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Abstract
It is well known that accuracies of statistical parsers trained over Penn treebank on test sets drawn from the same corpus tend to
be overestimates of their actual parsing performance. This gives rise to the need for evaluation of parsing performance on corpora
from different domains. Evaluating multiple parsers on test sets from different domains can give a detailed picture about the relative
strengths/weaknesses of different parsing approaches. Such information is also necessary to guide choice of parser in applications such
as machine translation where text from multiple domains needs to be handled. In this paper, we report a benchmarking study of different
state-of-art parsers for English, both constituency and dependency. The constituency parser output is converted into CoNLL-style
dependency trees so that parsing performance can be compared across formalisms. Specifically, we train rerankers for Berkeley and
Stanford parsers to study the usefulness of reranking for handling texts from different domains. The results of our experiments lead to
interesting insights about the out-of-domain performance of different English parsers.
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1. Introduction
Natural language parsers lie at the core of various natu-
ral language processing (NLP) applications such as ma-
chine translation (MT), question answering (QA), infor-
mation extraction/retrieval (IE/IR), etc. Building accurate,
wide-coverage parsers has been one of the main goals in
NLP research for more than a decade now. Much of the
work in this area has focused on English although in recent
times, work on parsing other languages is steadily increas-
ing. Constituency-based parsing has been the dominant
paradigm for building parsers for English. However, of late,
there has been a considerable interest in dependency pars-
ing for English because the simplicity of the dependency
representation makes it amenable for a variety of applica-
tions. There exist today a number of constituency parsers
for English based on different statistical parsing approaches
that claim respectable performance at parsing English texts
(Charniak and Johnson, 2005; Klein and Manning, 2003;
Petrov et al., 2006; Petrov and Klein, 2007). The standard
practice in much of the parsing literature is to train the pars-
ing models over sections 02-21 of the Penn treebank (PTB)
(Marcus et al., 1994) and report parsing performance in
terms of Parseval F-scores (Sekine and Collins, 1997) on
sections 22 and 23 of the same corpus. However, it is well-
known that the performance of any statistical model tends
to be better on datasets that are similar in domain to the
dataset used to train the model. Owing to this domain-bias,
the F-scores of PTB-trained parsers reported on test sets
drawn from the same corpus tend to be overestimates of
the actual parsing performance of these models. This gives
rise to the need for evaluation of parsing performance on
corpora from different domains. Gildea (2001) is an early
work that studies the variation in performance of a statisti-
cal parser on different corpora.
Comparative evaluation of parsers on different cor-
pora can lead to interesting insights about the rela-
tive strengths/weaknesses of different parsing approaches.
Moreover, such an evaluation is also necessary to inform

the choice of parsers while building real world applica-
tions such as MT, QA, IE/IR etc. For example, Petrov et
al. (2010) is a recent work which studies the performance
of different parsers at handling question constructions, and
can therefore, be used to guide choice of parser while build-
ing a QA system.

In recent times, the development of efficient constituency-
to-dependency conversion procedures such as Stanford de-
pendencies (De Marneffe et al., 2006) has been an impor-
tant development as it allows for performance of parsers
to be compared across formalisms. Cer et al. (2010) and
Çetinoǧlu et al. (2010) are two recent studies which re-
port a comparative evaluation of a number of state-of-art
English parsers, both dependency and constituency. While
Cer et al. (2010) is a detailed evaluation of different parsers
based on the Stanford typed dependency scheme, Çetinoǧlu
et al. (2010) base their comparison on a LFG-inspired de-
pendency scheme. However, in both these studies, parsing
performance is evaluated only on test sets from the PTB
corpus. In this paper, we attempt a similar detailed bench-
marking of a number of statistical parsers, both dependency
and constituency. We compare the performance of parsers
of both formalisms using a dependency-based evaluation.
The constituency-to-dependency converter used in our ex-
periments differs from the one used in these earlier works.
The main point of departure in our study is the evaluation of
parsers on different kinds of corpora and not just the PTB
sections as in the earlier works.

