
New Challenges For NLP Frameworks Programme

A workshop at LREC 2010, Valletta, Malta, May 22
http://nlpframeworks2010.semanticsoftware.info

9:15 – 9:30 Welcome

9:30 – 10:30 Invited Talk: Jean-Marie Favre

10:30 – 11:00 Coffee break

11:00 – 13:00 Talks

Kalina Bontcheva, Hamish Cunningham, Ian Roberts and Valentin Tablan: Web-based
Collaborative Corpus Annotation: Requirements and a Framework Implementation

Cartic Ramakrishnan, William A. Baumgartner Jr., Judith A. Blake, Gully APC Burns,
K. Bretonnel Cohen, Harold Drabkin, Janan Eppig, Eduard Hovy, Chun-Nan Hsu,
Lawrence E. Hunter, Tommy Ingulfsen, Hiroaki Onda, Sandeep Pokkunuri, Ellen Riloff,
Christophe Roeder and Karin Verspoor: Building the Scientific Knowledge Mine
(SciKnowMine): a community-driven framework for text mining tools in direct service to
biocuration

Adam Funk and Kalina Bontcheva: Effective Development with GATE and Reusable Code
for Semantically Analysing Heterogeneous Documents

Manuel Fiorelli, Maria Teresa Pazienza, Steve Petruzza, Armando Stellato and
Andrea Turbati: Computer-aided Ontology Development: an integrated environment

13:00 – 14:30 Lunch break

14:30 – 15:30 Invited Talk: Michael Tanenblatt

15:30 – 16:30 Poster Session

Ralf Krestel, René Witte and Sabine Bergler: Predicate-Argument EXtractor (PAX)

Radim Řehůřek and Petr Sojka: Software Framework for Topic Modelling with Large
Corpora

Ninus Khamis, Juergen Rilling and René Witte: Generating an NLP Corpus from Java
Source Code: The SSL Javadoc Doclet

Nicolas Hernandez, Fabien Poulard, Matthieu Vernier, Jérôme Rocheteau: Building a
French-speaking community around UIMA, gathering research, education and industrial
partners, mainly in Natural Language Processing and Speech Recognizing domains

Elena Beisswanger and Udo Hahn: JULIE Lab’s UIMA Collection Reader for WIKIPEDIA

16:00 – 16:30 Coffee Break

16:30 – 17:30 Panel Discussion: New Challenges for NLP Frameworks

17:30 – 17:45 Conclusions

i

Workshop Organisers

René Witte
Concordia University, Montréal, Canada

Hamish Cunningham
University of Sheffield, UK

Jon Patrick
 University of Sydney, Australia

Elena Beisswanger
University of Jena, Germany

Ekaterina Buyko
University of Jena, Germany

Udo Hahn
University of Jena, Germany

Karin Verspoor
University of Colorado Denver, USA

Anni R. Coden
IBM T.J. Watson Research Center, USA

ii

Workshop Programme Committee

Aaron Kaplan (Xerox, France)
Adam Funk (University of Sheffield)

Angus Roberts (University of Sheffield)
Anni R. Coden (IBM T.J. Watson Research Center)

Claude Roux (Xerox Research Labs)
Diana Inkpen (University of Ottawa)

Diana Maynard (University of Sheffield)
Dietmar Rösner (University of Magdeburg)
Dragan Gasevic (University of Athabasca)

Ekaterina Buyko (University of Jena)
Elena Beisswanger (University of Jena)

Epaminondas Kapetanios (University of Westminster)
Eric W. Brown (IBM T.J. Watson Research Center)

Graham Wilcock (University of Helsinki)
Guergana K. Savova (Mayo Clinic)

Hamish Cunningham (University of Sheffield)
Horacio Saggion (University of Sheffield)
Iryna Gurevych (University of Darmstadt)

Jian Su (I2R, Singapore)
Jochen Leidner (Thomson Reuters)
Jon Patrick (University of Sydney)

Juergen Rilling (Concordia University, Montréal)
Kalina Bontcheva (University of Sheffield)
Karin Verspoor (University of Colorado)

Katrin Tomanek (University of Jena)
Kevin B. Cohen (University of Colorado School of Medicine/MITRE)

Leila Kosseim (Concordia University, Montréal)
Leo Ferres (University of Concepcion)

Marc Light (Thomson Corp. R&D)
Michael Tanenblatt (IBM T.J. Watson Research Center)

Nancy Ide (Vassar College)
Nicolas Hernandez (University of Nantes)
Philip V. Ogren (University of Colorado)

Ralf Krestel (L3S Research Center, Hannover)
René Witte (Concordia University, Montréal)

Richard Eckart de Castilho (University of Darmstadt)
Sameer Pradhan (BBN)

Stefan Geißler (TEMIS GmbH)
Steven Bethard (Stanford University)

Thilo Götz (IBM Germany)
Udo Hahn (University of Jena)

Valentin Tablan (University of Sheffield)
Yoshinobu Kano (University of Tokyo, Tsujii Lab)

iii

Table of Contents

 1 Effective Development with GATE and Reusable Code for Semantically Analysing
Heterogeneous Documents
Adam Funk and Kalina Bontcheva

 9 Building the Scientific Knowledge Mine (SciKnowMine): a community-driven framework
for text mining tools in direct service to biocuration
Cartic Ramakrishnan, William A. Baumgartner Jr., Judith A. Blake, Gully APC Burns,
K. Bretonnel Cohen, Harold Drabkin, Janan Eppig, Eduard Hovy, Chun-Nan Hsu,
Lawrence E. Hunter, Tommy Ingulfsen, Hiroaki Onda, Sandeep Pokkunuri, Ellen Riloff,
Christophe Roeder and Karin Verspoor

15 JULIE Lab’s UIMA Collection Reader for WIKIPEDIA
Elena Beisswanger and Udo Hahn

25 Web-based Collaborative Corpus Annotation: Requirements and a
Framework Implementation
Kalina Bontcheva, Hamish Cunningham, Ian Roberts and Valentin Tablan

33 …. Computer-aided Ontology Development: an integrated environment
Manuel Fiorelli, Maria Teresa Pazienza, Steve Petruzza, Armando Stellato
and Andrea Turbati

41 …. Building a French-speaking community around UIMA, gathering research,
education and industrial partners, mainly in Natural Language Processing and
Speech Recognizing domains
Nicolas Hernandez, Fabien Poulard, Matthieu Vernier, Jérôme Rocheteau

46 …. Generating an NLP Corpus from Java Source Code: The SSL Javadoc Doclet
 Ninus Khamis, Juergen Rilling and René Witte

51 …. Software Framework for Topic Modelling with Large Corpora
 Radim Řehůřek and Petr Sojka

56 …. Predicate-Argument EXtractor (PAX)
 Ralf Krestel, René Witte and Sabine Bergler

iv

Author Index

Baumgartner, William A. Jr. 9
Beisswanger, Elena 15
Bergler, Sabine 51
Blake, Judith A. 9
Bontcheva, Kalina 1, 20
Burns, Gully APC 9
Cohen, K. Bretonnel 9
Cunningham, Hamish 20
Drabkin, Harold 9
Eppig, Janan 9
Fiorelli, Manuel 28
Hahn, Udo 15
Hernandez, Nicolas 36
Hovy, Eduard 9
Hsu, Chun-Nan 9
Hunter, Lawrence E. 9
Funk, Adam 1
Ingulfsen, Tommy 9
Khamis, Ninus 41
Krestel, Ralf 51
Onda, Hiroaki 'Rocky' 9
Pazienza, Maria Teresa 28
Petruzza, Steve 28
Pokkunuri, Sandeep 9
Poulard, Fabien 36
Ramakrishnan, Cartic 9
Řehůřek, Radim 46
Rilling, Juergen 41
Riloff, Ellen 9
Roberts, Ian 20

 Rocheteau, Jérôme 36
Roeder, Christophe 9
Sojka, Petr 46
Stellato, Armando 28
Tablan, Valentin 20
Turbati, Andrea 28
Vernier, Matthieu 36
Verspoor, Karin 9
Witte, René 41, 51

v

Effective Development with GATE and Reusable Code for Semantically
Analysing Heterogeneous Documents

Adam Funk, Kalina Bontcheva

Department of Computer Science
University of Sheffield

Regent Court, Sheffield, S1 4DP, UK
a.funk@dcs.shef.ac.uk, k.bontcheva@dcs.shef.ac.uk

Abstract
We present a practical problem that involves the analysis of a large dataset of heterogeneous documents obtained by crawling the web
for information related to web services. This analysis includes information extraction from natural-language (HTML and PDF) and
machine-readable (WSDL) documents using NLP and other techniques, classifying documents as well as services (defined by sets of
documents), and exporting the results as RDF for use in the back-end of a portal that uses Web 2.0 and Semantic Web technology. Triples
representing manual annotations made on the portal are also exported back to our application to evaluate parts of our analysis and for use
as training data for machine learning (ML). This application was implemented in the GATE framework and successfully incorporated
into an integrated project, and included a number of components shared with our group’s other projects.

1. Introduction
The Service-Finder project addresses the problem of web
service discovery for a wide audience through a portal1

which presents automatic semantic descriptions of a wide
range of publicly available web services and also enables
service consumers (not just providers) to enrich them ac-
cording to Web 2.0 principles (manual annotation accord-
ing to the project ontology, tagging, and wiki-like editing
of free text fields). In this project, the Service Crawler (SC)
carries out focused crawling for web services and archives
WSDL files and related HTML files, then passes monthly
batches of these data to the Automatic Annotator (AA),
which analyses them to produce semantic annotations to
the Conceptual Indexer and Matchmaker (CIM), the seman-
tic repository and back end for the web portal. Additional
components include the portal itself and the clustering en-
gine that provides recommendations. (?)
Here we present the implementation of the Automatic An-
notator using the versatile GATE2 (?) framework for NLP
and related applications.

1.1. Input and output
The SC (Service Crawler) component delivers to the AA
a monthly batch of data, consisting of a number of com-
pressed Heritrix (?) Internet Archive files (up to 100 MB
each), along with an index of all the documents in the batch.
The documents for each service include one or more WSDL
files, an abstract3, and zero or more HTML and PDF files
(especially those with contact details, links to WSDL files,
pricing information, terms and conditions, and other useful
information).
Figure 1 shows a sample extract from the index, which

1http://demo.service-finder.eu/
2http://gate.ac.uk/
3The abstract is an HTML file that the SC compiles from vari-

ous elements’ and attributes’ strings (the service name, documen-
tation, operation names, input and output parameters, etc.) in the
best WSDL file for the service.

Input from the SC
Number of .arc.gz files 5
Total size of compressed files 441 MB
Number of documents ∼ 250 000

Output to the CIM
Number of RDF-XML files 30
Total size of compressed files 40 MB
Number of RDF triples ∼ 4 500 000
Number of Providers ∼ 8 700
Number of Services ∼ 25 000

Table 1: Typical AA input and output

lists every document in the crawler output, along with the
archive file number and offset where it can be found and
type codes (e.g., w for WSDL or a for abstract). Each
stanza is headed by a service URI4, which is also used in
the Heritrix archives as the URL of the abstract. The same
service URI may occur several times in this index with dif-
ferent documents listed below it.
This collection of files is downloaded onto one of our
servers for processing, as described in the rest of the paper.
The results are exported as RDF-XML to the CIM. Table 1
summarizes the input and output of a typical monthly batch
of data.

1.2. Annotation tasks
The Automatic Annotator’s principal tasks are as follows:

• analyse WSDL files to produce Endpoint, Interface,
and Operation instances as well as properties associat-
ing them with each other and with the relevant Service
instances;

4The crawler generates URIs for instances of the Service and
Provider classes. The service URI always consists of the provider
URI followed by one path-element, so the provider URI can be
easily obtained from the service URI.

1

http://seekda.com/providers/dp2003.com/FileService 1 100684561 a
http://dp2003.com/filews/filews.asmx?WSDL 1 19796469 w
http://dp2003.com/filews/ListUser 3 29130320 f o
http://dp2003.com/filews/Logout 3 29131388 f o
http://microsoft.com/wsdl/mime/textMatching/ 4 104841754 f o
http://dp2003.com/filews/UserInfo 3 29132932 f o

Figure 1: Excerpt from the input index

• classify documents by type (e.g., documentation, pric-
ing, contact details) and rate them as low-, medium-,
or high-interest;

• carry out information extraction to identify providers’
addresses, phone numbers, e-mail addresses, etc.;

• carry out information extraction over services to iden-
tify service level agreements, free trials, etc.;

• categorize each service in one or more of the 59 sub-
classes of ServiceCategory.

Some tasks require information to be amalgamated across
various sets of documents, and all the output is expressed
as RDF-XML according to the project ontology. Figure 2
highlights several types of keywords and annotated pieces
of information in GATE’s GUI.

2. Implementation
We implemented the Automatic Annotator tools using
GATE, a versatile, extensible library and framework for
NLP and text processing. We used the GATE Developer
GUI environment to develop some of the pipelines (using
the ANNIE information extraction pipeline as a starting
point), GATE’s gazetteer and JAPE tools for rapid devel-
opment of processing resources (PRs) to mark keywords
and phrases with weights according to context, and PRs for
more complicated functions functions that could not be eas-
ily coded in JAPE, along with control programs, both writ-
ten in Java using the GATE Embedded library. (?)

2.1. Preprocessing
First of all, we recognized the need to split the large in-
put dataset into manageable chunks and took advantage of
the independent nature of the data about each provider. We
developed a preprocessor in Java that can be run from the
command-line or a shell script in GNU screen5 on a server.
This preprocessor reads the index file into memory, creates
several (typically 30) serially numbered GATE Serial Data-
Stores6, then iterates through all the documents in the input
archive files. For each document, it checks the HTTP sta-
tus code and discards the document if the code is 3xx, 4xx,
or 5xx; otherwise, it uses the index to identify the docu-
ment type (WSDL, abstract, HTML, PDF) and the service
and provider URIs. It then calculates the MD5 hash (?) of
the document and checks the list of already hashed docu-
ments; in case of a match, it reloads the existing serialized

5http://www.gnu.org/software/screen/
6A Serial DataStore provides disk-based persistence for docu-

ments and corpora using Java serialization.

Stage Approx. number
of documents

Input total documents 250 000
Preprocessing reductions

HTTP error codes 49 000
unwanted provider IDs 5 000
empty documents 3 000
reduced duplicates 23 000
faulty XML < 30

Output HTML 37 000
WSDL 110 000
abstract 25 000

total (31% reduction) 173 000

Table 2: Typical results of preprocessing

Time in hours
Tool Before After
Preprocessor 3.0 18.3
Analysis 72.9 18.1
Archiving 6.5 2.5
Total 82.4 38.9

Table 3: Examples of AA performance times

GATE document, merges the additional document URL and
service URI into it, re-saves it, and goes on to the next
document. Table 2 shows the effects of these suppression
and de-duplication steps, and Table 3 shows the striking
“before and after” effects on performance of making more
effort in the preprocessor to eliminate unnecessary docu-
ments from analysis (on a Xeon X3220 server with Java’s
-Xmx 4000m setting). The preprocessing time increased
sixfold but the total time decreased by 53%.
For each valid, non-duplicate document, the preprocessor
instantiates a GATE document in a mark-up-aware manner,
with the plain-text content, the HTML mark-up or XML
tags, and the metadata all stored in the appropriate parts of
GATE’s document model (the document content, Original
markups annotation set, and document feature map, respec-
tively). (GATE uses a modified form of the TIPSTER and
Atlas formats (?; ?) as stand-off mark-up, as shown in Fig-
ure 2.) (WSDL documents are also analysed by software
developed mainly by another project partner, seekda7, inte-
grated so that it stores its results as an RDF-XML document
feature.) It adds this document to the provider’s corpus
(which it creates when it first encounters that provider). The

7http://seekda.com/

2

Figure 2: Annotated document in GATE

corpora are allocated in a loop over the datastores so that the
latter end up with roughly the same sizes. The provider–
corpus and document–MD5 mappings are kept in memory
since they are used so frequently. Finally, the preprocessor
closes all the corpora (synchronizing them on disk), closes
the datastores, and writes several index files that indicate
which providers and services are in which corpora and data-
stores.

2.2. Analysis
We then run a shell script that carries out the main analysis
tasks and generates the consolidated RDF-XML file sepa-
rately over each datastore.
As mentioned earlier, we took ANNIE as the starting point
for the information extraction tasks, but modified it so that
most of its PRs run only on HTML and PDF documents.
Each datastore produced by the preprocessor is processed
through a Java tool that includes ANNIE8 with additional
gazetteers and rules developed within Service-Finder to
identify relevant terms in the web service domain and anno-
tate interesting sections and documents, consolidate the in-
formation from various documents for each provider, merge
in the RDF-XML snippets generated by the preprocessor

8ANNIE is the information extraction system supplied with
GATE; it includes standard NLP tools for English (such as a to-
kenizer and POS tagger) and gazetteers and rule-based tools for
named entity recognition.

and attached to the corpora and documents, and produce
one large RDF-XML file for each block (datastore).

