu
3sgS.13.nFut - du.f - see
‘They two (non-siblings) saw him/her.’

The nasalization /ng/ is always lost after a nasal /m/ or /n/.
However, even more complex rules exist in which the ap-
plication of the rule depends on the lexical stem used. This
is illustrated in (6) in which /my/ is changed to /nth/ for
the lexical stem yerr ‘look’ but not for the lexical stem yel
‘rain.’

(6) a. mintherr
mim - yerr
1sS.12.nFut - look
‘I looked out/around.’

b. kanamyel
kanam - yel
3sS.4.nFut - rain
‘It is raining.’

Phonological processes such as these are very common in
Murrinh-Patha. The phonological processes together with
the complexity of the verbal template make a statistical
analyses of Murrinh-Patha difficult as many different sur-
face forms may belong to one underlying representation.
This is problematic for corpus studies as well as for statis-
tical analysis used to build applications, such as morpho-
logical analyzers, parsers, machine translation etc. The
following section thus proposes to model the complexi-
ties with a rule-based morphological analyzer for Murrinh-
Patha which can handle all of these challenges.

4. Implementation of the Morphological
Analyzer

The morphological analyzer has been implemented as a fi-
nite state analyzer using XFST and LEXC (Beesley and
Karttunen, 2003). This system has been used because it of-
fers a wide range of inbuilt mechanisms to handle complex
cases such as those found in the Murrinh-Patha verb. This
section discusses how these inbuilt mechanisms facilitate
the modeling of the complexities on some selected exam-
ples. Section 4 then describes how this implementation is
used to construct a robust morphological analyzer with a
refined lookup strategy.
The concatenation of morphemes, both for the Murrinh-
Patha verbs and the other parts of speech, is implemented
with LEXC (Beesley and Karttunen, 2003) as two-level net-
works. It uses continuation classes for this purpose. An
example is provided in (7), in which an entry from the lex-
icon ROOT is concatenated with an entry from the lexicon
OBJECT and this with an entry from the lexicon LEX. The
colon separates the two levels and “0” marks the zero mor-
pheme.
In this way, the network in (7) can produce the output in (8).
The surface string bamngkardu is associated with the infor-
mation on the lower side, i.e. that this word is made up of a
classifier stem bam which is classifier stem 13 inflected for
third person singular non-future tense, a zero direct object
marker and a lexical stem ngkardu.

753

(7) Lexicon ROOT
bam+class13+3P+sg+nFut:bam OBJECT;

Lexicon OBJECT
+3sgDO:0 LEX;

Lexicon LEX
+ngkardu+LS:ngkardu #;

(8) bamngkardu :
bam+class13+3P+sg+nFut+3sgDO+ngkardu+LS

The two-level approach makes it possible to distinguish be-
tween surface form and the associated information. This
is especially helpful for Murrinh-Patha as the same classi-
fier stem may have very different surface forms, depending
on its inflection. Thus, while e.g., a stemmer would not
be helpful for handling Murrinh-Patha verbs, this more ad-
vanced system of two-level morphology facilitates the use
of statistical analyses of texts independently of the surface
form.
As was discussed in the previous section, dependencies be-
tween morphemes in the Murrinh-Patha verbal template ex-
ist. These dependencies often concern non-adjacent tem-
plate slots, i.e., they are long-distance dependencies. XFST
offers a possibility to model these long-distance dependen-
cies with the help of flag diacritics. Flag diacritics are spe-
cial entities in XFST which add a kind of “short term mem-
ory” to keep track of what choices have been made before.
Thus, as Beesley and Karttunen (2003, 341) explain, nor-
mally, “the transition from one state to the next depends
only on the current state and the next input symbol”. Us-
ing flag diacritics allows one to keep track of choices made
earlier, so that certain transitions can also be constrained by
choices made earlier.
(9) is a first simple example of the use of P- and R-type
flag diacritics. The P-type flag diacritics are used to set a
value, e.g., for tense, to positive. In contrast, the R-type
flag diacritics require a value to have been set to positive to
allow the respective combination.
In (9), the combination of flag diacritics can be used to
model the long distance dependencies between the clas-
sifier form and the tense markers in slot 6. The lexicon
Root lists the classifier stems. From this lexicon, the var-
ious classifier stem forms are sent to different lexicons to
pick up their respective tense information. For example,
bam carries non-Future information and is consequently
sent to the lexicon NFUT to pick up the flag diacritic
“@P.Tense.nFut@”. This flag diacritic sets the value for
the attribute ‘Tense’ to ‘nFut’, i.e., it remembers that bam
is non-future tense. In contrast, ba receives the flag dia-
critic “@P.Tense.Fut@” to remember that its tense value is
future.
When the corresponding tense markers are attached in the
lexicon TENSE SLOT6, the choices for the combination
are constrained by the R-type flag diacritics which require
a certain value for tense. The morpheme -nu can only
attach to a future classifier stem form, i.e. this choice is
marked with the flag diacritic “@R.Tense.Fut@” and con-
sequently, only strings are possible which include the flag
diacritic “@P.Tense.Fut@”. Similarly, the first line in the
lexicon TENSE SLOT6 is marked by the flag diacritic