The motivation for such a benchmarking study comes from
the need to identify a high quality parser for English that
can be used for analysis of source sentences in an English-
to-Indian language machine translation system. Since it
is desirable that the source analysis assign a dependency
structure, we opt for a dependency-based evaluation of
parsers. Another important goal of our work is to study
the influence of reranking and self-training while parsing
texts from different domains.
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2. Treebanks
In our benchmarking, we use different treebank corpora
available for English for training and testing the parsers.
The most well-known and also the largest of them is the
Penn treebank (Marcus et al., 1994). The Penn treebank
(PTB) consists of 49207 sentences from the Wall Street
Journal (WSJ) newspaper corpus manually annotated with
syntactic structure using a constituency-based annotation
scheme. The treebank is split into 24 sections. Of these,
sections 02-21 are usually used to train statistical parsers
and sections 22, 23 and 24 are treated as development and
test sets. All the parsing models studied in our work are
trained using a similar partitioning of the treebank.
The Brown corpus is a balanced corpus of English texts
drawn from multiple domains and genres (Nelson and
Kučera, 1979). A subset of this corpus, manually annotated
using the PTB scheme, is distributed as part of Treebank-3.
This Brown parsed corpus consists of texts from different
genres of fiction such as folklore, memoirs, mystery, adven-
ture, romance and humor. The difference in domain of these
Brown parsed texts compared to the WSJ qualify them as
suitable test sets to study the out-of-domain performance of
parsers trained over the PTB. In addition, the diversity of
genres within the Brown parsed corpus makes it possible to
study the variation of parsing performance across different
genres.
The Questionbank (Judge et al., 2006) is a corpus of 4000
questions annotated using the PTB annotation scheme. In
our study, we use the Questionbank corpus to benchmark
the performance of various English parsers at parsing ques-
tions. We made a few necessary corrections to the original
annotations following the steps mentioned here 1.
Foster and van Genabith (2008) created a parsed cor-
pus of 1000 sentences from the British National Corpus
(BNC). The sentences were assigned manually annotated
constituent structures based on the PTB annotation scheme.
The sentences in this set were chosen such that each sen-
tence contains a word that appears as a verb in the BNC but
not in the usual training sections of PTB. We used this test
set of sentences in our benchmarking as it was designed to
be a difficult set for WSJ-trained parsers.
Finally, we also consider two treebanks from the biomed-
ical domain in our benchmarking. We expect the pars-
ing performance on these two test sets to reflect the abil-
ity of parsers to negotiate texts from technical domains
which have high incidence of unknown, out-of-domain vo-
cabulary items. The first test set is the Brown-Genia cor-
pus (Lease and Charniak, 2005) which contains 215 sen-
tences from the Genia corpus (Kim et al., 2003) 2. We also
use the Genia treebank corpus (Tateisi et al., 2005) as a test
set since it is sufficiently large and therefore, accuracy re-
ported on this dataset would be a more reliable indicator of
parsing performance on this domain. It must be noted there
is no overlap between these two treebanks.