2.2.1. Overview
The analysis pipeline consists of the following series of pro-
cessing resources (PRs), as illustrated in Figure 3.

1. Standard ANNIE components tokenize and sentence-
split the HTML and PDF documents (creating To-
ken and Sentence annotations on the document). Ab-
stracts and WSDLs are processed with a source-
code tokenizer (developed in the TAO project9),
a version of the ANNIE tokenizer with the rule
files modified to split camel-cased strings (e.g.,
getUnsplicedSequence → get Unspliced
Sequence) as well as tokens separated by whites-
pace.

2. The ANNIE gazetteers and NER (named-entity recog-
nition) module (consisting of JAPE transducers) iden-
tify and annotate a range of entities such as Date, Per-
son, Organization, and Address.

3. Gazetteers developed for this application mark key-
words relating to web services, such as those used to
indicate free trials, terms and conditions, pricing, and
categories of services. Figure 4 shows keywords as-

9http://www.tao-project.eu/

3

Figure 3: Overview of the IE pipeline

terms and conditions user agreement
terms & conditions terms of use
licence agreement TOU
license agreement T&C
licencing agreement AUP
licensing agreement T&Cs
acceptable use policy TOS
terms of service

Figure 4: Examples of keywords that vote for TermsAnd-
ConditionsPage

sociated with the TermsAndConditionsPage document
type.

4. A series of custom JAPE transducers compare the
annotations produced by ANNIE and the custom
gazetteers with the HTML mark-up in order to eval-
uate their role and set a multiplier feature accordingly,
which is used by the voting processor in step 6. (For
example, keywords and named-entity annotations in
title or h1 elements are more important than else-
where in the document, and p elements that begin

with the keyword Description or Price are more likely
to relate to the description of the service or its pric-
ing. Such annotations are assigned a multiplier fea-
ture 1≤m, typically m < 6.) Other JAPE rules try to
identify company details such as country of origin.

These rules also have access to document features con-
taining metadata such as the service, provider, and
document URIs, which they can copy into features on
the annotations they create. They also adjust an inter-
esting feature10.

5. An instance of the GATE machine learning PR (?)
aims to label each document with a class from the ser-
vice category ontology. Section 2.2.2 describes the in-
tegration of this component in more detail.

6. “Voting” PRs (extensions of AbstractLanguageAnal-
yser from the GATE Embedded library) compare the
weighted frequency of significant keywords to assign
certain ontology classes and properties as follows.

• For each WSDL document and interesting (see
step 4 above) textual (i.e., HTML or PDF) doc-
ument, create a potential instance of the gen-
eral class Document or one of its subclasses
(DocumentationPage, TermsAndConditionsPage,
etc.) and assert the properties hasSize, hasTitle,
and retrievedAt; also create a DocumentAnnota-
tion associating the document with a service or
provider. (Some document types, such as Con-
tactDetailsPage, are associated with providers;
others are associated with services.)

• For each service, assertions of the properties
supportsAuthenticationModel, hasServiceLeve-
lAgreement, allowsFreeTrials, etc.; these proper-
ties are not asserted if no votes (keywords) are
found.

• For each service, the two best categories for Cat-
egoryAnnotation (or just one category if all the
votes were for the same one); the categories as-
signed by machine-learning outweigh those gen-
erated by keywords and rules (as §2.2.2 explains
in detail).

• For each provider, one or two best values for
hasHomepage, fromCountry, hasEmail, hasAd-
dress, and hasTelephone (these properties are not
asserted when no values are found in the docu-
ments).

All GATE PRs override the execute method, which
is called on each document in the corpus. Each vot-
ing PR uses additional hooks, as shown in Figure 5,
to initialize the set of “ballots” at the beginning of
the execute on the first document in the corpus;
and to compute the results, generate the correspond-
ing RDF-XML, and store it as a corpus feature at the

100.0≤i≤3.0, interpreted as low (0.0≤i < 1.0), medium
(1.0≤i < 2.0), or high (2.0≤i≤3.0). All documents start with
0.0.

4

public void execute() throws ExecutionException {
if (corpus.indexOf(document) == 0) {

// Before analysing the first document: initialize the data for the corpus
}

// Analyse this document and record the votes

if (corpus.indexOf(document) == (corpus.size() - 1)) {
// After analysing the last document: compute the results,
// generate RDF-XML, and store it as a corpus feature

}
}

Figure 5: Hooks in a voting PR’s execute() method. Note that CorpusController.execute() iterates through the corpus’s
documents in list order: opening each document, calling each PR’s execute() method, and closing the document.

end of the execute on the last document in the cor-
pus. (The RDF-XML is generated by matching and
filling in templates, as described in §2.2.3.)

7. Some important annotations on the document are
translated into RDF-XML according to a set of tem-
plates based on the features of each annotations. (This
RDF-XML is also generated from templates.)

8. All the RDF-XML snippets are collected from the doc-
ument and corpus features and consolidated into one
output file for the datastore.

The “pipeline” outlined above actually consists of two
GATE SerialAnalyserController instances (conditional cor-
pus pipelines) serialized as gapp files and an XML con-
figuration file for GATE’s Batch Learning PR (?). Like the
preprocessor, the main analysis tool is a command-line Java
program that can be run in GNU screen on a server; it in-
stantiates the two pipelines from the gapp files and creates
a separate pipeline for the learning PR (which it instanti-
ates from the configuration file); it then iterates through the
corpora in a datastore, runs the pipelines in the correct se-
quence (taking advantage of GATE’s serialization to save
memory: only one document is loaded at a time), and fi-
nally collects together all the RDF-XML snippets stored as
document and corpus features in the datastore and consoli-
dates them into one RDF-XML file, which constitutes this
tool’s output to the CIM for that block (datastore).
A modified version is also used in the NeOn project11 for
batch processing large datastores through pipelines (both
specified by command-line arguments) on a server.

2.2.2. Service categorization
Although the portal’s Web 2.0 features encourage users to
add, correct, and otherwise improve the category annota-
tions of services, it is important to provide a number of rea-
sonably good ones to start with so users will find the portal
useful and interesting and then contribute to it—otherwise
they would have to face 23 000 uncategorized services with
only keyword searching. We therefore placed strong em-
phasis in the AA on rapid development and then refinement
of service categorization. In this paper, we will summarize

11http://www.neon-project.org/

this task and describe the integration of the components into
the pipeline above. Our scientific results here are interest-
ing in their own right and are published in detail elsewhere
(?).
Briefly, the task is to annotate each service with one or more
of the 59 subclasses of Category for web services, such
as Genetics, Address Information, and Media Management,
arranged in a shallow tree (down to three levels below the
top class) in seven main branches, such as Business, Con-
sumer, and Science (?; ?).
In the early stages, we had no training data but needed to
generate some category annotations quickly for the portal,
so we created ad hoc gazetteers of keywords and phrases
based on the category names, synonyms, and related words.
These were affected by the multipliers described in step 4
in §2.2.1. The IE pipeline at this stage was as shown in Fig-
ure 3 but without the machine learning (ML) categorization
PR (step 5 in §2.2.1); the voting process treated keyword
or phrase match as m (the multiplier) votes for the relevant
category for each service associated with the document, and
annotated each service with the two highest-scoring cate-
gories (an arbitrary limit agreed within the project).
After the first release of the portal, we manually annotated
a few hundred services with the same portal features that
users have for manually adding or correcting categories,
and used these annotations to evaluate the AA’s categoriza-
tion and then as training data for machine-learning. We
trained the ML PR to classify documents, carried out eval-
uations with various ML parameters, and integrated the ML
PR into the pipeline by assigning a very high multiplier
(m = 100) to the ML annotations so that in the subsequent
voting PR, they will outweigh any gazetteer-based catego-
rizations, although the latter can still be used to make the
total number of categories per service up to two if the ML
PR fails to classify any of a service’s documents or pro-
vides only one category, since it is more user-friendly for
us to provide approximate categorizations than none at all.
We have published elsewhere (?) the full technical details
and results of our ML experiments.

2.2.3. Approaches to ontology development and
population

One can develop and populate ontologies from GATE ap-
plications using the GATE Ontology API (?), and we have

5

used this technique in our SPRAT and SARDINE12 appli-
cations (?; ?), which use ontology design patterns to recog-
nize new concepts, instances, and properties, and add them
to the seed ontology (which can be empty) used to initial-
ize the application. The principal output of both applica-
tions is the extended ontology produced from a corpus of
documents. As an evaluated example, SPRAT processed
25 Wikipedia articles and produced 1058 classes, 659 sub-
classes, 23 instances, and 55 properties as output.
The CLOnE13 and RoundTrip Oontology Authoring soft-
ware (?; ?) developed and used in SEKT14 and NEPO-
MUK15, also used the GATE Ontology API.
In the Service-Finder and MUSING tasks, however, the on-
tologies’ class and property structures are fixed and our ap-
plications only need to create instances and property as-
sertions, specifically in RDF-XML (as requested by other
developers in the projects). The volume of data generated
is also much larger and more time-consuming (as shown
in Tables 1 and 3), so we use a template-filling technique
which requires relatively little memory.
We originally developed this GATE PR for generating
XML (principally RDF-XML) in the MUSING16 business
intelligence research project, and have used modified and
improved versions of it in Service-Finder and CLARIN17.
(A version of it will probably be integrated into GATE in
the future, once we have settled the list of configurable fea-
tures.) The PR’s configuration file consists mainly of a se-
ries of template specifications, as Figure 6 shows. Each en-
try lists the annotation features that are required for the tem-
plate to match, and the values of those features are substi-
tuted for the variables in the template. (The annotation can
have other features, which are ignored.) The PR’s output
for a matching annotation consists of the “filled-in” copy
of the element(s) in the template element. Figures 7
and 8 show the characteristics of a matching annotation
and the resulting XML snippet, respectively. (In addition to
the feature element, the entry can have a generated
specification, which names a variable for which a UUID
string is substituted. This is useful for generating unique
rdf:id values.)
When the configuration file is loaded (during initialization
of the PR), the order of the entries is preserved, so that
for each annotation, the first match is used. It is therefore
possible to use a template that requires an annotation with
three features, followed by a simpler template which re-
quires only two of the three (and uses a default value for
the third, for example); the first template will “fire” when-
ever all three features appear, but the PR will drop back
to the second one if the first does not match, and so on.
(Another version of this component takes a Map<String,
String> rather than a GATE Annotation; the voting PR gen-
erates the maps from the winning ballots and obtains the

12Semantic Pattern Recognition and Annotation Tool; Species
Annotation and Recognition and Indexing of Named Entities; both
developed in NeOn.

13Controlled Language for Ontology Editing.
14http://www.sekt-project.com/
15http://nepomuk.semanticdesktop.org/
16http://www.musing.eu/
17http://www.clarin.eu/

corresponding RDF-XML from this generator.)

2.3. Miscellaneous tools
We developed two other separate tools for the Service-
Finder AA. The archiving tool iterates through the docu-
ments in the GATE datastores after the analysis tool has
been run (leaving its annotations on the serialized doc-
uments) and produces Heritrix archives of the plain-text
content of “interesting” (see step 4 in §2.2) HTML and
PDF documents and selected strings from WSDLs and ab-
stracts; the CIM produces Lucene indexes from these files
to support keyword searches for services on the portal. The
quantitative evaluation tool loads the RDF-XML files into a
Sesame repository, executes a series of SERQL or SPARQL
queries specified in a control file, and produces an output
file containing the number of results for each query or a
list of those results (according to the specifications in the
control file).
To provide a datastore suitable for training the ML classi-
fier, we added extra features to the preprocessor (§2.1), ac-
tivated by additional command-line options, so that it reads
a file of manual category annotations (exported from the
CIM) as well as a set of archives from the SC and produces
a datastore containing only the documents related to the
manually annotated services, with document features rep-
resenting the categories. We also developed a pipeline for
training the classifier, which carries out steps 1 through 4 in
§2.2 and treats the annotated documents as instances, and
then saves the learned model for use in the complete inte-
grated analysis tool.

3. Conclusion
The immediate result of the development presented here
was its contribution to the successful completion of the Au-
tomatic Annotator tasks and their integration in the Service-
Finder project, which received good intermediate and final
project reviews. The relevant public deliverables (?; ?) de-
scribe the AA software in much greater detail. We evalu-
ated the AA software itself in two ways: IE measures (pre-
cision, recall, and F1) for the especially important and sci-
entifically interesting service categorization task, which we
present in detail elsewhere (?); and quantitative measures
of the instances and property assertions created at various
stages of development (?).
The broader results included the dissemination of GATE
as a tool for semantically annotating the results of focused
web crawling—in particular at a Future Internet Sympo-
sium tutorial on web service crawling and annotation (?),
where we demonstrated the suitability of the GATE Devel-
oper IDE and GATE Embedded library for rapid applica-
tion development and effective code re-use—and the devel-
opment of useful, reusable code shared with other projects
(NeOn, MUSING, and CLARIN).

4. Acknowledgements
This research is partially supported by the EU Sixth
Framework Program projects NeOn (IST-2005-027595)
and MUSING (FP6-027097) and the Seventh Framework
Program project Service-Finder (FP7-215876).

6

<?xml version="1.0" encoding="UTF-8"?>
<root xmlns:sfso="http://www.service-finder.eu/ontologies/ServiceOntology#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#" >

...
<entry id="provider_homepage_link">
<feature name="provider_URL" />
<feature name="homepage_link" />
<template>
<sfso:Provider rdf:about="${provider_URL}">

<sfso:hasHomepage rdf:datatype="xsd:string">${homepage_link}</sfso:hasHomepage>
</sfso:Provider>

</template>
</entry>
...
</root>

Figure 6: Excerpt from the RDF-XML template file. To match this template, at least the provider_URL and
homepage_link features must be provided.

Type Mention
Start and end offsets 117–121
Underlying text Home
Features doc_URL="http://www.serviceobjects.net/products/dots_phone_exchange_details.asp"

homepage_link="http://www.serviceobjects.net/default.asp"

provider_URL="http://seekda.com/providers/serviceobjects.com"

service_URL="http://seekda.com/providers/serviceobjects.com/DOTSPhoneExchange"

Figure 7: Annotation matching the template in Figure 6

5. References
S. Bird and M. Liberman. 1999. A Formal Frame-

work for Linguistic Annotation. Technical Re-
port MS-CIS-99-01, Department of Computer and
Information Science, University of Pennsylvania.
http://xxx.lanl.gov/abs/cs.CL/9903003.

K. Bontcheva, V. Tablan, D. Maynard, and H. Cunning-
ham. 2004. Evolving GATE to Meet New Challenges in
Language Engineering. Natural Language Engineering,
10(3/4):349—373.

S. Brockmans, M. Erdmann, and W. Schoch. 2008. Hy-
brid matchmaker and Service-Finder ontologies (alpha
release). Deliverable D4.2, Service-Finder Consortium.

Saartje Brockmans, Irene Celino, Dario Cerizza, Daniele
Dell’Aglio, Emanuele Della Valle, Michael Erdmann,
Adam Funk, Holger Lausen, and Nathalie Steinmetz.
2010. Final report on assessment of tests for beta release.
Deliverable D7.5, Service-Finder Consortium, January.

H. Cunningham, D. Maynard, K. Bontcheva, and V. Tablan.
2002. GATE: A Framework and Graphical Development
Environment for Robust NLP Tools and Applications. In
Proceedings of the 40th Anniversary Meeting of the As-
sociation for Computational Linguistics (ACL’02).

Brian Davis, Ahmad Ali Iqbal, Adam Funk, Valentin
Tablan, Kalina Bontcheva, Hamish Cunningham, and
Siegfried Handschuh. 2008. Roundtrip ontology author-
ing. In Proceedings of the 7th International Semantic
Web Conference (ISWC), Karlsruhe, Germany, October.

Emanuele Della Valle, Dario Cerizza, Irene Celino, Andrea

Turati, Holger Lausen, Nathalie Steinmetz, Michael Erd-
mann, and Adam Funk. 2008. Realizing Service-Finder:
Web service discovery at web scale. In European Seman-
tic Technology Conference (ESTC), Vienna, September.