“@R.Tense.nFut@” which specifies that this choice, i.e. no
morpheme attaching in this slot, is only possible if the value
of the feature “Tense” has been set to “nFut” before.

(9) Lexicon ROOT
bam NFUT;
ba FUT;

Lexicon NFUT
@P.Tense.nFut@ LEX;

Lexicon FUT
@P.Tense.Fut@ LEX;
. . .
. . .
Lexicon TENSE SLOT6
@R.Tense.nFut@ #;
@R.Tense.Fut@:nu@R.Tense.Fut@ #;

In a similar way, the dependencies between the classifier
and lexical stems can be modeled. The dependencies be-
tween the subject number and the object markers in slot 2
and 8 are more complex and thus involve an interplay of
different flag diacritics. While this is more difficult, it can
nevertheless be modeled reliably with flag diacritics.
The advantage of modeling these interdependencies as
closely as possible is that this approach ensures that the re-
sulting network just represents the valid combinations of
verbal morphemes and does not overgenerate. This is espe-
cially important because of the large degree of syncretism
which would, without a detailed modeling of the dependen-
cies, lead to many different analyses for one item.
A further complexity of the Murrinh-Patha verb lies in the
phonological rules that apply when morphemes are com-
bined. This means that the sole concatenation of strings in
fact often does not represent the surface form of the verb.
XFST offers the possibility to formulate phonological rules
which rewrite the concatenation of morphemes to the ac-
tual surface form of the verb. For example, (10) accounts
for the data in (5) in which /ng/ is lost if it follows an /m/ or
/n/. Thus, the actual network contains the surface form and
associated information as specified in (12).

(10) [n g k –> k || m , n]

(11) bamkardu :
bam+class13+3P+sg+nFut+3sgDO+ngkardu+LS

For more complex cases in which the application of the
rule depends on the lexical stem as in (6) above, the lex-
ical stem can be marked when it is concatenated with the
other morphemes and the regular expression can take this
marking into account. Thus, the output of the concatenation
of morphemes for the data in (6) is as illustrated in (12). In
(12a), the lexical stem yel does not trigger any phonological
change. In contrast, the lexical stem yerr in (12b) triggers
a change and is therefore marked especially with a capital
letter /Y/. The application of the phonological rules in (13)
then causes the /Y/ to be changed to /nth/ after /m/ and to
/y/ in all other cases and so ensures the right surface form.

(12) a. kanamyel :
kanam+class4+nFut+3P+sg+nFut+yel+LS

754

Lexical items Number of entries
all forms of 38 classifier stems
incorporated body parts 60
incorporated adverbs / particles 15
lexical stems 898
lexical plus classifier stem combinations 1732
nouns 1140
borrowed nouns 101
adjectives 175
adverbs 41
interjections 55

Table 1: Number of lexical entries for the Murrinh-Patha
morphological analyzer. Top: different morphemes of the
verb; Bottom: stems for other parts of speech.

b. mimYerr :
mim+class12+nFut+1P+sg+nFut+yerr+LS

(13) [m Y – > n t h] .o. [Y – > y]

These inbuilt mechanisms provided by LEXC and XFST
thus allow a reliable model of the details of the complexi-
ties of the Murrinh-Patha verb. The following section de-
scribes how these mechanisms can be put to use in a robust
morphological analyzer with high precision and coverage.