1http://nlp.stanford.edu/data/
QuestionBank-Stanford.shtml

2Available from http://www.cs.brown.edu/

˜mlease/parser-treebank.tgz

3. Constituency-to-Dependency conversion
As already mentioned, the development of high quality
constituency-to-dependency conversion procedures in re-
cent years has made comparisons of parsers across for-
malisms possible. The output parses of a constituency
parser are converted to dependency structures using a
constituency-to-dependency converter. The constituency-
to-dependency conversion procedure is also used to auto-
matically convert constituency treebanks into their depen-
dency versions. Dependency parsers are trained over such
automatically converted treebanks in case hand-crafted de-
pendency treebanks do not exist. The performance of all
parsers is evaluated using the standard dependency evalua-
tion metrics of labeled attachment score (LAS), unlabeled
attachment score (UAS) and label accuracy (LA).
In our work, we study the constituency-to-dependency
conversion procedure proposed by Johansson and Nugues
(2007). This procedure improves upon earlier conversion
procedures such as Yamada and Matsumoto (2003) by us-
ing more sophisticated head-finding rules and by making
use of function tags and traces, if present, to recover long-
distance dependencies and non-projective dependencies.
The pennconverter3 is an implementation of this conver-
sion procedure and was used to create dependency versions
of the Penn treebank from which datasets were created for
the CoNLL shared tasks on dependency parsing (Nivre et
al., 2007; Surdeanu et al., 2008). For this reason, dependen-
cies extracted by this converter are also popularly known as
CoNLL dependencies. Since other existing converters such
as the Stanford dependencies and LFG-based dependencies
were explored in previous work (Cer et al., 2010; Çetinoǧlu
et al., 2010), we chose to work with the CoNLL dependen-
cies so that a comparison across these different schemes is
possible.
We used the pennconverter to create dependency versions
of the Penn treebank and the Brown treebank both of which
are annotated with function tags. The dependency parsers
used in our experiments are trained over sections 02-21 of
this dependency version of the Penn treebank. For other
corpora such as the Questionbank, BNC corpus and the
biomedical treebanks, in the absence of function tags and
traces, the pennconverter is unable to recover all depen-
dencies. Following Foster and van Genabith (2008), we
handle this issue by applying a function tagger that assigns
function tags to constituents in these corpora. We use the
state-of-art function tagger of Chrupala (2007) in our ex-
periments. The same combination of function tagger and
pennconverter is used to convert the output parses of con-
stituency parsers into dependency structures.

4. Parsers
In this section, we briefly describe the various parsers con-
sidered in our benchmarking study.

4.1. Constituency parsers
4.1.1. Charniak-Johnson Parsers
The Charniak-Johnson (CJ) parser is a reranking parser that
does parsing in two stages (Charniak and Johnson, 2005).

3Available at http://nlp.cs.lth.se/software/
treebank_coverter
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Parser Description
cj0 pre-trained parsing and reranker models
cj1 pre-trained parsing model + retrained Max-

Ent reranker
cj2 Self-trained Charniak + retrained MaxEnt

reranker
berkeley0 pre-trained sm-6 parsing model in the

Berkeley parser
berkeley1 sm-5 model trained over PTB sections 02-

21
berkeley2 berkeley0 + MaxEnt reranker trained using

final split of PTB
berkeley3 berkeley0 + MaxEnt reranker trained using

non-final split of PTB
berkeley4 berkeley1 + MaxEnt reranker trained using

non-final split of PTB
stanford0 pre-trained PCFG parsing model in the

Stanford parser
stanford1 pre-trained model trained only over PTB

sections 02-21
stanford2 stanford1 + MaxEnt reranker trained using

non-final split of PTB
matetools pre-trained dependency parsing model in

the MateTools parser
idparser dependency parsing model trained over

PTB sections 02-21

Table 1: Brief summary of the different parsers

The first stage of parsing is done using Charniak’s lex-
icalized history-based generative statistical parser (Char-
niak, 2000). In the second stage, Johnson’s discriminative
reranker uses a large number of non-local features defined
over the entire parse tree to rerank the k-best parses pro-
duced by the first stage parser. Charniak’s parser is reported
to give an F-score of 89.1 on section 23 of the WSJ corpus.
When combined with the Johnson reranker, the F-score on
the same section significantly improved to 91.3. McClosky
et al. (2006) introduced self-training in this parsing setup as
a result of which, the F-score improved to 92.1. We study
the performance of both the original CJ parser 4 as well as
the self-trained version of (McClosky et al., 2006). 5 In
our initial experiments with the CJ parser, we noticed that
the pre-trained model did not give the same performance
as reported in the literature. So, we retrained the MaxEnt
reranker following the procedure described in (Gao et al.,
2007). Thus, we have three versions of the CJ parser as
shown in Table 1.