A. Funk and K. Bontcheva. 2010. Ontology-based catego-
rization of web services with machine learning. In Pro-
ceedings of the seventh international conference on Lan-
guage Resources and Evaluation (LREC), Valetta, Malta,
May.

A. Funk, V. Tablan, K. Bontcheva, H. Cunningham,
B. Davis, and S. Handschuh. 2007. CLOnE: Con-
trolled Language for Ontology Editing. In Proceedings
of the 6th International Semantic Web Conference (ISWC
2007), Busan, Korea, November.

Adam Funk, Holger Lausen, and Nathalie Steinmetz.
2009a. Automatic semantic annotation component—
beta release. Deliverable D3.4, Service-Finder Consor-
tium, November.

Adam Funk, Holger Lausen, Nathalie Steinmetz, and
Kalina Bontcheva. 2009b. Automatic semantic anno-
tation research report—version 2. Deliverable D3.3,
Service-Finder Consortium, October.

R. Grishman. 1997. TIPSTER Architecture Design
Document Version 2.3. Technical report, DARPA.
http://www.itl.nist.gov/div894/894.02/-

related_projects/tipster/.
Y. Li, K. Bontcheva, and H. Cunningham. 2009. Adapting

SVM for Data Sparseness and Imbalance: A Case Study
on Information Extraction. Natural Language Engineer-
ing, 15(2):241–271.

7

<sfso:Provider rdf:about="http://seekda.com/providers/serviceobjects.com">
<sfso:hasHomepage

rdf:datatype="xsd:string">http://www.serviceobjects.com/default.asp
</sfso:hasHomepage>

</sfso:Provider>

Figure 8: RDF-XML snippet output produced from the template in Figure 6 and the annotation in Figure 7

D. Maynard, A. Funk, and W. Peters. 2009a. Nlp-based
support for ontology lifecycle development. In Work-
shop on Collaborative Construction, Management and
Linking of Structured Knowledge (CK 2009) at ISWC
2009, October.

D. Maynard, A. Funk, and W. Peters. 2009b. Using
lexico-syntactic ontology design patterns for ontology
creation and population. In Workshop on Ontology Pat-
terns (WOP 2009) at ISWC 2009, October.

R. Rivest. 1992. The MD5 message-digest algorithm.
RFC 1321, Internet Engineering Task Force, April.

Kristinn Sigurðsson, Michael Stack, and Igor Ranitovic.
2008. Heritrix user manual. Software documentation,
Internet Archive.

N. Steinmetz, A. Funk, and M. Maleshkova. 2009. Web
service crawling and annotation (tutorial). In Future In-
ternet Symposium (FIS 2009), September.

8

Building the Scientific Knowledge Mine (SciKnowMine1): a community-driven
framework for text mining tools in direct service to biocuration

Cartic Ramakrishnan3, William A. Baumgartner Jr.1, Judith A. Blake2, Gully APC Burns3, K.
Bretonnel Cohen1, Harold Drabkin2, Janan Eppig2, Eduard Hovy3, Chun-Nan Hsu3,

Lawrence E. Hunter1, Tommy Ingulfsen3, Hiroaki 'Rocky' Onda2, Sandeep Pokkunuri4, Ellen
Riloff4, Christophe Roeder1, Karin Verspoor1

Affiliation information:

1 University of Colorado Denver, PO Box 6511, MS 8303, Aurora, CO 80045, USA
2 The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine 04609 USA

3Information Sciences Institute, 4676 Admiralty Way, Marina del Rey, CA 90292, USA
4 University of Utah, 50 S. Central Campus Drive, Rm 3190 MEB, Salt Lake City, UT 84112-9205

E-mail: cartic@isi.edu, William.Baumgartner@ucdenver.edu, judith.blake@jax.org, gully@usc.edu,

kevin.cohen@gmail.com, hjd@informatics.jax.org, jte@informatics.jax.org, hovy@isi.edu, chunnan@isi.edu,
Larry.Hunter@ucdenver.edu, tommying@isi.edu, honda@informatics.jax.org, sandeepp@cs.utah.edu,

riloff@cs.utah.edu, Chris.Roeder@ucdenver.edu, Karin.Verspoor@ucdenver.edu

Abstract

Although there exist many high-performing text-mining tools to address literature biocuration (populating biomedical databases
from the published literature), the challenge of delivering effective computational support for curation of large-scale biomedical
databases is still unsolved. We describe a community-driven solution (the SciKnowMine Project) implemented using the
Unstructured Information Management Architecture (UIMA) framework. This system's design is intended to provide knowledge
engineering enhancement of pre-existing biocuration systems by providing a large-scale text-processing pipeline bringing together
multiple Natural Language Processing (NLP) toolsets for use within well-defined biocuration tasks. By working closely with
biocurators at the Mouse Genome Informatics2 (MGI) group at The Jackson Laboratory in the context of their everyday work, we
break down the biocuration workflow into components and isolate specific targeted elements to provide maximum impact. We
envisage a system for classifying documents based on a series of increasingly specific classifiers, starting with very simple
surface-level decision criteria and gradually introducing more sophisticated techniques. This classification pipeline will be applied to
the task of identifying papers of interest to mouse genetics (primary MGI document triage), thus facilitating the input of documents
into the MGI curation pipeline. We also describe other biocuration challenges (gene normalization) and how our NLP-framework
based approach could be applied to them.

1 The SciKnowMine project is funded by NSF grant #0849977 and supported by U24 RR025736-01, NIGMS:
RO1-GM083871, NLM: 2R01LM009254, NLM:2R01LM008111, NLM:1R01LM010120-01, NHGRI:5P41HG000330
2 http://www.informatics.jax.org

1. Introduction
In biomedical research, organizations such as the NIH
funded model organism databases or the Cochrane
Collaboration systematically scan, read, evaluate and
organize the published literature to provide formally
structured resources that summarize individual fields of
research. This effort, termed 'literature biocuration', is
widely recognized as important to the scientific
community (Bourne et al. 2006), and the promise that
text-mining systems will be able to assist biocuration is
long standing and well supported (Rebholz-Schuhmann
et al. 2005).

Although suitable natural language processing
(NLP) methods that can support biocuration (Hersh et al.
2005) exist, we assert that authentic computational
support for biocuration work has not yet been delivered
to the places where it is most needed. In this position
paper, we describe the possible role that a
framework-based approach might play in accomplishing
this goal. In collaboration with the Mouse Genome

Informatics group (MGI) (Bult et al. 2010), we seek to
provide the necessary scalable computational support to
speed up MGI biocuration. Every month, the biocuration
staff process the contents of roughly 200 separate
scientific journals in order to determine if each paper
needs to be read in more depth or can be discarded as
irrelevant to MGI's mission (this process is known as
'document triage'). Despite some success in measures of
utility, systems developed in shared evaluations (Hersh,
Cohen et al. 2005) have not been incorporated into the
MGI curation workflow. We describe a
community-based cyberinfrastructure project (called
'SciKnowMine') specifically designed to accelerate
biocuration.

2. Goals of BioNLP development
Biomedical NLP (BioNLP) development should involve
the creation of novel algorithms, systems and solutions
that satisfy well-established global metrics. Such metrics
permit the community to evaluate which methods are the
most effective for a given task (as it does now).

9

Figure 1 High-level design of SciKnowMine

We argue that this is not enough. It is essential that there
exist a practical methodology for these systems to be
used in-situ within biomedical databases' biocuration
teams. There are a variety of individual components with
similar high-level functions (e.g., the classification of
text spans within documents) from different research
groups. Examples of such tools are the NCBO Annotator
(Jonquet et al. 2009) that enables annotation of arbitrary
concepts in text from existing biomedical ontologies,
GOPubMed which organizes PubMed abstracts
according to MeSH and Gene Ontology terms contained
within them (Doms et al. 2005), the proprietary
ProMiner system for terminology recognition in text
(Hanisch et al. 2005), and the TextPresso system which
recognizes terms based on regular expression (Müller et
al. 2004). While each of these tools is potentially useful,
various challenges have been encountered when trying to
integrate them into a biocuration workflow, ranging from
technical or licensing difficulties to inherent limitations
in the applicability of the tools to the relevant full-text
publications the biocurators work with.
 A reliable middleware infrastructure providing a
common platform where different components can easily
be deployed together to develop a complete tool for an
individual biocuraton task is therefore necessary.

The infrastructure used to support community
evaluations is closely related to this idea, since these
similar components must run on a shared system in order

to be compared accurately. For example, the BioCreative
meta-server3 (Leitner et al. 2008) and the U-compare
framework4 (Kano et al. 2009) used in the BioNLP’09
evaluation each provide a mechanism for evaluating
multiple systems against a common task, However, it
has been recently argued that systems that perform well
in tasks with intrinsic measures (such as F-Score,
Precision and Recall) do not necessarily accelerate
biocuration (Alex et al. 2008; Caporaso et al. 2008). This
situation is being addressed in future evaluations (such as
the BioCreative III workshop), but this raises the
question of how performance can be measured. Extrinsic
measures require direct measurement of usefulness
within the context of a real-world use case whereas
evaluation measures used in these shared tasks must be a
computable substitute for the 'true measure'. In
developing such a measure, it is therefore imperative that,
at some stage, these systems are made to run within the
direct context of a live biocuration task in a biomedical
database.

 A crucial barrier to success in this project is access
to the full text biomedical literature for automated
processing (Dowell et al. 2009). Although electronic
access to individual publications is widely available
through resources such as the National Library of
Medicine's PubMedCentral and commercial subscription

3 http://bcms.bioinfo.cnio.es/
4 http://u-compare.org/bionlp2009.html

10

servers such as Elsevier ScienceDirect®, these
mechanisms do not provide bulk access to entire
collections, as is necessary for automated processing of
the full range of publications relevant to biocuration.
Attempts to use APIs or web interfaces to get systematic
access to entire collections are blocked, despite the
apparent rights of subscribers, or in the case of
PubMedCentral, the public, to this material. A critical
need is to reconcile the requirements for automated
processing of publications in bulk with the concerns and
technological capabilities of publishers and the National
Library of Medicine. Our approach of reusing existing
NLP components as open-source software for use by the
BioNLP community will make NLP expertise available
for publishers who would otherwise not have access to
this technology. Since access to full-text articles for
these text-mining efforts is a stumbling block,
discussions regarding these issues are underway with
Elsevier labs. We are building a single demonstration
implementation that can produce measurable
acceleration of the biocuration process at MGI coupled
with active development of novel NLP technology. This
work requires a collaborative effort between multiple
groups (U. Colorado, USC ISI, U. Utah and JAX).

3. Goals of BioNLP development
SciKnowMine is a large-scale text-processing pipeline
based on the BioNLP-UIMA project (Baumgartner et al.
2008). UIMA is the Unstructured Information
Management Architecture (Ferrucci et al. 2004), and is
available as an Apache open source project. As shown in
Figure 1, SciKnowMine brings together multiple
BioNLP toolsets in a UIMA implementation. UIMA
provides a way of defining ‘Collection Processing
Engines’ (CPEs). Each CPE is defined in a three stage
cascade consisting of a ‘Collection Reader’ (which
iterates over documents to initiate processing), a series of
‘Analysis Engines’ (which add meta-data, often in the
form of text annotations, to the CAS or ‘Common
Analysis Structure’ UIMA document representation),
and finally a ‘CAS Consumer’ (which formats the final
CAS data and writes it to output). The first step of our
processing is designed to upload remote files, store them
locally, execute a set of standard preprocessing tasks (e.g.
tokenization, sentence splitting, etc.) and then store a
local set of partially annotated data. We propose to wrap
several different implementations of these standard
preprocessing tasks as AEs (see also Section 3.4). We
will then develop a library of CPEs specifically tailored
for biocuration tasks that operate on this set of
pre-annotated texts. These CPEs will be made available
as web-services that specifically deliver biocuration
functionality to end-user systems in a structured way.
Our objectives are to prototype, develop and scale up this
infrastructure in order to convert the entire primary
research literature into an online resource that can then
be uniformly accessed by both BioNLP researchers and
biocuration teams, enabling the development of powerful
new accelerated methods of biocuration.

3.1 A Repository of UIMA Analysis Engines
SciKnowMine takes a community-centered approach to
building its biocuration workflows. We use publicly
available tools when applicable and construct new tools
when needed and release these new tools as open source
software. We take advantage of existing public
repositories containing UIMA components including (1)
the BioNLP-UIMA framework (2) resources from the
Julie lab5 (3) the UIMA sandbox and (4) U-Compare
(Kano, Baumgartner et al. 2009). Every UIMA
component is dependent on a defined set of data types
that are specified by that component's 'type system'. One
challenge is that we must integrate across multiple
UIMA type systems since components that use different
type systems cannot work with each other. The
SciKnowMine infrastructure uses a generic,
domain-independent type system capable of expressing
the wide range of types necessary to support biocuration
(Verspoor et al. 2009). It is easily adaptable to external
type systems, and is already compatible with U-Compare.
With this approach, as SciKnowMine progresses, it will
not only result in a series of biocuration workflows, but
will also amass a collection of UIMA components
compatible with a single type system that could be made
publicly available.

Almost all the components discussed in this paper
already exist, mostly taken from well-known external
resources. Our planned contribution is assembling them
into a single framework and extending the modules
where necessary to obtain a useful, scalable and seamless
end-to-end support system for MGI. This will be made
available to the MGI biocuration team as a web service.
We will make public Collection Processing Engines
(CPEs) for certain exemplar text processing tasks along
with the component Analysis Engines (AE) and
collection readers for such tasks. These will serve as
templates for the community to deploy and test their
implementations of individual AEs on a large corpus of
biomedical text relevant to focused biomedical research
groups like MGI.

3.2 Scaling up SciKnowMine
We will explore three ways to scale up processing in
order to meet the goal of analyzing large collections of
text in reasonable amount of time. Methods for scaling
up UIMA processing range from adding more threads to
the CPE processor (the Collection Processing Manager,
CPM), to scaling out to more hardware using UIMA-AS,
to Hadoop cloud computing6. Given a large,
shared-memory, multi-processor machine, a lot can be
accomplished by specifying more threads in a CPE. The
pipeline’s primary data structure, the CAS, is shared
between engines in memory. Running more than one
instance of the pipeline allows for parallel execution of
each engine, including any relatively slow engines. As a
scaling method in UIMA, this is effective, but limited.

5 http://www.julielab.de/Resources/Software
6 http://hadoop.apache.org

11

Each engine in the pipeline is duplicated for each thread,
so engines that consume a large amount of memory
would also be duplicated.

Since the discrete nature of document processing
allows for independent processing, a small cluster of
single CPU, multi-core machines can be as effective as a
single more powerful shared-memory machine, at a
fraction of the cost. Using UIMA-AS (Asynchronous
Scale-out) allows different analysis engines from a single
CPE to be located on different machines. In this way,
slow engines that need multiple instances can be
duplicated, while faster engines can be run with single
instances with engines connected through the use of
message queues. This allows for asynchronous access
and makes distributing work and collecting results easy.
UIMA has been adapted to Hadoop, a MapReduce (Dean
et al. 2004) implementation, in a project called
Behemoth7. It makes use of UIMA Processing Engine
Archive (PEAR) packaging so that Hadoop and the
Hadoop Distributed File System (HDFS) can manage
distributing the code and data files across a much larger
cluster. Not everyone has access to thousands of nodes,
but Hadoop cluster time is available for rent on
Amazon's Elastic Compute Cloud (EC2) 8 as Elastic
MapReduce9. The economics make it worth considering.

3.3 Access to PDF content
Given the ubiquity and familiarity of PDF documents,
building effective methods for extracting and processing
text from PDF files is a high priority. We use a
combination of machine-learning and rule-based
approaches to render and extract text as a UIMA
Collection Reader. This approach is an open-source
component that has been used in text mining studies of
neuroanatomical experiments (Burns et al. 2007). We
plan to make this PDF extraction technology available as
an open-source UIMA analysis engine.

3.4 Incorporating new NLP research
We intend to incorporate novel NLP approaches into our
system by using UIMA as a central representational
framework and working with NLP researchers to build
methods to wrap their tools as UIMA components. We
follow the general approach of having each NLP system
produce annotations that are attached to the text(s) in
appropriate places, resulting in a steady accretion of
information within and around each text. We follow the
stand-off model of annotation which is inherent to the
UIMA data structures. Annotations produced by multiple
components – even annotations of the same type, e.g.
different tokenizations or gene mention annotations –
can exist in parallel and be made available for
downstream analysis. Each downstream component can
choose to use whichever annotations it believes to be the
most useful for its task, perhaps even using multiple sets

7 http://code.google.com/p/behemoth-pebble
8 http://aws.amazon.com/ec2/
9 http://aws.amazon.com/elasticmapreduce/

of annotations of the same kind (e.g., a component could
utilize the annotations produced by three different named
entity recognizers to maximize coverage).