5. Stepwise Lookup Strategy
The goal for the morphological analyzer is, on the one
hand, to have high coverage, while on the other hand to only
provide the right analyses, i.e., to have high precision. In
order to achieve this goal, the morphological analyzer uses
a refined lookup strategy in which constraints on the de-
pendencies of the verbal morphemes are relaxed stepwise.
For this, known combinations of morphemes are modeled
with strict constraints. However, to also capture unknown
combinations of morphemes, especially unknown combi-
nations of classifier and lexical stem combinations and new
lexical stems, the constraints are relaxed, so that these un-
known combinations can also receive an analysis. In this
way, new lexical item candidates can be detected and given
a first analysis, which then have to be verified later in field
work.
All lookup steps for the morphological analysis use the
same underlying lexicon. The lexicon contains all forms
of the 38 classifier stems as well as all forms of the func-
tional morphemes, i.e. number markers, tense markers etc.
These are rather restricted and well-described classes of
morphemes. For the larger classes of morphemes, i.e. lexi-
cal stems, incorporated body parts, adverbials and particles,
automatically extracted dictionary entries from Joe Blythe’s
toolbox1 dictionary have been used. This was also the case
for the other parts of speech, such as nouns, adjectives, ad-
verbials and interjections. An overview over most of the
lexicon entries is provided in Table 1.

1http://www.sil.org/computing/toolbox/

Figure 2: Refined lookup strategy for the morphological
analyzer.

With this underlying lexicon, 5 different steps for a re-
fined lookup strategy have been implemented in order to
ensure a robust morphological analyzer. Figure 2 provides
an overview over the steps of the lookup strategy. In a first
step, all constraints governing morpheme combinations are
implemented in the morphological analyzer. For the de-
pendencies between lexical and classifier stems, for exam-
ple, this means that only these verbs can be analyzed which
were listed in the lexicon as possible lexical and classifier
stem combinations. As Table 1 shows, these were 1732 dif-
ferent combinations.
As it is very likely that other combinations of lexical and
classifier stems may also exist and that these have not been
listed in the lexicon so far, the second step of the lookup
strategy relaxes the constraint on the lexical and classifier
stem combination. Technically, this means that the same fi-
nite state network is used, just without flag diacritics model-
ing the dependency between the classifier and lexical stem.
As lexical stems are the largest class of morphemes and not
all lexical stems are listed in the lexicon, a morphological
guesser for lexical stems is incorporated into the system as
step 3. The morphological guesser thus only applies if the
first two networks do not produce a solution.
The guesser for Murrinh-Patha lexical stems has been im-
plemented as described by Beesley and Karttunen (2003)
for guessers in general. The LEXC lexicon for lexical stems
includes a placeholder entry which then in a network is
replaced by all phonologically possible lexical stems. In
Murrinh-Patha, lexical stems need to have at least one sylla-
ble and they usually start with a consonant. However, some
lexical stems starting with the vowel ‘a’ are also attested.

755

These constraints have been integrated into the morpholog-
ical guesser.
The guessed lexical stems may also undergo phonological
changes. This means that different guesses may be possi-
ble for one input string. For example, if the lexical stem
ngkardu ‘see’ were unknown, a possible guess for the in-
put string bamkardu would be both, kardu and ngkardu as
lexical stems in combination with the classifier stem 13.
Because of the various guesses due to the phonological
rules, the morphological analyzer has to have step 2 and
step 3 of the lookup strategy as separate steps. The guesser
could also cover the known lexical stems in unknown com-
binations, but due to the phonological rules, the guesser
produces various possible analyses. Separating the two
steps by first relaxing the constraints on the classifier and
lexical stem combinations and then guessing unknown lex-
ical stems gives priority to already existing lexical stems. It
so constrains the amount of possible analyses for the input
strings with a known lexical stem.
For the steps 4 and 5 of the lookup strategy, the constraint
on tense markers has been relaxed. Recall that it is claimed
that a separate tense marker in slot 6 is mandatory for all
tenses but the non-Future tense. However, inspection of
the corpus texts and other language material revealed that
this constraint is probably not as strict as described theo-
retically, i.e., the tense marker is sometimes not used with
the other tenses as well. To cover these non-standard cases,
the constraint on the tense markers has been relaxed for the
lookup step 4. Additionally, a guesser without this con-
straint on the tense marker is used in step 5. Thus, in these
steps new combinations of classifier and lexical stems and
new lexical stems which could not be found in the previous
steps can be detected.
This system is constrained to detecting more Murrinh-Patha
verbs stepwise. For nouns, no guesser has been imple-
mented as nouns in Murrinh-Patha do not have to be case-
marked or carry other inflection. For this reason, a guesser
for nouns is not helpful as all input strings could be po-
tential nouns. As a result of the refined lookup strategy,
however, most unanalyzable input strings will be nouns or
other uninflecting parts of speech.
To sum up, the described lookup strategy makes the mor-
phological analyzer stable and reliable. Relaxing the con-
straints stepwise ensures that the system does not overgen-
erate and at the same time has broad coverage. Thus, if the
system is used to analyze a corpus, the system can detect
new combinations of classifier plus lexical stem combina-
tions and new lexical stems. In the following section, the
system is evaluated against a small corpus of Bible transla-
tions.