4.1.2. Berkeley Parser and Discriminative Reranking
The Berkeley parser is an accurate constituency parser
based on induction of latent PCFGs from constituency tree-
banks (Petrov et al., 2006). The latent non-terminal sym-
bols in the PCFG are derived using an iterative split-merge
technique. The probabilities of the rules in the grammar
are estimated using the EM-algorithm in each iteration, fol-
lowed by a smoothing step to reduce the risk of over-fitting

4Available at https://bitbucket.org/bllip/
bllip-parser/get/tip.tar.bz2

5Available from http://cs.brown.edu/˜dmcc/
selftraining/selftrained.tar.gz

to the training data. The number of split-merge cycles can
be varied to learn grammars of different granularity. Petrov
and Klein (2007) note that the sm-6 grammar (6 split-merge
iterations) trained over the PTB could be overfitted to the
WSJ corpus. In our experiments, we try to verify this by
comparing the performance of the sm-5 and sm-6 grammars
trained over PTB on different test sets. An important dis-
tinction between the Berkeley parser and the other parsers
used in our experiments is the absence of lexicalization in
the learnt grammars.
We also investigate the role of reranking in tackling domain
differences by combining the Berkeley parser with the dis-
criminative Johnson reranker. The reranker is trained using
features reported in Johnson (2005). We train two differ-
ent kinds of reranker models- one using sections 02-21 of
the PTB as the training data and section 24 as the develop-
ment (final split) and the other using sections 02-21 both for
training and development (non-final split). The procedure
to train the reranker using the non-final split of PTB is the
same as described in (Johnson and Ural, 2010). Rerankers
are trained for both the sm-5 and sm-6 parsing models.

4.1.3. Stanford parser
Among the different parsing models available in the Stan-
ford parser, we consider the lexicalized PCFG parser6 in
our benchmarking study (Klein and Manning, 2003). This
parser implements a factored product model, with sepa-
rate PCFG phrase structure and lexical dependency experts.
The PCFG parser begins with a raw n-ary treebank gram-
mar obtained from the trees in the training section and per-
forms a horizontal and vertical markovization in order to
capture the external context to deal with sparsity arising
from infrequent or unseen rule types. The probabilities over
the sub-categorized grammar are estimated using maximum
likelihood estimation followed by smoothing.
We also study the effect of reranking the output of the
Stanford parser in comparison to the Charniak-Johnson
and reranked Berkeley parsers. The reranker for the Stan-
ford parser is trained using the non-final split of PTB and
the same feature set as described in the case of Berkeley
parser.

4.2. Dependency parsers
4.2.1. MateTools parser
The MateTools parser (Bohnet, 2010) is based on the
Maximum-spanning tree algorithm using second-order fea-
tures. It uses the MIRA algorithm combined with a hash
kernel to learn the dependency structures from a treebank.
The parser includes a parallel feature extraction process and
a parsing algorithm to considerably improve the speed of
the parser while still retaining the high accuracy of graph-
based dependency parsing approaches. The MateTools
parser contains a pre-trained model for parsing English text
trained over sections 02-21 of the dependency version of
PTB.

4.2.2. ISBN parser
The idparser (Titov and Henderson, 2007) implements a
projective dependency parsing algorithm similar to a stan-

6Stanford Parser Version 1.6.4: 2010-11-30.
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corpus CJ Berkeley Stanford Matetools
LAS UAS LAS UAS LAS UAS LAS UAS

WSJ
section-22 85.85 90.14 86.59 90.82 82.95 87.35 84.58 88.87
section-23 86.18 90.10 86.84 90.84 83.26 87.48 84.68 88.66
section-24 85.02 89.43 86.32 90.71 82.54 87.17 83.85 88.45

Brown

Popular lore ( cf ) 82.11 87.38 83.42 88.56 80.18 85.63 81.13 86.81
Letters and Memoirs ( cg ) 81.00 86.50 82.09 87.63 78.89 84.70 80.50 86.19

General fiction ( ck ) 79.50 85.74 79.68 85.94 76.87 83.57 78.38 85.03
Mystery fiction ( cl ) 79.42 85.87 79.21 85.77 76.42 83.31 78.35 85.27
Science fiction ( cm ) 80.91 86.39 80.99 86.48 79.15 84.96 80.13 86.30
Western fiction ( cn ) 79.77 86.44 79.92 86.53 77.09 84.19 79.10 85.83

Romance stories ( cp ) 78.91 84.93 79.36 85.38 76.42 82.92 78.22 84.64
Humor ( cr ) 78.56 84.60 78.88 85.05 75.91 82.49 78.05 84.14