4. Knowledge Engineering Study of the
MGI Biocuration Workflow

A key feature of this project is our approach to
understanding the biocuration workflow being used at
MGI. This approach is modeled loosely after the
CommonKADS methodology (Schreiber et al. 1999).
Using the UIMA framework it is possible to deploy an
automated biocuration engine with relative ease.
However, given the well-known shortcomings of
automating biocuration shown in previous work, we plan
to use the system as a human aide, and thus to integrate it
with the human curators' workflow. In order to
minimally disrupt the existing well-honed procedures
and to obtain as much guidance for automated processing
as possible, this integration requires careful
consideration of several issues.
• At which point during the manual biocuration

should the intermediate results of automated
curation be made known to the biocurators?

• How should the system inform the biocurator of
these results so as to be least intrusive?

These issues have motivated us to conduct studies in
modeling workflows of manual biocuration. We used
UML 2.0 activity diagrams to model the activities of
different curator teams to extract information from the
literature. Although this approach is not strictly formal, it
does provide a useful framework for exploring questions
such as: 'Which tasks take the longest?’ 'Where are the
most prominent curation bottlenecks?’ Our preliminary
investigations have helped us identify three MGI
curation operations that are candidates for acceleration
via computational support.

4.1 MGI Triage Automation Tools
We view the triage task as a document classification task
that ranks documents in order of likelihood of interest for
further analysis. Biocurators can then vary parameters to
learn how they characterize the likelihood thresholds to
include documents in the system or not. Our approach is
to build a series of increasingly specific classifiers,
starting with very simple surface-level decision criteria
and gradually introducing more sophisticated NLP. The
current baseline is that a document is included if it
contains the words mouse, mice or murine (unless the
words appear in the Bibliography section only).
Subsequent levels involve setting zone-specific
classification decisions (such as the presence of 'stigma
words' within methods sections, etc.), the use of word
combinations (bigrams, trigrams, etc.) in these decisions,
the use of topic model signatures derived from language
modeling, and at the highest level the development of
structured linguistic information extraction frames. In
keeping with our objective of minimal disruption of the
manual biocuration process, our automated triage system
will rank the documents downloaded and provide for

12

each one its classification suggestion(s), together with an
indication of its confidence. Human curators will use this
to determine the confidence level at which the system’s
judgments are trustworthy.

4.2 Gene Normalization Tools
'Gene normalization' refers to a mapping of mentions of
genes or proteins in text to an appropriate database
identifier. This is challenging due to species ambiguity
in the text (genes in different organisms often share
names) and the widespread use of acronyms and
abbreviations. Solutions to this problem could be
integrated into a biocuration process to help curators
assess the relevance of a particular paper to their target
area, as well as focus the curator’s attention to specific
parts of the text that mention particular genes. Gene
normalization has been the focus of several recent
challenge tasks in BioCreative II (Krallinger et al. 2008)
and II.5 (Mardis et al. 2009). The state-of-the-art
performance is currently achieved by the GNAT system
(Hakenberg et al. 2008). Currently, MGI is incorporating
gene normalization tools independently of the triage
process. Our task would be to incorporate such a tool
into the triage task.

4.3 Event Recognition Tools
Protein-protein interactions have been the most common
candidate for biological event extraction from the earliest
studies (Blaschke et al. 1999; Craven et al. 1999), to the
latest competitions like BioCreative II and II.5. Research
has also extended to other types including those focused
on in the recent BioNLP’09 challenge (Kim et al. 2009):
(a) gene expression, (b) transcription, (c) protein
catabolism, (d) protein localization, (e) binding, (f)
phosphorylation, (g) regulation, (h) positive regulation,
and (i) negative regulation. The needs of MGI will
require extension to novel composite semantic types,
such as 'phenotype'. Phenotypes are observable attributes
of an organism caused by myriad underlying factors.
Identifying them requires extracting information on
chromosomal locations, polymorphisms, Gene Ontology
terms, protein domains, and experimental assays; all of
these information extraction tasks are either novel or
demonstrably difficult but if solved, could have a large
impact. We have begun experiments with information
extraction pattern learning (Riloff 1996) in order to
address some of these tasks.

5. Conclusion
The work described in this paper is currently in the
preliminary stages. We have collected a representative
corpus of documents to serve as training data for
classifiers within the biocuration pipeline, and begun the
design of the classifier. We have also engaged the MGI
biocurators in a requirement elicitation process to build
models of their workflows. Experiments are also
underway to tune our PDF extraction system to extract
text from the MGI journals.

We have described a fundamental (even formative)
unsolved challenge in the field of BioNLP and present a

community driven approach that directly leverages NLP
Frameworks to solve it. SciKnowMine is an effort to
leverage the BioNLP community's expertise to solve that
challenge in a general way that can be used across
different biocuration systems.

6. References
Alex, B., C. Grover, et al. (2008). "Assisted curation:

does text mining really help?" Pacific Symposium
Biocomputing: 556-67.

Baumgartner, W., B. Cohen, et al. (2008). "An
open-source framework for large-scale, flexible
evaluation of biomedical text mining systems."
Journal of Biomedical Discovery and Collaboration 3:
1.

Blake, J., J. Eppig, et al. (2006). "The Mouse Genome
Database (MGD): updates and enhancements."
Nucleic Acids Research 34(suppl_1): D562-567.

Blaschke, C., M. A. Andrade, et al. (1999). "Automatic
extraction of biological information from scientific
text: protein-protein interactions." ISMB: 60-67.

Bourne, P. E. and J. McEntyre (2006). "Biocurators:
contributors to the world of science." PLoS
Computational Biology 2(10): e142.

Bult, C. J., J. A. Kadin, et al. (2010). "The Mouse
Genome Database: enhancements and updates."
Nucleic Acids Research 38(Database issue): D586-92.

Burns, G., D. Feng, et al. (2007). Infrastructure for
Annotation-Driven Information Extraction from the
Primary Scientific Literature: Principles and Practice.
1st IEEE Intl. Workshop on Service Oriented
Technologies for Biological Databases and Tools
(SOBDAT 2007), Salt-Lake City.

Caporaso, J. G., N. Deshpande, et al. (2008). "Intrinsic
evaluation of text mining tools may not predict
performance on realistic tasks." Pacific Symposium
Biocomputing: 640-51.

Clement Jonquet, Nigam H. Shah, Mark A. Musen, The
Open Biomedical Annotator, AMIA Summit on
Translational Bioinformatics, p. 56-60, March 2009,
San Francisco, CA, USA.

Craven, M. and J. Kumlien (1999). Constructing
biological knowledge-bases by extracting information
from text sources. Proceedings of the Seventh ISMB.

Dean, J. and S. Ghemawat (2004). MapReduce:
Simplified Data Processing on Large Clusters. OSDI
2004.

Doms, A. and M. Schroeder (2005). "GoPubMed:
exploring PubMed with the Gene Ontology." Nucleic
Acids Research 33(suppl_2): W783-786.

Dowell, K. G., M. S. McAndrews-Hill, et al. (2009).
"Integrating text mining into the MGI biocuration
workflow." Database : The Journal of biological
databases and curation 2009(0).

Ferrucci, D. and A. Lally (2004). "Building an example
application with the unstructured information
management architecture." IBM Syst. J. 43(3):
455-475.

Hakenberg, J., C. Plake, et al. (2008). "Inter-species
normalization of gene mentions with GNAT."
Bioinformatics 24(16): i126-132.

Hanisch, D., K. Fundel, et al. (2005). "ProMiner:
rule-based protein and gene entity recognition." BMC
Bioinformatics 6(Suppl 1): S14.

13

Hersh, W., A. Cohen, et al. (2005). "TREC 2005
Genomics Track Overview."

Kano, Y., W. Baumgartner, et al. (2009). "U-Compare:
share and compare text mining tools with UIMA."
Bioinformatics 25(15): 1997-1998.

Kim, J.-D., T. Ohta, et al. (2009). Overview of
BioNLP'09 shared task on event extraction.
Proceedings of the Workshop on BioNLP: Shared
Task. Boulder, Colorado, ACL.: 1-9.

Krallinger, M., A. Morgan, et al. (2008). "Evaluation of
text-mining systems for biology: overview of the
Second BioCreative community challenge." Genome
Biology 9(Suppl 2).

Leitner, F., M. Krallinger, et al. (2008). "Introducing
meta-services for biomedical information extraction."
Genome Biology 9(Suppl 2): S6.

Müller, H.-M., E. Kenny, et al. (2004). "Textpresso: An
Ontology-Based Information Retrieval and Extraction
System for Biological Literature." PLoS Biol 2(11):
e309

Mardis, S., F. Leitner, et al. (2009). BioCreative II.5:
Evaluation and ensemble system

Rebholz-Schuhmann, D., H. Kirsch, et al. (2005). "Facts
from text--is text mining ready to deliver?" PLoS Biol
3(2): e65.

Riloff, E. (1996). Automatically Generating Extraction
Patterns from Untagged Text. (AAAI-96), 1996, pp.
1044-1049.

Schreiber, G., H. Akkermans, et al. (1999). Knowledge
Engineering and Management: The CommonKADS
Methodology, {The MIT Press}.

Verspoor, K., W. Baumgartner, et al. (2009). Abstracting
the Types away from a UIMA Type System. From
Form to Meaning: Processing Texts Automatically. C.
Chiarcos, Eckhart de Castilho, Stede, M.: 249-256.

14

JULIE Lab’s UIMA Collection Reader for WIKIPEDIA

Elena Beisswanger Udo Hahn

Jena University Language & Information Engineering (JULIE) Lab
Friedrich-Schiller-Universität Jena

Fürstengraben 30, 07743 Jena, Germany

{elena.beisswanger|udo.hahn}@uni-jena.de

Abstract
WIKIPEDIA, a huge, collaboratively built Web encyclopedia, is gaining increasing importance as a lexico-semantic resource for a large
variety of natural language processing tasks. However, other than ‘well-defined’ and pre-formatted resources such as WORDNET, the
ease of usability of its articles for text analytics is severely hampered due to underspecified document structure descriptions. To overcome
this shortcoming, we here introduce a JAVA-based collection reader for WIKIPEDIA articles that is fully integrated in the Unstructured
Information Management Architecture (UIMA). It imports articles from a WIKIPEDIA database, parses their raw text, composes a
cleansed document text version and retains the original document structure in terms of UIMA annotations. We describe the structure and
design of the WIKIPEDIA Reader and introduce the tools we incorporated, viz. UKP Lab’s JWPLDataMachine for setting up the database
and the JWPL parser for parsing the wiki markup. In addition, we briefly introduce a scheduling system (in which the WIKIPEDIA

Reader is integrated) that enables running several NLP pipelines in parallel, each with its own instance of the reader.

1. Introduction
In this resource-greedy age of human language technol-
ogy, we currently witness a move from first-generation re-
sources (often small, yet carefully crafted by guideline-
trained linguistic and domain experts) to second-generation
resources. These are hosted on the Web, typically huge,
and – according to the Web 2.0 spirit – collaboratively pro-
duced by a crowd of people with varying professional train-
ing background and domain competence, without strictly
adhering to agreed-upon quality standards.
This move holds, in particular, for semantic resources.
After years of exploitation of lexical resources from the
WORDNET family1 for a plethora of NLP tasks lots of
language engineers, additionally, are considering Web re-
sources such as WIKIPEDIA2 as an information-rich and
large-coverage alternative. The tasks being dealt with are
also pretty diverse, ranging from text categorization (Janik
and Kochut, 2008) and grading semantic relatedness be-
tween texts (Gabrilovich and Markovitch, 2009) to large-
scale taxonomy learning (Ponzetto and Strube, 2007) using
WIKIPEDIA.
While WORDNET comes as a structured lexicon database,
with short definitional phrases (glosses) and explicit se-
mantic relations (synonymy, hyponymy, partonymy, etc.),
WIKIPEDIA can be characterized as a set of Web docu-
ments forming a hyperlinked encyclopedia, whose seman-
tic ties are far less evident and uniform. Either they are
made explicit through links between pages or descriptor
categories manually assigned to pages, or they are im-
plicitly buried in the full text body of an article (which,
apart from tables and table-style WIKIPEDIA infoboxes,
lacks further structure). Still, from a content perspec-
tive, WIKIPEDIA articles compared with WORDNET en-
tries seem richer, broader and deeper in thematic scope and
are certainly more up to date.

1http://wordnet.princeton.edu/
2http://www.wikipedia.org/

Yet, there is no free lunch – WIKIPEDIA articles require an
in-depth NLP analysis to make use of this implicit contents,
semantic relations going beyond plain category labels, in
particular. Even more, prior to making use of the informa-
tion contained in WIKIPEDIA articles they have to be refor-
matted such that the original wiki markup with embedded
hyperlinks is converted into a structurally richer text format
that can then be submitted to linguistic analytics.
In this paper, we deal with such a document converter, a
collection reader in UIMA speech.

2. WIKIPEDIA
2.1. WIKIPEDIA Features
WIKIPEDIA is a non-profit, multilingual, Web-based en-
cyclopedia supported by the Wikimedia Foundation. Cur-
rently, 272 official WIKIPEDIAs exist, each written in a dif-
ferent natural language, also differing considerably in size,
scope and quality. WIKIPEDIA articles are collaboratively
written and updated by members of the Web community,
with some authoring policies in mind to which all collabo-
rators should commit (e.g., the neutrality of views and plu-
rality of opinions), and with authoritative editors resolving
conflicts and generating some level of consensus.3

WIKIPEDIA is a hypermedia system which allows to in-
tegrate additional media types into an article and to com-
plement plain text by tables, figures, etc. It also provides
means for cross-linking articles. At a meta level of con-
tent description, the articles may (but need not necessarily)
contain user defined descriptor categories intended to se-
mantically describe the field or topics an article deals with.
The English WIKIPEDIA is by far the largest one, with
over 3 million article pages, tagged with around 500,000
different content categories, followed by the German
WIKIPEDIA with over 1 million articles. WIKIPEDIA is
rapidly growing, day by day, and due to the vast number

3See, for example, http://meta.wikimedia.org/wiki/
Wikimedia_principles

15

of active users and collaborators is up to date at a level un-
matched so far in the encyclopedic domain.

2.2. WIKIPEDIA Challenges
Given these editorial principles and the distribution of re-
sponsibilities among many authors, WIKIPEDIA also inher-
its some technical challenges and even suffers from obvious
pitfalls. Below we summarize them from a technical, a lin-
guistic and a content quality perspective and we describe
how our WIKIPEDIA Reader copes with them.
Technically, WIKIPEDIA articles adhere to the (idiosyn-
cratic) MEDIAWIKI syntax. Since it lacks a clear formal
definition and, meanwhile, numerous extensions have been
defined, the development of full-coverage parsers is intrin-
sically difficult. This distinguishes WIKIPEDIA sources
from ones in fairly common data formats such as XML,
where the user community enjoys much more reliable, fully
operational high-performance document parsers.
In the implementation phase for our WIKIPEDIA Reader,
we decided on purpose against using the only full-text
parser for wiki markup that we know about, the PHP-based
parser of the MEDIAWIKI project itself, since it suffers
from “labyrinthine code”4 and is known for being quite
slow. Instead, we chose the JWPL parser5 developed by the
Ubiquitous Knowledge Processing (UKP) Lab at Techni-
sche Universität Darmstadt. It is a lightweight, JAVA-based
parser with reasonable performance that represents the wiki
markup structure in terms of JAVA objects. However, we
had to modify and enhance the parser to serve our needs.
Most WIKIPEDIA articles contain textual content in differ-
ent formats – paragraphs of text, but also lists, caption head-
ings, tables, and MEDIAWIKI templates. Hence, from a
linguistic perspective, one not only encounters (sometimes
very complex and long) sentences but also noun phrases
or even just lists of keywords. Considering all these vari-
eties of utterances puts high demands on NLP-style syntac-
tic analytics. To alleviate this issue, the WIKIPEDIA Reader
omits potentially problematic stretches of text originating
from templates. It may also be configured to skip table bod-
ies, too (keeping only the table captions though), by setting
the descriptor parameter SkipTableContents to true.
With regard to WIKIPEDIA contents, one has also got to be
selective. Within one WIKIPEDIA article, sections differ as
to the relevance for further analysis. There are a number
of section types that one might reasonably want to exclude
systematically from content-oriented analysis. Thus we in-
troduced the descriptor parameter SectionsToSkip allow-
ing for a customized list of designators of sections to be
excluded, such as “References”, “External links”, “Further
readings”, “See also”, or “Footnotes”. Also different names
for the same type of section to be skipped may be listed,
such as “References”, “Bibliography” or “Literature” for
the reference section.
Besides proper article pages, WIKIPEDIA also contains so-
called disambiguation pages which help distinguish be-
tween different topics that share a common name. They

4http://www.mediawiki.org/wiki/Alternative_

parsers
5http://www.ukp.tu-darmstadt.de/software/jwpl/

jwpl-parser/

mainly consist of links redirecting to the appropriate arti-
cle pages. To let the reader skip disambiguation pages the
configuration parameter OnlyArticles is required.
WIKIPEDIA contains a particularly high proportion of ar-
ticles dealing with popular culture (music, movies, artists,
actors, etc.). Running an NLP pipeline on the whole of
WIKIPEDIA might, therefore, introduce an unwarranted
bias in the analysis results. One might also specu-
late whether this abundance of culture-specific issues and
names will increase the likelihood of additional lexical
ambiguities. To intentionally restrict the input of the
WIKIPEDIA Reader to a subset of WIKIPEDIA the cor-
responding article pages must be marked in the database
from which the WIKIPEDIA Reader solicits its data (see
the WIKIPEDIA Reader documentation). Alternatively, es-
pecially for defining smaller fractions of WIKIPEDIA, the
configuration parameters PageList and CategoryList can
be used (see Section 4.3.).
Notwithstanding the concerns raised above, the varying
quality of WIKIPEDIA articles with respects to cover-
age, granularity, category assignment, trustworthiness, lan-
guage, layout and style, remains a fundamental problem
that we cannot address further since it is clearly beyond the
scope of our WIKIPEDIA Reader.