6. Evaluation
Morphological analyzers can be evaluated by negative and
positive testing. Negative testing indicates whether a mor-
phological decomposition can be found for a given string
of words and so measures pure coverage. Positive testing,
on the other hand, indicates that the analyses which were
found were correct, i.e., whether all possible analyses were

all 1. 2. 3. 4. 5.
Types – dev. corpus 97.3 65.4 5.0 22.9 1.6 2.4
Text – dev. corpus 98.9 88.7 1.0 5.3 1.9 2.0
Types – test corpus 96.0 65.0 4.4 22.6 1.4 2.6
Text – test corpus 98.0 86.3 1.0 6.9 1.6 2.3

Table 2: Negative test results of the development and test
corpus; text refers to running text, types to lists of words
extracted from the respective corpora; the column all pro-
vides the overall coverage of the morphological analyzer;
columns 1. to 5. refer to the coverage of the respective step
in the lookup strategy.

found and whether the analyzer does not overgenerate, i.e.,
it measures precision and recall.
For the evaluation of the morphological analyzer, a small
corpus of Murrinh-Patha Bible translations (Wycliffe Bible
Translators, 1990) has been used. The text itself consists of
22 348 words. For the evaluation, the text has been divided
into 2 corpora, a development corpus (approx. 80 %) and a
test corpus.
The development corpus consists of 17 950 words. From
these, a word list has been generated, which amounts to
2388 types. For this development corpus, error analyses
have been carried out and as many new lexical entries as
possible have been added. For example, 101 borrowed En-
glish nouns and names which figure prominently in Bible
texts needed to be added.
The details for negative testing of the development corpus,
depending on the various lookup strategies described in the
previous section, are presented in Table 2. For the develop-
ment corpus, the analyzer has an overall coverage of 98.9%
for running text, and 97.3% for types.
A close inspection of the unanalyzable input strings shows
that most seem to be other parts of speech such as nouns
or adjectives, but their meaning and function could not be
established without doubt even by manual inspection and
have thus not been added to the morphological analyzer.
However, they can be tested in future field work.
A small portion of the unanalyzable items are also due to
errors in the corpus, mainly because of erroneous script
recognition. These will be fixed in the corpus.
When looking at the statistics for the negative testing in
Table 2 in more detail, a comparison of the results for the
development corpus between types and running text shows
that the morphological analyzer already has a satisfactory
coverage of frequent items as step 1, which models all con-
straints, covers 88.7% of all running text. However, step 1
only accounts for 65.4% for types. This discrepancy shows
that there are in fact items which are not covered by step 1
but that these tend to be low-frequency items.
Despite this discrepancy of the coverage of step 1 between
running text and types, the overall coverage for running text
and types does not differ greatly. This is mainly the result
of step 2 and step 3 of the lookup strategy. Step 2 (the mor-
phological analyzer with relaxed constraints on the combi-
nation of classifier and lexical stems) can account for 5%

756

of the types, while it only accounts for 1% of the running
text. This means that the unknown classifier and lexical
stem combinations are also the low frequent ones. Simi-
larly, step 3 (the morphological guesser) finds morpholog-
ical analyses for 22.9% of all types compared to 5.3% of
the analyses of the running text. Here again, the unknown
lexical stems are the low frequency ones.
Finally, steps 4 and 5 of the lookup strategy account for ap-
proximately 4% of the coverage for each, running text and
types. This shows that separate tense markers are usually
used as described theoretically, but that in some cases they
are also dropped.
For the test corpus, a second part of the Bible translations
has been used. The test corpus comprises 4398 words and
919 types. The results are also provided in Table 2. Com-
pared to the development corpus, the coverage is smaller,
but not considerably. Especially the coverage of the first
strategy of the running text is very high, which again shows
that the frequently used items are covered by the morpho-
logical analyzer.
The stepwise strategy makes an interpretation of the output
of the analyzer very easy. If a morphological analysis is
the output of step 2 or step 4, it involves unknown classi-
fier and lexical stem combinations. From this corpus (test
and development corpus together), 113 new candidates for
classifier and lexical stem combinations have been found.
The output of the morphological guessers, i.e., steps 3 and
5 which are built to extract new lexical stem candidates,
is more difficult to interpret. First, the guessers still pro-
pose many different guesses per input string. This is due
to the phonological rules which may apply, but also due to
material in the input string which could be part of the lexi-
cal stem or separate morphemes. (14) shows some selected
candidates for the input string banninthalangyu.