Bio-medical Brown-Genia 82.38 84.98 82.47 85.09 79.25 82.34 77.41 81.98
Genia 82.10 84.29 82.30 84.57 78.68 81.62 76.64 81.38

QuestionBank 84.97 90.81 86.18 90.93 93.94 95.52 70.70 88.37
BNC 82.23 86.13 83.63 86.80 80.17 83.84 77.84 84.29

Table 2: Performance of pre-trained models of the parsers on different corpora

dard shift-reduce algorithm for context-free grammars. The
underlying model is a latent-variable model for generative
dependency parsing based on Incremental Sigmoid Belief
Networks. In other words, the features for parsing are in-
duced automatically using latent variables. As inference is
intractable in this class of graphical models, the parser uses
a variational inference method to compute the best parse for
a given input sentence.
Of the two dependency parsers considered in our study,
the matetools is a graph-based parser while the idparser is
a transition-based parser and therefore, represent the two
main kinds of dependency parsing algorithms. An addi-
tional consideration in choosing these two parsers was their
availability under GPL. Table 1 contains a summary of the
different parsers considered in our benchmarking study.

5. Experimental Results and Discussion
The latest distributions of most of the parsers considered
in our study contain pre-trained models trained over sec-
tions 02-21 of the PTB and some additional corpora in the
case of the Stanford parser. We start our benchmarking
experiments with these pre-trained models. In the case of
constituency parsers, we treat the accuracies obtained using
these pre-trained models as the baselines. The performance
of these models on different treebank corpora is shown in
Table 2. From the values in the table, it seems that the pre-
trained model in Berkeley parser outperforms all other pre-
trained models on most of the test sets. Upon significance
testing, we observed that while the Berkeley model outper-
forms the Stanford and the Matetools pre-trained models
on most test sets, the difference in the accuracies of Berke-
ley and CJ parsing models is not significant on five sec-
tions of the Brown corpus (ck, cl, cm, cn, cr), the Brown-
Genia corpus and the BNC test set. The Stanford pre-
trained model gives an exceptionally high performance on
the Questionbank compared to all other parsers. This is
due to the use of a part of the Questionbank to train this
pre-trained model. Another important observation that dif-
fers from conclusions of previous works is that dependency
parsers for English do not necessarily perform worse than
their constituency counterparts. The Matetools parser ei-
ther outperforms or matches the Stanford parser on all the
test sets except the Questionbank and BNC. The difference
in accuracy between Stanford and Matetools models on the

Brown-Genia test set is not significant. In addition, the dif-
ference between the accuracies of the Matetools parser and
the CJ parser is not significant on the following genres in
the Brown corpus- science fiction (cm), romance (cp) and
humor (cr).

corpus cj0 cj1 cj2
LAS UAS LAS UAS LAS UAS

wsj 22 85.85 90.14 87.60 91.63 87.63 91.88
wsj 23 86.18 90.10 87.80 91.56 88.15 92.04
wsj 24 85.02 89.43 86.57 90.92 87.81 92.09
brown cf 82.11 87.38 84.13 89.21 84.96 90.08
brown cg 81.00 86.50 82.76 88.08 83.64 89.04
brown ck 79.50 85.74 81.37 87.36 82.19 88.18
brown cl 79.42 85.87 81.36 87.54 82.20 88.36
brown cm 80.91 86.39 82.30 87.61 82.57 87.78
brown cn 79.77 86.44 81.63 88.09 82.56 88.96
brown cp 78.91 84.93 80.69 86.45 81.86 87.54
brown cr 78.56 84.60 80.31 86.27 81.06 87.09
brown-genia 82.38 84.98 83.82 86.14 84.56 86.94
genia 82.10 84.29 82.08 84.25 83.49 85.61
questionbank 84.97 90.81 87.36 93.16 88.20 94.14
bnc 82.23 86.13 84.18 87.53 85.27 88.45