3. UIMA
The Unstructured Information Management Architecture6

(UIMA) is a middleware platform for structuring unstruc-
tured data such as natural language, images, movies or mu-
sic via some analysis pipeline (Ferrucci and Lally, 2004).
The structures being assigned by such analytics are meta-
data, so-called annotations.
In UIMA pipelines, two major types of components are dis-
tinguished. First, Collection Readers account for the input
data being processed by importing documents from a re-
mote repository and representing them in a UIMA-internal
data structure, the Common Analysis Structure (CAS). The
CAS is the central data structure through which all UIMA
components communicate. Second, Analysis Engines per-
form the actual structure-building analysis (such as, for
NLP tasks, tokenization, POS tagging or parsing) by cre-
ating annotations and adding them to the CAS. Which an-
notation types a UIMA component can create depends on
the type system(s) being used. Analysis components work
on a per CAS basis. Yet, UIMA provides additional support
for applying analysis components to data collections.

4. WIKIPEDIA Reader
The WIKIPEDIA Reader is designed as a UIMA collection
reader, i.e., it implements the UIMA org.apache.uima.-
collection.CollectionReader interface. In procedu-
ral terms, it reads WIKIPEDIA pages from a database (see
Section 4.4.), preprocesses the raw page text (see Sec-
tion 4.2.), parses it, composes the markup-free document
text, creates annotations marking text fractions as para-
graph, list, caption, etc., and adds the document text to-
gether with the annotations to a new CAS (see Section 4.1.).
The CAS becomes the UIMA internal representation of the

6http://incubator.apache.org/uima/

16

Parameter Data Type Description Mandatory Default
DataBaseServerURL String database server URL yes -
DataBase String name of the database yes -
DataBaseUser String database user name yes -
DataBasePassword String database user password yes -
DataBaseDriver String database driver no com.mysql.jdbc.Driver

BatchSize Integer number of documents fetched from
the DB at once

no 100

OnlyArticles Boolean omit disambiguation pages no true
PageList String list pages to be considered no -
CategoryList String list categories to be considered no -
ImageIdentifiers String list WIKIPEDIA image identifiers no “Image”
CategoryIdentifiers String list WIKIPEDIA category identifiers no “Category”
SkipTableContents Boolean omit table contents, while keeping

the captions
no true

SectionsToSkip String list omit listed sections no “References”, “Footnotes”,
etc. (see documentation)

Language String language of the WIKIPEDIA used no “en”
AddMetaData Boolean create descriptor annotation no false

Table 1: WIKIPEDIA Reader configuration parameters.

WIKIPEDIA page. The reader is configurable via an XML
descriptor (see Section 4.3.).

4.1. From WIKIPEDIA Pages to CASes
To create a UIMA-internal representation of a WIKIPEDIA
page, our WIKIPEDIA Reader traverses through the follow-
ing steps subsequently discussed in more detail:

• Retrieve page from the WIKIPEDIA database.

• Create header and descriptor annotations.

• Parse the wiki markup of the page.

• Compose the document text.

• Create annotations for text segments and links.

First of all, the page information (id, text, meta informa-
tion) is retrieved from the database. Second, a header an-
notation is created, including the page id, page type (article
or disambiguation page), the title of the page, and the lan-
guage of the chosen WIKIPEDIA article. If the value of
the configuration parameter addMetaData has been set to
true, a descriptor annotation is created providing meta in-
formation about the page, such as the category labels the
page is tagged with. Next, the WIKIPEDIA Reader parses
the wiki markup of the page. The parser outputs JAVA ob-
jects corresponding to the different content items of the
WIKIPEDIA page (sections, paragraphs, lists, tables, and
image captions). Then content items are handled in consec-
utive order. From each item the text is extracted, cleansed
(see Section 4.2.) and added to the CAS document text.
If the parameter SkipTableContents is switched on, ta-
ble bodies are omitted and only table captions are consid-
ered. To preserve the information from which content item
a particular text fragment has been derived from, an appro-
priate UIMA annotation is attached to it. The annotation
types being used are defined in an extended version of the
JULIE Lab type system (Hahn et al., 2007). For example,

to the text derived from a paragraph an annotation of type
de.julielab.jules.types.Paragraph is attached. In
addition, for all WIKIPEDIA internal links occurring in
any of the text segments de.julielab.jules.types.-
wikipedia.Link annotations are created holding the link
target as value of the target feature.

4.2. Text Cleansing
To render a properly processable document text to subse-
quent text analytics the WIKIPEDIA Reader processes the
WIKIPEDIA page text prior to and after parsing.
Parsing MEDIAWIKI documents is a tricky job. Besides the
proper MEDIAWIKI markup elements, also some HTML
tags are contained. In addition, numerous extensions to the
MEDIAWIKI syntax have been developed, some of them
defining their own XML tags. The parser the WIKIPEDIA
Reader incorporates has limited abilities to deal with XML
and HTML tags. We use a configuration of the parser that
drops all tags while keeping the enclosed text.
While this is a reasonable choice for presentational and
structural markup, it may cause problems for XML tags
from MEDIAWIKI extensions marking special, from our
perspective irrelevant, contents. Examples are “<ref>”
from the “Cite” extension marking references, and “<time-
line>” from the “EasyTimeline” extension marking wiki
markup from which embedded images are produced. The
WIKIPEDIA Reader deletes such contents prior to parsing.
After parsing, yet before the text of particular content items
of a WIKIPEDIA page becomes part of the document text,
it is cleansed and adapted as described in the WIKIPEDIA
Reader documentation. For example, empty brackets and
quotes and invalid XML characters are removed.

4.3. Configuration Parameters
The WIKIPEDIA Reader is configurable in a flexible
way. Five parameters are provided to specify the connec-
tion to the WIKIPEDIA database (DataBaseServerURL,

17

DataBase, DataBaseUser, DataBasePassword, and
DataBaseDriver). Another parameter, BatchSize, con-
trols how many WIKIPEDIA pages the WIKIPEDIA Reader
fetches at once. To restrict the analysis to a subset of
WIKIPEDIA pages, the parameters OnlyArticles, PageList
and CategoryList can be used. If OnlyArticles is valid,
only proper articles are processed, while disambiguation
pages (that are also contained in the database) are skipped.
In case PageList contains page titles, only those pages
which match these titles are considered for analysis, ig-
noring the CategoryList parameter. However, if Page-
List is empty, but CategoryList contains category titles,
only those pages tagged with at least one of the listed cat-
egories are considered. If neither pages, nor categories are
specified, all pages in the database are considered by the
WIKIPEDIA Reader. Note that there is another possibility
to restrict the WIKIPEDIA Reader to particular WIKIPEDIA
pages: the pages can be marked in the database directly.
The parameters ImageIdentifiers and CategoryIdentifiers
contain information for the wiki markup parser, specifying
which (language-dependent) image and category link iden-
tifiers apply for the chosen WIKIPEDIA source. The param-
eter SkipTableContents allows to control the inclusion or
exclusion of table bodies. Table captions are considered
independent from this parameter value. Via the parame-
ter SectionsToSkip titles of sections can be specified that
should be excluded from the analysis. The parameter Lan-
guage selects which WIKIPEDIA will be accessed. Each
CAS will get the specified language id as part of its meta
information. Setting the parameter AddMetaData to true
lets the reader create a descriptor annotation for each CAS,
holding meta data of the WIKIPEDIA page such as associ-
ated category labels. All these parameters are summarized
in Table 1.

4.4. WIKIPEDIA Database

Basically, the WIKIPEDIA database contains the id, title and
text of WIKIPEDIA pages plus some additional information
such as the category labels associated with the pages. We
set up the database in two steps. First, we used the UKP
Lab’s JWPLDataMachine tool. It supports the import of
WIKIPEDIA articles into a database (only pages in the arti-
cle name space are considered) and establishes the required
table structure, taking publicly available WIKIPEDIA XML
dumps as input (containing the last revision of pages only).
Second, we slightly extended the table structure to be able
to mark WIKIPEDIA pages for inclusion / exclusion for fur-
ther analysis and to track the processing status of pages.
Details are given in the WIKIPEDIA Reader documentation.

4.5. Embedding in a Scheduling System

In order to process a large document collection such as
WIKIPEDIA it is desirable to run several pipelines in paral-
lel. When multiple instances of a collection reader simulta-
neously access the same document collection, a scheduling
system is required to keep track of the processing status of
each document. We established such a scheduler based on
setting flags in the WIKIPEDIA database (“raw”, “in pro-
cess”, and “processed”). In essence, it runs as follows:

• In the initial state, all WIKIPEDIA pages in the
database are marked as “raw”.

• When a pipeline is running, the WIKIPEDIA Reader
queries the database for raw pages, batch-wise. If raw
pages are still available, the reader retrieves them and
changes their status from “raw” to “in process”.

• When all analysis components of the pipeline have ter-
minated processing a CAS, a listener component at-
tached to the pipeline keeps track of the termination
and changes the status of the corresponding page in
the database from “in process” to “processed”.

• When all pages have been marked as “processed”, the
pipeline eventually stops.

Further information about the scheduling system is con-
tained in the WIKIPEDIA Reader documentation.

4.6. Availability and Usage
The WIKIPEDIA Reader is available as UIMA PEAR pack-
age from our website at http://www.julielab.de/. The
PEAR package includes the required UIMA types and a de-
tailed documentation of the component. The tools provided
by the JULIE Lab are licensed under the terms of the Com-
mon Public License. However, note that the JWPL library
used by our reader is freely available for academia but not
open source yet (March 2010).7

To run the WIKIPEDIA Reader, a database containing
WIKIPEDIA data is required. We propose to use the JWPL-
DataMachine to set up the database. Instructions are given
in the JWPL tutorial.8 After populating the database the
table structure needs to be adapted as described in the
WIKIPEDIA Reader documentation. When the reader is in-
cluded in a UIMA pipeline an appropriate UIMA compo-
nent descriptor with configuration information is needed.
A descriptor is already contained in the PEAR package that
may be adapted. Finally, to provide the pipeline with a
fully functional scheduling system, besides the WIKIPEDIA
Reader an appropriate listener component is required (for
further information consult the WIKIPEDIA Reader docu-
mentation).

5. Discussion
Our work builds on software developed by the Ubiquitous
Knowledge Processing Lab. They have published the JAVA
WIKIPEDIA Library (JWPL), a JAVA-based API that pro-
vides structured access to WIKIPEDIA data, such as arti-
cles, disambiguation pages, categories, redirects and link
structure (Zesch et al., 2008). The WIKIPEDIA Reader
profits from the JWPL API in two ways. First, it uses the
JWPLDataMachine tool to transform the publicly available
WIKIPEDIA XML dumps into SQL dumps to be loaded
into a database. Second, it processes WIKIPEDIA pages

7According to the developers at UKP Lab the JWPL API is
currently in the process of becoming open source.

8http://www.ukp.tu-darmstadt.de/software/jwpl/

documentation/

18

using JWPL’s parser API. (A comparison with other JAVA-
based wiki markup parsers, such as WIKIMODEL9 gener-
ating XHTML and XML output is still pending.)
As far as the division of responsibilities between JWPL and
our WIKIPEDIA Reader is concerned, JWPL is an API to
access WIKIPEDIA data in a structured way and to parse
the MEDIAWIKI syntax, while the WIKIPEDIA Reader is a
configurable UIMA collection reader that makes use of the
JWPLDataMachine and the JWPL parser. A similar reader
component (though lacking both, the ability to represent the
WIKIPEDIA article structure in terms of UIMA annotations
and the integration into a scheduling system) has been pub-
lished by the UKP Lab as part of the Darmstadt Knowledge
Processing Repository (DKPro) (Gurevych et al., 2007).
However, in the current version of DKPro (March 2010)
this reader does not seem to be available anymore.
Composing the document text for a WIKIPEDIA page
the WIKIPEDIA Reader applies a cleansing procedure to
text derived from different content items and skips all
WIKIPEDIA template information (infoboxes are but one
example). Both design decisions serve the goal to provide
appropriate input for syntactic and semantic analysis com-
ponents (Hahn et al., 2008), the backbone of text analyt-
ics for semantic search engines, information extraction and
text mining as developed at the JULIE Lab (Buyko et al.,
2009). Yet, other applications might take advantages from
the uncleansed text or from including the whole spectrum
of textual information blocks, including content from tem-
plates. Such scenarios would require a code adaptation of
the current version of the WIKIPEDIA Reader.
While we think that UIMA components should be type sys-
tem independent whenever possible, and if not possible,
should preferably reuse existing types systems, the current
version of the WIKIPEDIA Reader is dependent on our own
lab-grown type system. This is due to the fact that the
reader is designed to create detailed annotations of differ-
ent content items of WIKIPEDIA pages, a task that requires
very specific annotation types and features we were unable
to trace in any other existing type system. Article three
of the Charter of the OASIS UIMA Technical Committee
(TC)10 addresses a type system base model that we would
like to extend with our WIKIPEDIA types. However, so far
this base model is work in progress.
The WIKIPEDIA Reader accesses a database holding
WIKIPEDIA information, and, by design, cannot ac-
cess WIKIPEDIA online. As a consequence, edits on
WIKIPEDIA are not realized by the reader, until the
database is updated with a fresh WIKIPEDIA dump. How-
ever, there are several advantages of the database approach
over Web server-based retrieval (a list borrowed from the
JWPL documentation): computational efficiency enabling
large-scale NLP tasks (nearly constant retrieval time for
each article), reproducibility of research results (since a
fixed database dump is used instead of the continuously
changing online WIKIPEDIA), and the easy-to-use, object-
oriented programming interface.

9http://code.google.com/p/wikimodel/
10\http://www.oasis-open.org/committees/uima/

charter.php

6. Conclusions
We presented an overview of JULIE Lab’s WIKIPEDIA
Reader and its integration into the UIMA framework.
This Reader builds upon the availability of parts of UKP
Lab’s JWPL API which supports loading WIKIPEDIA data
into a database and parsing the WIKIMEDIA syntax of
WIKIPEDIA articles.
Our WIKIPEDIA Reader is flexibly configurable to account
in a general way for different forms of and requirements
for text analytics. The current version of the WIKIPEDIA
Reader is available as a UIMA PEAR package from our lab’s
web page at http://www.julielab.de.

Acknowledgments
We want to thank our student Bernd Weigl for implement-
ing parts of the WIKIPEDIA Reader. This research was par-
tially funded by the EC within the CALBC project (FP7-
231727).

7. References
Ekaterina Buyko, Erik Faessler, Joachim Wermter, and Udo Hahn.

2009. Event extraction from trimmed dependency graphs. In
Proceedings of the BioNLP 2009 Workshop Companion Volume
for Shared Task, pages 19–27. Boulder, CO, USA.

David Ferrucci and Adam Lally. 2004. UIMA: An architectural
approach to unstructured information processing in the cor-
porate research environment. Natural Language Engineering,
10(3-4):327–348.

Evgeniy Gabrilovich and Shaul Markovitch. 2009. WIKIPEDIA-
based semantic interpretation for natural language processing.
Journal of Artificial Intelligence Research, 34(1):443–498.