(14) banninthalangyu :
ban +class17+3P+sg+nFut . . .
. . . +ninthalangyu+Guess+LS
. . . +ninthalang+Guess+LS+part
. . . +winthalang+Guess+LS+part
. . . +du.m.Nsibl.S+lang+Guess+LS+part

The input string banninthalangyu can be decomposed into
the classifier stem ban, but then various possibilities exist
for further decomposition. ninthalangyu could be the lex-
ical stem as a whole, or it could be further decomposed
into the lexical stem ninthalang and the particle yu. As a
third possibility, a phonological rule could apply because
/w/ changes to /n/ before /n/ and consequently, the lexical
stem could be winthalang. Most likely, however, the nintha
is a dual subject marker, so that the lexical stem is lang.
When manually investigating the list of candidates, the
most probable guess is usually obvious. However, hav-
ing an algorithm which extracts the most probable guess
from the number of candidates automatically would make
the manual work easier. As a first heuristic, the analysis
which decomposes the input string into the highest number
of morphemes, i.e., shortest match, can be used to extract
the guessed lexical stem. However, the guesses for one in-
put string may also depend on the guesses of the other input
strings, as it would be preferable that new lexical stems are

attested in more than one input string. Therefore, an algo-
rithm should take both into account, the number of mor-
phemes of the input string and the co-occurrence of the
guessed lexical stem in other input strings. This automatic
algorithm is left for future research.
A second problem of the morphological guesser is that not
all input strings for which a guess can be found may be
verbs. A brief inspection of the data indicates that most
guesses seem to be reasonable, but that also some may be
analyzed wrongly.
This points to the more general problem of positive testing,
which, in contrast to negative testing, cannot be carried out
easily. Positive testing requires a Gold Standard, but the
resources for this are not available right now, as creating a
Gold Standard requires extensive field work. Secondly, it is
very difficult to comprise a Gold standard for the Murrinh-
Patha morphological analyzer as due to syncretism many
different analyses for one input string are often possible.

7. Conclusion
This paper presented the challenges of a morphological
analysis of Murrinh-Patha verbs and proposed a rule-based
analyzer which was implemented using XFST and LEXC.
The complexities of the Murrinh-Patha verb require a mor-
phological preprocessing for almost all NLP applications.
The output of the morphological analyzer is a simple binary
file. As the system has not been developed with a specific
purpose in mind, it is resource independent and can thus be
integrated into many different applications.
Currently, the morphological analyzer is used in an XLE
parser (Crouch et al., 2011) for Murrinh-Patha. The XLE
parser is integrated into the ParGram community with stan-
dardized morpho-syntactic features and analyses (Butt et
al., 1999).
The morphological analyzer together with the parser are
used in an electronic dictionary and in a simple trans-
lation system from English to Murrinh-Patha (Seiss and
Nordlinger, 2011). These systems are primarily intended as
learning resources for non-Murrinh-Patha speakers. A high
degree of accuracy is therefore needed, which can only be
accomplished with a rule-based system.
The refined lookup strategy can also be very helpful in
these applications. For example, the electronic dictionary
performs a morphological analysis to decompose the input
string into classifier and lexical stem combination and then
presents the user with the meaning for this combination. In
this context, the lookup strategy can be used for more infor-
mative feedback. If an input string cannot be decomposed
into a classifier and lexical stem combination which has an
entry in the dictionary, the electronic dictionary can at least
offer some more hints, e.g., by giving the decomposition
with an unknown classifier and lexical stem combination or
by providing a guess for the lexical stem.
In sum, the paper showed how such complex systems as
the Murrinh-Patha verbal system can be modeled with rule-
based methods reliably and how a robust morphological an-
alyzer can be implemented based on these methods. This
implementation can now be put to use in many different
applications.

757

8. Acknowledgements
I would like to thank Rachel Nordlinger and Joe Blythe who
provided me with data and information about the language.
Many thanks also go to my supervisor Miriam Butt.

9. References
Iñaki Alegria, Xabier Artola, Kepa Sarasola, and Miriam

Urkia. 1996. Automatic morphological analysis of
Basque. Literary and Linguistic Computing, 11(4):193–
203.