Table 3: Performance of Charniak-Johnson parsing models

Our next set of experiments were focused on studying dif-
ferent versions of each of the constituency parsers. Ta-
ble 3 shows the performance of different versions of the
CJ parser. The cj1 model which contains the retrained
reranker significantly outperforms the baseline cj0 on all
the test sets. There is a significant difference between the
accuracies of these two versions on all test sets except the
Brown-Genia corpus. The difference in precision is not sig-
nificant for this corpus although the difference in LAS and
UAS scores is nearly 1.5%. On the larger Genia corpus,
the cj1 model performs slightly worse (significant) than the
cj0 model. Both these observations put together suggest
that retraining the reranker has a detrimental effect when
it comes to biomedical domain test sets. The self-trained
version of CJ parser, cj2 model, significantly outperforms
the pre-trained cj0 model on all test sets. The difference
between the accuracies of cj2 and cj1 models is significant
on all but three datasets, the exceptions being section-22 of
WSJ, Brown cm section and Brown-Genia.
The performance of different models of the Berkeley parser
is shown in Table 4. Comparing the performance of the sm-
6 (berkeley0) and the sm-5 (berkeley1) models, we notice
that the accuracies of berkeley0 are greater than berkeley1
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corpus berkeley0 berkeley1 berkeley2 berkeley3 berkeley4
LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS

wsj 22 86.59 90.82 85.94 90.17 86.78 90.97 86.28 90.49 85.79 89.99
wsj 23 86.84 90.84 86.41 90.27 87.07 91.08 86.30 90.26 86.28 90.14
wsj 24 86.32 90.71 85.79 90.24 85.89 90.39 85.80 90.27 85.63 90.10
brown cf 83.42 88.56 82.98 88.20 83.94 89.05 83.65 88.85 82.59 87.82
brown cg 82.09 87.63 81.27 86.94 82.41 88.01 82.22 87.86 80.88 86.54
brown ck 79.68 85.94 79.62 85.92 79.78 86.17 79.49 85.85 79.25 85.54
brown cl 79.21 85.77 78.74 85.38 79.29 85.99 78.94 85.69 78.52 85.13
brown cm 80.99 86.48 80.82 86.52 81.04 86.79 80.83 86.56 80.48 86.13
brown cn 79.92 86.53 79.85 86.49 79.82 86.49 79.57 86.28 79.52 86.17
brown cp 79.36 85.38 79.80 84.98 79.55 85.67 79.16 85.29 78.65 84.68
brown cr 78.88 85.05 78.63 84.82 79.59 85.74 79.26 85.52 78.33 84.51
brown-genia 82.47 85.09 81.49 83.96 83.09 85.51 82.71 85.00 81.32 83.65
genia 82.30 84.57 81.61 83.90 83.16 85.36 82.57 84.84 80.99 83.33
questionbank 86.18 90.93 85.24 89.85 85.00 90.75 83.72 90.76 83.70 88.87
bnc 83.63 86.80 82.96 86.13 84.41 87.53 84.17 87.29 82.58 85.79

Table 4: Performance of Berkeley parser models

on all datasets except cp (Romance) section of Brown cor-
pus. However, the difference in accuracies between these
two models is not significant for most sections of the Brown
corpus (ck, cl, cm, cn, cp and cr). Although these results
show a trend similar to the one reported in (Petrov and
Klein, 2007), this does not seem to be due to overfitting of
the sm-6 model to the WSJ corpus. This is because the sm-
6 model significantly outperforms the sm-5 model on other
out-of-domain test sets such as the biomedical treebanks,
Questionbank and the BNC test set. At this stage, it seems
that the similar performance of sm-6 and sm-5 models on
the Brown corpus needs further investigation and cannot
be simply attributed to overfitting. Our next observation
is about the effect of reranking the Berkeley parser. Com-
paring the accuracies of reranked versions and the 1-best
models (berkeley2, berkeley3 against berkeley0, berkely4
against berkeley1), we noticed that reranking does not im-
prove the performance as much as in the CJ parser. Com-
paring berkeley2 and berkeley0, significant improvements
in accuracy are observed on three sections of Brown corpus
(cf, cg and cr), biomedical treebanks and the BNC test set.
Even in the case of the PTB test sets, only slight improve-
ments are observed and that too, only in the case of only one
reranked model- berkeley2. The berkeley3 reranked model,
trained using the non-final split, in fact, lowers the accura-
cies on PTB and Brown test sets. A similar pattern can be
observed for berkeley4, the sm-5 reranked model trained
using non-final split of the PTB. These results suggest that
rerankers trained using the final split with a larger train-
ing set (39, 825 sentences) and a smaller development set
(1345 sentences) are better than ones trained using the non-
final split with smaller training set (35, 852 sentences) and
larger development set (3, 976 sentences). Another strik-
ing observation is that all Berkeley reranked models per-
form significantly worse than their 1-best counterparts on
the Questionbank.
The performance of different Stanford parsing models are
shown in Table 5. The accuracies of stanford0 and stan-
ford1 models are almost similar on most of the test sets, the
only exception being the Questionbank. As mentioned ear-
lier, the exceptionally high performance of stanford0 model
on the Questionbank is due to the use of a part of this corpus
to train this model. The other important observation is that
reranking the Stanford parser significantly improves the ac-