Iryna Gurevych, Max Mühlhäuser, Christof Müller, Jürgen
Steimle, Markus Weimer, and Torsten Zesch. 2007. Darm-
stadt Knowledge Processing Repository based on UIMA. In
Proceedings of the 1st Workshop on Unstructured Information
Management Architecture at GLDV 2007. Tübingen, Germany.

Udo Hahn, Ekaterina Buyko, Katrin Tomanek, Scott Piao,
John McNaught, Yoshimasa Tsuruoka, and Sophia Anani-
adou. 2007. An annotation type system for a data-driven NLP
pipeline. In LAW at ACL 2007 – Proceedings of the Linguistic
Annotation Workshop, pages 33–40. Prague, Czech Republic.

Udo Hahn, Ekaterina Buyko, Rico Landefeld, Matthias
Mühlhausen, Michael Poprat, Katrin Tomanek, and Joachim
Wermter. 2008. An overview of JCORE, the JULIE lab UIMA

Component Repository. In Proceedings of the LREC’08 Work-
shop ‘Towards Enhanced Interoperability for Large HLT Sys-
tems: UIMA for NLP‘, pages 1–7, Marrakech, Morocco.

Maciej Janik and Krys Kochut. 2008. WIKIPEDIA in action: On-
tological knowledge in text categorization. In ICSC 2008 –
Proceedings of the 2nd IEEE International Conference on Se-
mantic Computing, pages 268–275. Santa Clara, CA, USA.

Simone Paolo Ponzetto and Michael Strube. 2007. Deriving a
large scale taxonomy from WIKIPEDIA. In AAAI 2007 – Pro-
ceedings of the 22nd AAAI Conference on Artificial Intelli-
gence, pages 1440–1445. Vancouver, B.C., Canada.

Torsten Zesch, Christof Müller, and Iryna Gurevych. 2008. Ex-
tracting lexical semantic knowledge from WIKIPEDIA and
WIKTIONARY. In LREC’08 – Proceedings of the 6th Interna-
tional Language Resources and Evaluation Coonference. Mar-
rakech, Morocco.

19

Web-based Collaborative Corpus Annotation: Requirements and a Framework
Implementation

Kalina Bontcheva, Hamish Cunningham, Ian Roberts, Valentin Tablan

Natural Language Processing Group
Department of Computer Science, University of Sheffield

211 Portobello, Sheffield S1 4DP, UK
Initial.Surname@dcs.shef.ac.uk

Abstract
In this paper we present Teamware, a novel web-based collaborative annotation environment which enables users to carry out complex
corpus annotation projects, involving less skilled, cheaper annotators working remotely. It has been evaluated by us through the creation
of several gold standard corpora, as well as through external evaluation in commercial annotation projects.

1 Introduction
For the past ten years, NLP development frameworks such
as OpenNLP, GATE, and UIMA have been providing tool
support and facilitating NLP researchers with the task of
implementing new algorithms, sharing, and reusing them.
At the same time, Information Extraction (IE) research and
computational linguistics in general has been driven for-
ward by the growing volume of annotated corpora, pro-
duced by research projects and through evaluation initia-
tives such as MUC (Marsh and Perzanowski, 1998), ACE1,
DUC (DUC, 2001), and CoNLL shared tasks. Some of the
NLP frameworks (e.g., AGTK (Maeda and Strassel, 2004),
GATE (Cunningham et al., 2002)) even provide text anno-
tation user interfaces. However, much more is needed in
order to produce high quality annotated corpora: a stringent
methodology, annotation guidelines, inter-annotator agree-
ment measures, and in some cases, annotation adjudication
(or data curation) to reconcile differences between annota-
tors.
Current tools demonstrate that annotation projects can be
approached in a collaborative fashion successfully (see Sec-
tion 2). However, we believe that this can be improved
further by providing a unified environment that provides a
multi-role methodological framework to support the differ-
ent phases and actors in the annotation process. The multi-
role support is particularly important, as it enables the most
efficient use of the skills of the different people and low-
ers overall annotation costs through having simple and ef-
ficient annotation web-based UIs for non-specialist annota-
tors. This also enables role-based security, project manage-
ment and performance measurement of annotators, which
are all particularly important in corporate environments.
This paper presents Teamware, a web-based software suite
and a methodology for the implementation and support
of complex annotation projects2. In addition to its re-
search uses, it has also been tested as a framework for

Authors are listed alphabetically.
1http://www.ldc.upenn.edu/Projects/ACE/
2Teamware is currently available as a hosted service over the

web for use by both researchers and companies. If you are inter-
ested in using the Teamware service or want to install it locally,
please contact the first author.

cost-effective commercial annotation services, supplied ei-
ther as in-house units or as outsourced specialist activities.
Teamware is based on GATE: a widely used, scalable and
robust open-source language processing framework.
The rest of the paper is structured as follows. We first dis-
cuss related work in Section 2 and then motivate the re-
quirements which need to be met (Section 3). Our archi-
tecture and implementation are discussed in Section 4, fol-
lowed by a discussion of three practical applications in Sec-
tion 5 and conclusions.

2 Related Work
Tools for collaborative corpus annotation enable re-
searchers to work together on annotating corpora regard-
less of their physical location. This problem can be de-
composed into two major tasks: (i) provide users with ac-
cess to distributed corpora over the web; and (ii) provide
visualisation and editing tools that require no installation
effort and are easy to use. Some of the most sophisticated
tools in this area are those developed by the Linguistic Data
Consortium, due to their need to run large-scale annotation
projects. The AGTK toolkit (Maeda and Strassel, 2004)
provides a shared relational database model for storing and
accessing corpora on a shared server, as well as being
a framework for development of collaborative annotation
tools based on these shared corpora. One example is the
specialised ACE annotation tool, which also comes with an
accompanying tool for annotation adjudication. Maeda et
al (2008) describe ACK (Annotation Collection Kit) which
is web based and uses comma-separated CSV files to define
the questions which an annotator has to answer (e.g., what
are the possible parts of speech of this word). In the con-
text of machine translation, they also discuss a workflow
system for post-editing machine translation results which
supports different user roles (editors in this case) and the
communication between them. While the LDC tool set is
very impressive, the various annotation tasks are covered by
separate, independent tools and in some cases, these tools
are specific to a particular annotation project (e.g., ACE,
GALE).
One way to generalise the annotation tools is to support
their customisation to a specific task by means of annota-

20

tion schemas, e.g., Callisto (Day et al., 2004), GATE (Cun-
ningham et al., 2002). A somewhat more complex, but
more powerful approach is to model the different linguistic
annotation tasks with ontologies, e.g., Knowtator (Ogren,
2006). All these tools also provide support for measuring
inter-annotator agreement, while Knowtator also supports
semi-automatic adjudication and the creation of a consen-
sus annotation set. However, they all require installation
on the user’s machine and are designed primarily for expert
annotators. All except GATE, also do not provide support
for bootstrapping the manual annotation by running an au-
tomatic NLP system first.
With respect to workflows, these have been studied pre-
dominantly in the context of configuring a set of NLP mod-
ules into an application. For example, both GATE (Cun-
ningham et al., 2002) and UIMA(Ferrucci and Lally, 2004)
support workflows3, but not for asynchronous annotation
tasks. Neither do they provide business process monitoring
(e.g., time spent by annotators, their performance levels,
progress, overall costs).
Recently researchers began experimenting with using Ama-
zon’s Mechanical Turk to recruit non-expert annotators.
Experiments (Snow et al., 2008) show that on average 10
unskilled annotators are needed in order to reach the quality
of an expertly annotated gold standard. Multi-role collab-
orative annotation environments like ours have the poten-
tial to lower the number of required low-skilled annotators
through the involvement of an expert curator, assisted with
automatic bootstrapping and adjudication tools. In addi-
tion, there are also many cases when reliable gold-standard
creation is still required and/or when the data cannot be re-
leased on the web for public annotation.
To summarise, in comparison to previous work Teamware
is a novel general purpose, web-based annotation frame-
work, which:

• structures the roles of the different actors involved in
large-scale corpus annotation (e.g., annotators, edi-
tors, managers) and supports their interactions in an
unified environment;

• provides a set of general purpose text annotation tools,
tailored to the different user roles, e.g., a curator man-
agement tool with inter-annotator agreement metrics
and adjudication facilities and a web-based document
tool for in-experienced annotators;

• supports complex annotation workflows and provides
a management console with business process statis-
tics, such as time spent per document by each of its
annotators, percentage of completed documents, etc;

• offers methodological support, to complement the di-
verse technological tool support.

3 Requirements for Multi-Role
Collaborative Annotation Environments

As discussed in the previous section, collaborative corpus
annotation is a complex process, which involves different

3Called controllers in GATE.

kinds of actors (e.g., annotators, editors, managers) and
also requires a diverse range of pre-processing, a user in-
terface, and evaluation tools. Here we structure all these
into a coherent set of key requirements, which arise from
our goal to provide cost-effective corpus annotation.
Firstly, due to the multiple actors involved and their com-
plex interactions, a collaborative environment needs to sup-
port these different roles through user groups, access priv-
ileges, and corresponding user interfaces. Secondly, since
many annotation projects manipulate hundreds of docu-
ments, there needs to be a remote, efficient data storage.
Thirdly, significant cost savings can be achieved through
pre-annotating corpora automatically, which in turns re-
quires support for automatic annotation services and their
flexible configuration. Last, but not least, a flexible work-
flow engine is required to capture the complex require-
ments and interactions.
Next we discuss the four high-level requirements in finer-
grained details.

3.1 Typical Division of Labour
Due to annotation projects having different sizes and com-
plexity, in some cases the same person might perform more
than one role or new roles might be needed. For example, in
small projects it is common that the person who defines and
manages the project is also the one who carries out quality
assurance and adjudication. Nevertheless these are two dis-
tinct roles (manager vs editor), involving different tasks and
requiring different tool support.
Annotators are given a set of annotation guidelines and
often work on the same document independently. This is
needed in order to get more reliable results and/or measure
how well humans perform the annotation task (see more on
Inter-Annotator Agreement (IAA) below). Consequently,
manual annotation is a slow and error-prone task, which
makes overall corpus production very expensive. In order
to allow the involvement of less-specialised annotators, the
manual annotation user interface needs to be simple to learn
and use. In addition, there needs to be an automatic training
mode for annotators where their performance is compared
against a known gold standard and all mistakes are identi-
fied and explained to the annotator, until they have mastered
the guidelines.
Since the annotators and the corpus editors are most likely
working at different locations, there needs to be a commu-
nication channel between them, e.g., instant messaging. If
an editor/manager is not available, an annotator should also
be able to mark an annotation as requiring discussion and
then all such annotations should be shown automatically
in the editor console. In addition, the annotation environ-
ment needs to restrict annotators to working on a maximum
of n documents (given as a number or percentage), in or-
der to prevent an over-zealous annotator from taking over
a project and introducing individual bias. Annotators also
need to be able to save their work and, if they close the
annotation tool, the same document must be presented to
them for completion the next time they log in.
From the user interface perspective, there needs to be sup-
port for annotating document-level metadata (e.g., lan-
guage identification), word-level annotations (e.g., named

21

entities, POS tags), and relations and trees (e.g., co-
reference, syntax trees). Ideally, the interface should of-
fer some generic components for all these, which can be
customised with the project-specific tags and values via an
XML schema or other similar declarative mechanism. The
UI also needs to be extensible, so specialised UIs can easily
be plugged in, if required.
Editors or curators are responsible for measuring Inter-
Annotator Agreement (IAA), annotation adjudication,
gold-standard production, and annotator training. They also
need to communicate with annotators when questions arise.
Therefore, they need to have wider privileges in the sys-
tem. In addition to the standard annotation interfaces, they
need to have access to the actual corpus and its documents
and run IAA metrics. They also need a specialised adju-
dication interface which helps them identify and reconcile
differences in multiply annotated documents. For some an-
notation projects, they also need to be able to send a prob-
lematic document back for re-annotation by different anno-
tators.
Project managers are typically in charge of defining new
corpus annotation projects and their workflows, monitoring
their progress, and dealing with performance issues. De-
pending on project specifics, they may work together with
the curators and define the annotation guidelines, the as-
sociated schemas (or set of tags), and prepare and upload
the corpus to be annotated. They also make methodological
choices: whether to have multiple annotators per document;
how many; which automatic NLP services need to be used
to pre-process the data; and what is the overall workflow
of annotation, quality assurance, adjudication, and corpus
delivery.
Managers need a project monitoring tool where they can
see:

• Whether a corpus is currently assigned to a project
or, what annotation projects have been run on the cor-
pus with links to these projects or their archive reports
(if no longer active). Also links to the the annotation
schemas for all annotation types currently in the cor-
pus.

• Project completion status (e.g., 80% manually anno-
tated, 20% adjudicated).

• Annotator statistics within and across projects: which
annotator worked on each of the documents, what
schemas they used, how long they took, and what was
their IAA (if measured).

• The ability to lock a corpus from further editing, either
during or after a project.

• Ability to archive project reports, so projects can be
deleted from the active list. Archives should preserve
information on what was done and by whom, how long
it took, etc.

3.2 Remote, Scalable Data Storage
Given the multiple user roles and the fact that several anno-
tation projects may need to be running at the same time,
possibly involving different, remotely located teams, the

data storage layer needs to scale to accommodate large, dis-
tributed corpora and have the necessary security in place
through authentication and fine-grained user/group access
control. Data security is paramount and needs to be en-
forced as data is being sent over the web to the remote an-
notators. Support for diverse document input and output
formats is also necessary, especially stand-off ones when it
is not possible to modify the original content. Since mul-
tiple users can be working concurrently on the same docu-
ment, there needs to be an appropriate locking mechanism
to support that. The data storage layer also needs to pro-
vide facilities for storing annotation guidelines, annotation
schemas, and, if applicable, ontologies. Last, but not least,
a corpus search functionality is often required, at least one
based on traditional keyword-based search, but ideally also
including document metadata and linguistic annotations.

3.3 Automatic annotation services
Automatic annotation services can reduce significantly an-
notation costs (e.g., annotation of named entities), but un-
fortunately they also tend to be domain or application spe-
cific. Also, several might be needed in order to bootstrap
all types that need to be annotated, e.g., named entities, co-
reference, and relation annotation modules. Therefore, the
architecture needs to be open so that new services can be
added easily. Such services can encapsulate different IE
modules and take as input one or more documents (or an
entire corpus). The automatic services also need to be scal-
able, in order to minimise their impact on the overall project
completion time. The project manager should also be able
to choose services based on their accuracy on a given cor-
pus.
Machine Learning (ML) IE modules can be regarded as a
specific kind of automatic service. A mixed initiative sys-
tem (Day et al., 1997) can be set up by the project manager
and used to facilitate manual annotation behind the scenes.
This means that once a document has been annotated manu-
ally, it will be sent to train the ML service which internally
generates an ML model. This model will then be applied
by the service on any new document, so that this document
will be partially pre-annotated. The human annotator then
only needs to validate or correct the annotations provided
by the ML system, which makes the annotation task signif-
icantly faster (Day et al., 1997).

3.4 Workflow Support
In order to have an open, flexible model of corpus annota-
tion processes, we need a powerful workflow engine which
supports asynchronous execution and arbitrary mix of au-
tomatic and manual steps. For example, manual annotation
and adjudication tasks are asynchronous. Resilience to fail-
ures is essential and workflows need to save intermediary
results from time to time, especially after operations that
are very expensive to re-run (e.g. manual annotation, ad-
judication). The workflow engine also needs to have status
persistence, action logging, and activity monitoring, which
is the basis for the project monitoring tools.
In a workflow it should be possible for more than one an-
notator to work on the same document at the same time,
however, during adjudication by editors, all affected anno-

22

tations need to be locked to prevent concurrent modifica-
tions. For separation of concerns, it is also often useful
if the same corpus can have more than one active project.
Similarly, the same annotator needs to be able to work on
several annotation projects.

Figure 1: Teamware Architecture Diagram

4 Teamware: Architecture, Implementation,
and Examples

Teamware is a web-based collaborative annotation and cu-
ration environment, which allows unskilled annotators to
be trained and then used to lower the cost of corpus an-
notation projects. Further cost reductions are achieved by
bootstrapping with relevant automatic annotation services,
where these exist, and/or through mixed initiative learning
methods. It has a service-based architecture which is par-
allel, distributed, and also scalable (via service replication)
(see Figure 1).
As shown in Figure 1, the Teamware architecture con-
sists of SOAP web services for data storage, a set of web-
based user interfaces (UI Layer), and an executive layer in
the middle where the workflows of the specific annotation
projects are defined. The UI Layer is connected with the
Executive Layer for exchanging command and control mes-
sages (such as requesting the ID for document that needs
to be annotated next), and also it connects directly to the
services layer for data-intensive communication (such as
downloading the actual document data, and uploading back
the annotations produced).