Mohammed Attia, Pavel Pecina, Antonio Toral, Lamia
Tounsi, and Josef van Genabith. 2011. An open-source
finite state morphological transducer for modern stan-
dard Arabic. In Proceedings of the 9th International
Workshop on Finite State Methods and Natural Lan-
guage Processing, pages 125–133, Blois, France. Asso-
ciation for Computational Linguistics.

Kenneth R. Beesley and Lauri Karttunen. 2003. Finite
State Morphology. CSLI Publications, Stanford.

Kenneth R. Beesley. 1996. Arabic finite-state morpholog-
ical analysis and generation. In Proceedings of the 16th
conference on Computational linguistics, COLING 96,
pages 89–94.

Joe Blythe. 2009. Doing Referring in Murriny Patha con-
versation. Ph.D. thesis, University of Sydney.

Tina Bögel, Miriam Butt, Annette Hautli, and Sebastian
Sulger. 2007. Developing a finite-state morphological
analyzer for Urdu and Hindi. In Proceedings of the
Sixth International Workshop on Finite-State Methods
and Natural Language Processing, Potsdam.

Miriam Butt, Tracy Holloway King, Marı́a-Eugenia Niño,
and Frédérique Segond. 1999. A Grammar Writer’s
Cookbook. CSLI, Stanford.

Dick Crouch, Mary Dalrymple, Ron Kaplan,
Tracy King, John Maxwell, and Paula New-
man. 2011. XLE documentation. URL:
http://www2.parc.com/isl/groups/nltt/xle/doc/xle toc.html.

Mans Hulden. 2009. Foma: A finite-state compiler and
library. In Proceedings of the 12th Conference of the
EACL Demonstration Session, pages 29–32.

Kimmo Koskenniemi. 1983. Two-level morphology: A
general computational model for word-form recognition
and production. Publication 11, University of Helsinki,
Department of General Linguistics, Helsinki.

Septina Dian Larasati, Vladislav Kuboň, and Daniel Ze-
man. 2011. Indonesian morphology tool (MorphInd):
Towards an Indonesian corpus. In Cerstin Mahlow and
Michael Piotrowski, editors, Systems and Frameworks
for Computational Morphology: Proceedings of the Sec-
ond International Workshop, SFCM 2011, Zürich, pages
119–130.

Krister Lindén and Tommi Pirinen. 2009. Weighted finite-
state morphological analysis of Finnish compounding
with HFST-LEXC. In Proceedings of the 17th Nordic
Conference of Computational Linguistics NODALIDA
2009, volume 4, pages 89–95.

Krister Lindén, Erik Axelson, Sam Hardwick, Tommi Piri-
nen, and Miika Silfverberg. 2011. HFST—framework

for compiling and applying morphologies. In Cerstin
Mahlow and Michael Piotrowski, editors, Systems and
Frameworks for Computational Morphology: Proceed-
ings of the Second International Workshop, SFCM 2011,
Zürich, pages 67–86.

Karine Megerdoomian. 2004. Finite-state morphological
analysis of Persian. In Proceedings of the Workshop on
Computational Approaches to Arabic Script-based Lan-
guages. Coling 2004, University of Geneva.

Rachel Nordlinger. 2010. Verbal morphology in Murrinh-
Patha: Evidence for templates. Morphology, 20(2):321–
341.

Melanie Seiss and Rachel Nordlinger. 2011. An electronic
dictionary and translation system for Murrinh-Patha. In
Proceedings of the EUROCALL 2011 conference, Uni-
versity of Nottingham. to appear.

Melanie Seiss. 2011. Implementing the morphology-
syntax interface: Challenges from Murrinh-Patha verbs.
In Miriam Butt and Tracy H. King, editors, Proceedings
of the LFG2011 Conference, pages 482–502, Stanford.
CSLI Publications.

Chester Street. 1987. An Introduction to the Language and
Culture of the Murrinh-Patha. Pacific Linguistics, Port
Keats.

Heli Uibo. 2005. Finite-state morphology of Estonian:
Two-levelness extended. In Proceedings of RANLP
2005, Borovets, pages 580–584.

Ramasamy Veerappan, P J Antony, S Saravanan, and K P
Soman. 2011. A rule based Kannada morphological an-
alyzer and generator using finite state transducer. Inter-
national Journal of Computer Applications, 27(10):45–
52.

Wycliffe Bible Translators. 1990. Murrinh ngarra Jesus
nukunu: The story about Jesus, book 1.

Shlomo Yona and Shuly Wintner. 2008. A finite-state mor-
phological grammar of Hebrew. Natural Language En-
gineering, 14(2):173–190.

758