corpus stanford0 stanford1 stanford2
LAS UAS LAS UAS LAS UAS

wsj 22 82.95 87.35 83.01 87.43 85.94 90.27
wsj 23 83.26 87.48 83.26 87.50 85.93 90.01
wsj 24 82.54 87.17 82.43 87.10 84.78 89.42
brown cf 80.18 85.63 80.18 85.57 82.16 87.51
brown cg 78.89 84.70 78.82 84.60 80.58 86.37
brown ck 76.87 83.57 76.72 83.47 78.51 85.08
brown cl 76.42 83.31 76.16 83.07 78.13 84.96
brown cm 79.15 84.96 78.42 84.46 80.31 86.28
brown cn 77.09 84.19 76.71 83.84 78.49 85.54
brown cp 76.42 82.92 75.99 82.51 77.69 84.06
brown cr 75.91 82.49 75.84 82.37 77.49 84.04
brown-genia 79.25 82.34 80.20 83.31 81.98 85.03
genia 78.68 81.62 78.68 81.42 80.85 83.43
questionbank 93.94 95.52 79.26 87.47 82.03 89.90
bnc 80.17 83.84 80.05 83.74 82.17 82.55

Table 5: Performance of Stanford parsing models

curacies on all test sets, a trend similar to the CJ parser.
This suggests that reranking seems to be relatively more
effective in the case of lexicalized parsers such as CJ and
Stanford as opposed to Berkeley parser.

corpus matetools idparser
LAS UAS LAS UAS

wsj 22 84.58 88.87 84.88 89.01
wsj 23 84.68 88.66 84.58 88.43
wsj 24 83.85 88.45 83.44 88.04
brown cf 81.13 86.81 78.57 84.14
brown cg 80.50 86.19 77.57 82.69
brown ck 78.38 85.03 76.03 82.52
brown cl 78.35 85.27 75.67 82.58
brown cm 80.13 86.30 77.88 83.82
brown cn 79.10 85.83 76.20 83.33
brown cp 78.22 84.64 75.14 80.92
brown cr 78.05 84.14 74.33 80.35
brown-genia 77.41 81.98 75.47 79.88
genia 76.64 81.38 75.08 79.47
questionbank 70.70 88.37 67.61 88.31
bnc 77.84 84.29 74.26 81.08

Table 6: Performance of dependency parsers

Our next set of experiments were aimed at comparing the
graph-based dependency parsing algorithm of the Mate-
tools parser with the shift-reduce algorithm of the idparser.
In the case of the idparser, a dependency parsing model was
trained over sections 02-21 of the dependency version of
the PTB converted using the pennconverter. The accuracies
of the dependency parsers on different test sets are shown
in Table 6. The matetools parsing model significantly out-
performs the idparser on all the out-of-domain test sets. In
addition, the variation in performance of the idparser across
different test sets suggests strong overfitting of the idparser
model to the WSJ corpus.
In the remainder of this section, we briefly present the com-
parative patterns of performance of the parsers on each of
the different types of corpora. The LAS and UAS scores of
different parsers on the different test sets are shown in the
stacked barplot in Figures 1, 2, 3, 4 and 5. In the case of
the constituency parsers, the pre-trained model (baseline) is
shown alongside the best performing model of each parser.
It is interesting to note that relative ordering among parsers
is similar on test sets from the same domain.
On all three test sets from the PTB, the self-trained version
of CJ parser (cj2) performs best, followed by the Berke-
ley reranked model (berkeley2). The pre-trained model in
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Figure 1: Comparative performance of parsers on PTB sections 22, 23 and 24.