4.1 Data Storage and Ontology Services
The storage service provides a distributed data store for
corpora, documents, and annotation schemas. Input doc-
uments can be in all major formats (e.g. plain text,
XML, HTML, PDF), based on GATE’s comprehensive sup-
port. In all cases, when a document is created/imported
in Teamware, the format is analysed and converted into a
single unified, graph-based model of annotation: the one
of the GATE NLP framework. Then this internal annota-
tion format is used for data exchange between the service
layer, the executive layer and the UI layer. Different pro-
cesses within Teamware can add and remove annotation
data within the same document concurrently, as long as two
processes do not attempt to manipulate the same subset of
the data at the same time. A locking mechanism is used to

ensure this and prevent data corruption. The main export
format for annotations is currently stand-off XML, includ-
ing XCES (Ide et al., 2000). Document text is represented
internally using Unicode and data exchange uses the UTF-8
character encoding, so Teamware supports documents writ-
ten in any natural language supported by the Unicode stan-
dard (and the Java platform).
Since some corpus annotation tasks require ontologies,
these are made available from a dedicated ontology ser-
vice. This wraps the OWLIM (Kiryakov, 2006) semantic
repository, which is needed for reasoning support and con-
sequently justifies having a specialised ontology service,
instead of storing ontologies together with documents and
schemas.

4.2 Annotation Services
The Annotation Services (GAS) provide distribution of
compute-intensive NLP tasks over multiple processors. It
is transparent to the external user how many machines are
actually used to execute a particular service. GAS provides
a straightforward mechanism for running applications, cre-
ated with the GATE framework, as web services that carry
out various NLP tasks. In practical applications we have
tested a wide range of services such as named entity recog-
nition (based on the freely-available ANNIE system (Cun-
ningham et al., 2002)), ontology population (Maynard et
al., 2009), patent processing (Agatonovic et al., 2008), and
automatic adjudication of multiple annotation layers in cor-
pora.
The GAS architecture is itself layered, with a separation be-
tween the web service endpoint that accepts requests from
clients and queues them for processing, and one or more
workers that take the queued requests and process them.
The queueing mechanism used to communicate between
the two sides is the Java Messaging System (JMS)4, a stan-
dard framework for reliable messaging between Java com-
ponents, and the configuration and wiring together of all the
components is handled using the Spring Framework 5.
The endpoint, message queue and worker(s) are conceptu-
ally and logically separate, and may be physically hosted
within the same Java Virtual Machine (VM), within sepa-
rate VMs on the same physical host, or on separate hosts
connected over a network. When a service is first deployed
it will typically be as a single worker which resides in the
same VM as the service endpoint. This may be adequate
for simple or lightly-loaded services but for more heavily-
loaded services additional workers may be added dynam-
ically without shutting down the web service, and simi-
larly workers may be removed when no longer required.
All workers that are configured to consume jobs from the
same endpoint will transparently share the load. Multiple
workers also provide fault-tolerance – if a worker fails its
in-progress jobs will be returned to the queue and will be
picked up and handled by other workers.

4.3 The Executive Layer
Firstly, the executive layer implements authentication and
user management, including role definition and assignment.

4http://java.sun.com/products/jms/
5http://www.springsource.org/

23

Figure 2: Dynamic Workflow Configuration: Example

In addition, administrators can define here which UI com-
ponents are made accessible to which user roles (the de-
faults are shown in Figure 1).
The second major part is the workflow manager, which is
based on JBoss jBPM6 and has been developed to meet
most of the requirements discussed in Section 3.4 above.
Firstly, it provides dynamic workflow management: cre-
ate, read, update, delete (CRUD) workflow definitions, and
workflow actions. Secondly, it supports business process
monitoring, i.e., measures how long annotators take, how
good they are at annotating, as well as reporting the overall
progress and costs. Thirdly, there is a workflow execution
engine which runs the actual annotation projects. As part of
the execution process, the project manager selects the num-
ber of annotators per document; the annotation schemas;
the set of annotators and curator(s) involved in the project;
and the corpus to be annotated.
Figure 2 shows an example workflow template. The dia-
gram on the right shows the choice points in workflow tem-
plates - whether to do automatic annotation or manual or
both; which automatic annotation services to execute and in
what sequence; and for manual annotation – what schemas
to use, how may annotators per document, whether they
can reject annotating a document, etc. The left-hand side
shows the actual selections made for this particular work-
flow, i.e., use both automatic and manual annotation; anno-
tate measurements, references, and sections; and have one
annotator per document. Once this template is saved by
the project manager, then it can be executed by the work-
flow engine on a chosen corpus and list of annotators and
curators. The workflow engine will first call the automatic

6http://www.jboss.com/products/jbpm/

annotation service to bootstrap and then its results will be
corrected by human annotators.
The rationale behind having an executive layer rather than
defining authentication and workflow management as ser-
vices similar to the storage and ontology ones comes from
the fact that Teamware services are all SOAP web services,
whereas elements of the executive layer are only in part im-
plemented as SOAP services with the rest being browser
based. Conceptually also the workflow manager acts like a
middleman that ties together all the different services and
communicates with the user interfaces.

4.4 The User Interfaces
The Teamware user interfaces are web-based and do not re-
quire prior installation. They either rendered natively in
the web browser or, for more complex UIs, a Java Web
Start wrapper is provided around some Swing-based GATE
editors (e.g., the document editor and the ANNIC viewer
(Aswani et al., 2005)). After the user logs in, the sys-
tem checks their role(s) and access privileges to determine
which interface elements they are allowed to access.

4.4.1 Annotator User Interface
When manual annotators log into Teamware, they see a
very simple web page with one link to their user profile
data and another one – to start annotating documents. The
generic schema-based annotator UI is shown in Figure 3
and it is a visual component in GATE, which is reused here
via Java Web Start7. This removes the need to install GATE
on the annotator machines and instead they just click on a
link to download and start a web application.

7http://java.sun.com/javase/technologies/desktop/javawebstart/index.jsp

24

Figure 3: The Schema-based Annotator UI

The annotation editor dialog shows the annotation types
(or tags) valid for the current project and optionally their
features (or attributes). These are generated automatically
from the annotation schemas assigned to the project by its
manager. The annotation editor also supports the modifi-
cation of annotation boundaries, as well as the use of reg-
ular expressions to annotate multiple matching strings si-
multaneously. To add a new annotation, one selects the text
with the mouse (e.g., “Bank of England”) and then clicks
on the desired annotation type in the dialog (e.g., Organi-
zation). Existing annotations are edited by hovering over
them, which shows their current type and features in the
editor dialog.

The toolbar at the top of Figure 3 shows all other actions
which can be performed. The first button requests a new
document to be annotated. When pressed, a request is sent
to the workflow manager which checks if there are any
pending documents which can be assigned to this annotator.
The second button signals task completion, which saves the
annotated document as completed on the data storage layer
and enables the annotator to ask for a new one (via the first
button). The third (save) button stores the document with-
out marking it as completed in the workflow. This can be
used for saving intermediary annotation results or if an an-
notator needs to log off prior to completing a document.
The next time they login and request a new task, they will
be given this document to complete first.

Ontology-based document annotation is supported in a sim-
ilar fashion, but instead of having a flat list of types on the
right, the annotator is shown the type hierarchy and when
they select a particular type (or class), they can then op-

tionally choose an existing instance or add a new one. This
UI also supports the annotation of relations by modelling
them as properties in the ontology and allowing annota-
tors to instatiate their values in the UI (not shown due to
lack of space). Similar to the schema annotation editor, the
ontology-based editor is a visual plugin from GATE deliv-
ered via Java Web Start.

4.4.2 Curator User Interface
As discussed in Section 3.1, curators (or editors) carry out
quality assurance tasks. In Teamware the curation tools
cover IAA metrics (e.g. precision/recall and kappa) to iden-
tify if there are differences between annotators; a visual an-
notation comparison tool to see quickly where the differ-
ences are per annotation type (Cunningham et al., 2002);
and an editor to edit and reconcile annotations manually
(i.e., adjudication) or by using external automatic services.

The key part of the manual adjudication UI is shown in Fig-
ure 4: the complete UI shows also the full document text
above the adjudication panel, as well as lists all annotation
types on the right, so the curator can select which one they
want to work on. In our example, the curator has chosen to
adjudicate Date annotations created by two annotators and
to store the results in a new consensus annotation set. The
adjudication panel has on top arrows that allow curators to
jump from one difference to the next, thus reducing the re-
quired effort. The relevant text snippet is shown and below
it are shown the annotations of the two annotators. The cu-
rator can easily see the differences and correct them, e.g.,
by dragging the correct annotation into the consensus set.

25

Figure 4: Part of the Adjudication UI

4.4.3 Project Manager Interface
The project manager web UI is the most powerful and
multi-functional one. It provides the front-end to the ex-
ecutive layer (see Section 4.3 and Figure 2). In a nutshell,
managers upload documents and corpora, define the anno-
tation schemas, choose and configure the workflows and ex-
ecute them on a chosen corpus. The management console
also provides project monitoring facilities, e.g., number of
annotated documents, number in progress, and yet to be
completed (see Figure 5). Per annotator statistics are also
available – time spent per document, overall time worked,
average IAA, etc. These requirements were discussed in
further detail in Section 3.1 above.

Figure 5: Project Progress Monitoring UI

5 Practical Applications
Teamware has already been used in practice in several cor-
pus annotation projects of varying complexity and size –
due to space limitations, here we focus on three representa-
tive ones. Firstly, we tested the robustness of the data layer
and the workflow manager in the face of simultaneous con-
current access. For this we annotated 100 documents, 2 an-
notators per document, with 60 active annotators requesting
documents to annotate and saving their results on the server.
There were no latency or concurrency issues reported.
Once the current version was considered stable, we ran sev-
eral corpus annotation projects to produce gold standards
for IE evaluation in three domains: business intelligence,
fisheries, and bio-informatics. The latter involved 10 bio-
informatics students which were first given a brief training
session and were then allowed to work from home. The

project had 2 annotators per document, working with 6 en-
tity types and their features. Overall, 109 Medline abstracts
of around 200-300 words each were annotated with aver-
age annotation speed of 9 minutes per abstract. This project
revealed several shortcomings of Teamware which will be
addressed in the forthcoming version 2:

• IAA is calculated per document, but there is no easy
way to see how it changes across the entire corpus.

• The datastore layer can sometimes leave the data in an
inconsistent state following an error, due to the under-
lying binary Java serialisation format. A move towards
XML file-based storage is being investigated.

• There needs to be a limit on the proportion of docu-
ments which any given annotator is allowed to work
on, since one over-zealous annotator ended up intro-
ducing a significant bias by annotating more than 80%
of all documents.

The most versatile and still ongoing practical use of
Teamware has been in a commercial context, where a com-
pany has two teams of 5 annotators each (one in China and
one in the Philippines). The annotation projects are being
defined and overseen by managers in the USA, who also
act occasionally as curators. They have found that the stan-
dard double-annotated agreement-based approach is a good
foundation for their commercial needs (e.g., in the early
stages of the project and continuously for gold standard
production), while they also use very simple workflows
where the results of automatic services are being corrected
by annotators, working only one per document to max-
imise volume and lower the costs. In the past few months
they have annotated over 1,400 documents, many of which
according to multiple schemas and annotation guidelines.
For instance, 400 patent documents were doubly annotated
both with measurements (IAA achieved 80-95%) and bio-
informatics entities, and then curated and adjudicated to
create a gold standard. They also annotated 1000 Medline
abstracts with species information where they measured av-
erage speed of 5-7 minutes per document. The initial an-
notator training in Teamware was between 30 minutes and
one hour, following which they ran several small-scale ex-
perimental projects to train the annotators in the particular

26

annotation guidelines (e.g., measurements in patents). An-
notation speed also improved over time, as the annotators
became more proficient with the guidelines – the Teamware
annotator statistics registered improvements of between 15
and 20%. Annotation quality (measured through inter-
annotator agreement) remained high, even when annotators
have worked on many documents over time.
From a Teamware implementational perspective, the di-
verse user needs and practical experience with remote an-
notator teams exposed several weaknesses in the current
implementation:

• Different sets of annotators need to be able to work
on the same corpus simultaneously, as part of separate
projects, so that each team can specialise in a small
number of annotation types. This requires support for
merging the results of the separate projects into one
consistent corpus, which is currently not achieved eas-
ily within the Teamware environment.

• The annotator UI needs to be highly responsive to
maximise the time annotators spend actually working
on the documents. Consequently the data storage layer
and the workflow need to minimise further network
traffic, e.g., allow access to document-level metadata
without also loading the entire document content.

• Execution speed of the annotation workflows needs
to be optimised further, e.g., by avoiding unnecessary
network traffic generated by temporary results being
saved to the data store.

• Annotation of relations as well as manual annotation
with medium- to large-size ontologies are required in
many projects and the corresponding UIs need to be
improved to support faster annotation.

6 Conclusion and Future Work
In this paper we have described a multi-role web-based an-
notation environment, which supports customised annota-
tion workflows and provides methodological support to the
different actors involved in the process. Evaluation with
distributed annotator teams working on a wide range of
corpus annotation projects is still ongoing. We have al-
ready identified some minor issues, mostly requiring op-
timisations in the workflow and data layers, as well as us-
ability improvements in the user interfaces. All these will
be addressed in the forthcoming second version. We have
also planned controlled experiments that compare annota-
tion times with Teamware against other annotation tools,
although obtaining statistically significant results would be
difficult, expensive, and would require large teams of anno-
tators.
Acknowledgements: This work has been supported by a
Matrixware/IRF research grant. We also wish to thank
Matthew Petrillo, Jessica Baycroft, Angus Roberts, and
Danica Damljanovic for running the Teamware distributed
annotation experiments and allowing us to report the results
here. Many thanks also to Milan Agatonovic who worked
on the Teamware executive layer, while being a researcher
at Sheffield.

7 References
M. Agatonovic, N. Aswani, K. Bontcheva, H. Cunningham,

T. Heitz, Y. Li, I. Roberts, and V. Tablan. 2008. Large-
scale, parallel automatic patent annotation. In Proc. of
1st International CIKM Workshop on Patent Information
Retrieval - PaIR’08..

N. Aswani, V. Tablan, K. Bontcheva, and H. Cunning-
ham. 2005. Indexing and Querying Linguistic Metadata
and Document Content. In Proceedings of Fifth Interna-
tional Conference on Recent Advances in Natural Lan-
guage Processing (RANLP2005), Borovets, Bulgaria.

H. Cunningham, D. Maynard, K. Bontcheva, and V. Tablan.
2002. GATE: A Framework and Graphical Development
Environment for Robust NLP Tools and Applications. In
Proceedings of the 40th Anniversary Meeting of the As-
sociation for Computational Linguistics (ACL’02).

D. Day, J. Aberdeen, L. Hirschman, R. Kozierok, P. Robin-
son, and M. Vilain. 1997. Mixed-Initiative Develop-
ment of Language Processing Systems. In Proceedings
of ANLP-97.

D. Day, C. McHenry, R. Kozierok, and L. Riek. 2004.
Callisto: A configurable annotation workbench. In Int.
Conf. on Language Resources and Evaluation.

NIST. 2001. Proceedings of the Document Understanding
Conference, September 13.

D. Ferrucci and A. Lally. 2004. UIMA: An Architec-
tural Approach to Unstructured Information Processing
in the Corporate Research Environment. Natural Lan-
guage Engineering.

N. Ide, P. Bonhomme, and L. Romary. 2000. XCES:
An XML-based Standard for Linguistic Corpora. In
Proceedings of the Second International Language Re-
sources and Evaluation Conference (LREC).

A. Kiryakov. 2006. OWLIM: balancing between scal-
able repository and light-weight reasoner. In Proc. of
WWW2006, Edinburgh, Scotland.

K. Maeda and S. Strassel. 2004. Annotation Tools for
Large-Scale Corpus Development: Using AGTK at the
Linguistic Data Consortium. In Proc. of 4th Language
Resources and Evaluation Conference.

K. Maeda, H. Lee, S. Medero, J. Medero, R. Parker, and
S. Strassel. 2008. Annotation Tool Development for
Large-Scale Corpus Creation Projects at the Linguistic
Data Consortium. In Proceedings of the Sixth Interna-
tional Language Resources and Evaluation (LREC’08).