the Stanford parser (stanford0) gives the lowest accuracies
on these datasets. The two dependency parsers give higher
accuracies than the Stanford pre-trained model.
On all the different sections of the Brown corpus, we ob-
serve that the self-trained version of the CJ parser gives the
highest scores, followed by the Berkeley reranked and base-
line models. The baseline model of the CJ parser achieves
slightly lesser scores than the Berkeley baseline model, fol-
lowed by the Matetools dependency parser. The scores ob-
tained by the Stanford reranked model are comparable to
those obtained from the Matetools parser. The performance
of the idparser is quite low on all sections indicating over-
fitting to the training corpus.

Figure 3: Bio-medical treebanks: Brown-Genia (top) and
Genia (bottom)

On both the bio-medical treebanks, the self-trained CJ
parser performs the best, closely followed by the Berke-
ley reranked and the Berkeley baseline models. While
the Matetools dependency parser achieves much less LAS

score in comparison to the self-trained CJ parser and the
Berkeley reranked model, the UAS scores are comparable.

Figure 4: Parser performance comparison on Question-
bank.

The variation in parsing performance across parsers is
greatest in the case of the Questionbank. While the pre-
trained Stanford model gives exceptionally high perfor-
mance, the dependency parsers give their worst perfor-
mances on this dataset. Additionally, reranking the Berke-
ley parser lead to a drop in the parsing performance over
the baseline model on this test set.

Figure 5: Comparison of parsers on BNC treebank.

In the case of BNC test set, the self-trained CJ parser gives
the best performance followed by the Berkeley reranked
and baseline models. The CJ baseline model and the
reranked Stanford model give only slightly lower scores
compared to the Berkeley pre-trained model. The LAS
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Figure 2: Comparative performance of different parsers on the Brown corpus: row 1 - cf, cg, row 2 - ck, cl, row 3 - cm, cn,
row 4 - cp, cr
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scores of the Matetools parser is quite low although the
UAS is comparable to the Stanford pre-trained model. Both
the LAS and UAS accuracies are lowest in the case of the
idparser.

6. Conclusions
In this paper, we attempt a detailed benchmarking study of
a number of statistical parsers, both constituency and de-
pendency. We study the performance of different parsers at
parsing text from domains that differ substantially from the
newspaper domain of the WSJ corpus underlying the PTB
used to train the parsers. We apply the parsers to texts from
other treebank corpora such as the Brown corpus, BNC cor-
pus, Questionbank and also biomedical texts such as the
Genia corpus and the Brown-Genia corpus. In particular,
we study the influence of discriminative reranking by train-
ing rerankers for the Berkeley and Stanford parsers. The
following conclusions can be drawn from the results of our
experiments:

• Reranking seems to be more useful when the base
parser is lexicalized. While it improves the parsing
performance on all test sets for the Stanford parser, it
can sometimes even lead to a drop in the accuracies
for the Berkeley parser (Questionbank).

• Although reranking gives significant improvements
over the 1-best parsing performance, it cannot com-
pete alone with self-training.

• Dependency parsers do not necessarily perform worse
than their constituency counterparts, especially on the
PTB and Brown test sets. However, the drop in perfor-
mance on other out-of-domain corpora is more drastic
in the case of dependency parsers. Perhaps, the in-
troduction of reranking in the dependency parsers can
help address this issue.
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F. W. Nelson and H. Kučera. 1979. Manual of Information to accompany a Standard
Corpus of present-day edited American English, for use with digital computers.
Brown University, Department of Lingustics.
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