E. Marsh and D. Perzanowski. 1998. Muc-7 evaluation of
ie technology: Overview of results. In Proceedings of
the Seventh Message Understanding Conference.

D. Maynard, A. Funk, and W. Peters. 2009. SPRAT: a tool
for automatic semantic pattern-based ontology popula-
tion. In International Conference for Digital Libraries
and the Semantic Web, Trento, Italy, September.

P. Ogren. 2006. Knowtator: A Protege Plug-In For Anno-
tated Corpus Construction . In HLT-NAACL - Demos.

R. Snow, B. O’Connor, D. Jurafsky, and A. Y. Ng. 2008.
Cheap and fast—but is it good?: Evaluating non-expert
annotations for natural language tasks. In EMNLP ’08.

27

Computer-aided Ontology Development:

an integrated environment

Manuel Fiorelli, Maria Teresa Pazienza, Steve Petruzza, Armando Stellato, Andrea Turbati

ART Research Group, Dept. of Computer Science,

Systems and Production (DISP) University of Rome, Tor Vergata

Via del Politecnico 1, 00133 Rome, Italy

{pazienza, stellato, turbati}@info.uniroma2.it

{manuel.fiorelli, steve.petruzza}@gmail.com

Abstract

In this paper we introduce CODA (Computer-aided Ontology Development Architecture), an Architecture and a Framework for semi-
automatic development of ontologies through analysis of heterogeneous information sources. We have been motivated in its design by
observing that several fields of research provided interesting contributions towards the objective of augmenting/enriching ontology
content, but that they lack a common perspective and a systematic approach.
While in the context of Natural Language Processing specific architectures and frameworks have been defined, time is not yet
completely mature for systems able to reuse the extracted information for ontology enrichment purposes: several examples do exist,
though they do not comply with any leading model or architecture. Objective of CODA is to acknowledge and improve existing
frameworks to cover the above gaps, by providing: a conceptual systematization of data extracted from unstructured information to
enrich ontology content, an architecture defining the components which take part in such a scenario, and a framework supporting all of
the above through standard implementations.
This paper provides a first overview of the whole picture, and introduces UIMAST, an extension for the Knowledge Management and
Acquisition Platform Semantic Turkey, that implements CODA principles by allowing reuse of components developed inside UIMA
framework to drive semi-automatic Acquisition of Knowledge from Web Content.

1. Introduction

A number of tasks focused on ontology development as
well as on augmentation or refinement of their content
through reuse of external information has been defined in
the last decade. The nature of these tasks is manifold:
from the automation of ontology development processes
to their facilitation through innovative and effective
solutions for human-computer interaction. In some cases
their assessment has produced a plethora of (often
contrasting) methodologies and approaches (as in the case
of ontology and lexicon integration (Buitelaar, et al.,
2006; Cimiano, Haase, Herold, Mantel, & Buitelaar,
2007; Pazienza & Stellato, 2006; Pazienza & Stellato,
Linguistic Enrichment of Ontologies: a methodological
framework, 2006)); in other ones, such as ontology
learning, it has lead to founding entire new branches of
research (Cimiano, 2006)
The “external information” we are interested in, mostly
refers to diverse forms of “narrative information sources”,
such as text documents (or other kind of media, such as
audio and video) or to more structured knowledge content,
like the one provided by machine readable linguistic
resources. These latter comprise lexical resources (e.g.
rich lexical databases such as WordNet (Miller, Beckwith,
Fellbaum, Gross, & Miller, 1993), bilingual translation
dictionaries or domain thesauri), text corpora (from pure
domain-oriented text collections to annotated corpora of
documents), or other kind of structured or semi-structured
information sources, such as frame-based resources
(Baker, Fillmore, & Lowe, 1998; Shi & Mihalcea, 2005).
With the intent of providing a definition covering all of
the previously cited tasks and addressing the interaction
they have with the above resources, we coined the
expression COD (Computer-aided Ontology
Development), with this acronym covering all processes

for enriching ontology content through exploitation of
external resources, by using (semi)automatic approaches.
In this paper, we lay the basis for an architecture (CODA:
COD Architecture), supporting Computer-aided Ontology
Development, then introduce UIMAST, an extension for
the Knowledge Management and Acquisition Platform
Semantic Turkey, implementing CODA principles by
allowing reuse of components developed inside the UIMA
framework to drive semi-automatic Acquisition of
Knowledge from Web Content.

2. State-of-the-art and Motivation

Motivations and ideas for supporting fulfillment of the
above tasks’ objectives, have been often supported
through proof-of-concept systems, tools and in some cases
open platforms (Cimiano & Völker, 2005) developed
inside the research community, laying the path and
showing the way for future industrial follow-up.
Until now basic architectural definitions and interaction
modalities have been defined in detail fulfilling industry-
standard level for processes such as:

– ontology development with most recent ontology
development tools following the path laid by Protégé
(Gennari, et al., 2003)

– text analysis starting from the TIPSTER architecture
(Harman, 1992), its most notable implementation
GATE (Cunningham, Maynard, Bontcheva, &
Tablan, 2002) and the recently approved OASIS
standard UIMA (Ferrucci & Lally, 2004).

On the contrary a comprehensive study and synthesis of
an architecture for supporting ontology development
driven by knowledge acquired from external resources,
has not been formalized until now.
What lacks in all current approaches is an overall
perspective on the task and a proposal for an architecture

28

providing instruments for supporting the entire flow of
information (from acquisition of knowledge from external
resources to its exploitation) to enrich and augment
ontology content. Just scoping to ontology learning,
OntoLearn (Velardi, Navigli, Cucchiarelli, & Neri, 2005)
provides a methodology, algorithms and a system for
performing different ontology learning tasks, OntoLT
(Buitelaar, Olejnik, & Sintek, 2004) provides a ready-to-
use Protégé plugin for adding new ontology resources
extracted from text, while the sole Text2Onto (Cimiano &
Völker, 2005) embodies a first attempt to realize an open
architecture for management of ontology learning
processes.
If we consider ontology-lexicon integration, previous
studies dealt with how to represent this integrated
information (Peters, Montiel-Ponsoda, Aguado de Cea, &
Gómez-Pérez, 2007; Buitelaar, et al., 2006; Cimiano,
Haase, Herold, Mantel, & Buitelaar, 2007), other have
shown useful applications exploiting onto-lexical
resources (Basili, Vindigni, & Zanzotto, 2003; Peter,
Sack, & Beckstein, 2006) though only few works
(Pazienza, Stellato, & Turbati, 2008) dealt with
comprehensive framework for classifying, supporting,
testing and evaluating processes for integration of content
from lexical resources with ontological knowledge.

3. Objectives

Considering these expectations, we worked with the
objective of acknowledging and improving existing
frameworks for Unstructured Information Management,
thus providing:

– a conceptual systematization of the tasks covering
reuse of data extracted from unstructured information
to improve ontology content

– an architecture defining the components which take
part in such a scenario

– a framework supporting all of the above through
standard implementations

We provide here requirements and objectives which
characterize COD tasks, the COD Architecture, and a
CODA Framework

3.1. COD Tasks

Given the definition of COD provided at the beginning,
we sketch here major related tasks:

1. (Traditional) Ontology Learning tasks, devoted to
augmentation of ontology content through discovery
of new resources and axioms. They include discovery
of new concepts, concept inheritance relations,
concept instantiation, properties/relations, domain
and range restrictions, mereological relations or
equivalence relations etc…

2. Population of ontologies with new data: a rib of the
above, this focuses on the extraction of new ground
data for a given (ontology) model (or even for
specific concepts belonging to it)

3. Linguistic enrichment of ontologies: enrichment of
ontological content with linguistic information
coming from external resources (eg. text, linguistic
resources etc…)

3.2. CODA Architecture

COD Architecture (CODA, from now on) defines the
components (together with their interaction) which are
needed to support tasks above. This architecture builds on
top of existing standard for Unstructured Information
Management UIMA (UIM Architecture) (tasks 1&2) and,
for task 3, on the Linguistic Watermark (Pazienza,

Analysis Engines

Aggregate Analysis Engine

A

E
 D

e
s
c
ri
p

ti
o

n
s

Collection

Reader Analysis Engine

Analysis Engine

Analysis Engine

CODA Cas Consumer

Smart Suggestion

Identity Resolution

Projection disambiguation
Projections

Component

T
S

Ontology

CAS

RDF Semantic Repository

P
ro

je
c
ti
o

n

R
u

le
s

External

Repository

Figure 1. CODA Architecture (overview of components related to tasks 1 and 2)

29

Stellato, & Turbati, 2008) suite of ontology vocabularies
and software libraries for describing linguistic resources
and the linguistic aspects of ontologies. Figure 1 depicts
the part of the architecture supporting tasks 1 and 2. Tiny
arrows represent the use/depends on relationship, so that
the Semantic Repository owl:imports the reference
ontologies, the projection component invokes services
from the other three components in the CODA CAS
Consumer as well as is driven by the projection document
and TS and reference ontology. Large arrows represent
instead the flow of information.
While UIMA already foresees the presence of CAS
Consumers

1
 for projecting collected data over any kind of

repository (ontologies, databases, indices etc…), COD
Architecture expands this concept by providing ground
anchors for engineering ontology enrichment tasks,
decoupling the several processing steps which
characterize development and evolution of ontologies.
This is our main original contribution to the framework.
Here follows a description of the presented components.

Projection Component

This is the main component which realizes the projection
of information extracted through traditional UIM
components (i.e. UIMA Annotations).
The Unstructured Information Management (UIM)
standard foresees data structures stored in a CAS
(Common Analysis System). CAS data comprises a type
system, i.e. a description – represented through feature
structures (Carpenter, 1992) – of the kind of entities that
can be manipulated in the CAS, and the data (modeled
after the above type system) which is produced over
processed information stream.
This component thus takes as input:

– A Type System (TS)

– A reference ontology (we assume the ontology to be
written in the RDFS or OWL W3C standard)

– A projection document containing projection rules
from the TS to the ontology

– A CAS containing annotation data represented
according to the above TS

and uses all the above in order to project UIMA
annotations as data over a given Ontology Repository.

The language for defining projections allows for:

– Projecting CAS feature structures (FS) as instances
of a given class. FeaturePaths can be used to project
arbitrary feature values as instance names

– Projecting FSs as values of datatype properties. Note
that this requires ontology instances to be elected as
subjects for each occurrence of this property
annotation. The domain class which will be used to
look for instance can be specified in the projection
rule. Note that, by default, the domain of the property
is inherited from the ontology, though it may be
further restricted for the specific rule. So, for
example, if property date has owl:Thing as its domain

1 UIMA terminology is widely adopted along the paper: though

some explanations are provided here, we refer non-proficient

readers to the UIMA Glossary inside the UIMA Overview &

SDK Setup document, which is available at:

http://incubator.apache.org/uima/documentation.html

(i.e. no domain restriction), the outcome of a specific
Analysis Engine, which is able to capture dates for
conference events (or which is being used in a given
setting for this purpose), can be restricted in the
projection rule to automatically search for instances
of the restricted domain. The use that is made of the
above information is partially demanded to the
application context, in order to properly select the
right instances to be associated to the valued
property.

– Projecting complex FSs as custom graph patterns.
Some TS provide complex extraction patters which
contains much more than plain text annotations; they
possibly provide facts with explicit semantics which
only need to be properly imported into the ontology.
In this case, custom RDF graph patterns can be
defined to create new complex relations inside the
ontology. GRAPH Patterns are sets of RDF triples, in
this case enriched by the presence of bindings to TS
elements (again, in the form of FeaturePaths). When
this projection is being applied, the feature path
bindings are resolved and the ground pattern is used
in a SPARQL CONSTRUCT query to generate new
RDF triples in the Semantic Repository).

The Projection Component can be used in different
scenarios (from massively automated ontology
learning/population scenarios, to support in human
centered processes for ontology modeling/data entry) and
its projection processes can be supported by the following
components.

Identity Resolution Component

Whenever an annotation is projected towards ontology
data, the services of this component are invoked to
identify potential matches between the annotated info
which is being reified into the semantic repository, and
previously recognized resources already present inside it.
If the Identity Resolution (IR) component discovers a
match, then the new entry is merged into the existing one;
that is, any new data is added to the resource description
while duplicated information (probably the one which
helped in finding the match) is discarded.
The IR component may look up on the same repository
which is being fed by CODA though also external
repositories of LOD (linked open data) can be accessed.
Eventually, entity naming resolution provided by external
services – such as the Entity Naming System (ENS)
OKKAM (Bouquet, Stoermer, & Bazzanella, 2008) – may
be combined with internal lookup on the local repository.
Input for this component are:

– External RDF repositories (providing at least indexed
approximate search over their resources)

– Entity Naming Systems access methods

– Other parameters needed by specific implementation
of the component

Projection Disambiguation Component(s)

These components may be invoked by the Projection
Component to disambiguate between different possible
projections. Projection documents may in fact describe
more than one projection rule which can be applied to
given types in the TS. These components are thus, by
definition, associated to entries in Projection Documents

30

and are automatically invoked when more than a rule is
matched on the incoming CAS data.
This component has access by default to the current
Semantic Repository (and any reference ontology for the
Projection rules), to obtain a picture of the ongoing
process which can contribute to the disambiguation
process.

Smart Suggestion Component(s)

These components help in proposing suggestions on how
to fill empty slots in projection rules (such as subject
instances in datatype property projections or free variables
in complex FS to graph-pattern projections). As for
Disambiguation Components, these components can be
written for specific Projection Documents and associated
to the rules described inside them, as supporting
computational objects.

3.3. CODA Framework Objectives

CODA Framework is an effort to facilitate development
of systems implementing the COD Architecture, by
providing a core platform and highly reusable components
for realization of COD tasks.
Main objectives of this architectural framework are:

1. Orchestration of all processes supporting COD tasks

2. Interface-driven development of COD components

3. Maximizing reuse of components and code

4. Tight integration with available environments, such
as UIMA for management of unstructured
information from external resources (e.g. text
documents) and Linguistic Watermark (Pazienza,
Stellato, & Turbati, 2008) for management of
linguistic resources

5. Minimizing required LOCs (lines of code) and effort
for specific COD component development, by
providing high level languages for matching/mapping
components I/O specifications instead of developing
software adapters for their interconnection

6. Providing standard implementations for components
realizing typical support steps for COD tasks, such as
management of corpora, user interaction, validation,
evaluation, production of reference data (oracles, gold
standards) for evaluation, identity discoverers etc…

In the specific, with respect to components described in
section 3.2, CODA Framework will provide the main
Projection Component (and its associated projection
language), a basic implementation of an Identity
Resolution Component, and all the required business logic
to fulfill COD tasks through orchestration of COD
components.

4. Possible application scenarios

Willing to fulfill these objectives, we envision several
application scenarios for CODA. We provide here a
description of a few of them.

Fast Integration of existing UIMA components for
ontology population

By providing projections from CAS type systems to
ontology vocabularies, one could easily embed standard
UIMA AEs (Analysis Engines) and make them able to
populate ontology concepts pointed by the projections,

without requiring developing any new software
component. These projections, which are part of objective
5 above, will be modeled through a dedicated language
which will be part of the CODA framework. Moreover
(objective 6 above), standard or customized identity
discoverers will try to suggest potential matches between
entities annotated by the AE and already existing
resources in the target ontology, to keep identity of
individual resources and add further description to them.
In this scenario, given an ontology and a AE, only the
projection from the CAS type system of the AE to the
ontology is needed (and optionally, a customized identity
discoverer). Everything else is assumed to be
automatically embedded and coordinated by the
framework.

Rapid prototyping of Ontology Learning Algorithms

This is the opposite situation of the scenario above.
CODA, by reusing the same chaining of UIMA
components, ontologies, CAS-to-Ontology projections,
identity discoverers etc… , will provide:

– a preconfigured CAS type system (Ontology
Learning CAS Type System) for representing
information to be extracted under the scope of
standard ontology learning tasks (i.e. the ones
discussed in section 3.1)

– preconfigured projections from above CAS type
system to learned ontology triples

– extended interface definitions for UIMA analysis
engines dedicated to ontology learning tasks:
available abstract adapter classes will implement the
standard UIMA AnalysisComponent interface,
interacting with the above Ontology Learning CAS
type system and exposing specific interface methods
for the different learning tasks

In this scenario, developers willing to rapidly deploy
prototypes for new ontology learning algorithms, will be
able to focus on algorithm implementation and benefit of
the whole framework, disburdening them from corpora
management and generation of ontology data. This level
of abstraction far overtakes the Modeling Primitive
Library of Text2Onto (i.e. a set of generic modeling
primitives abstracting from specific ontology model
adopted and being based on the assumption that the
ontology exposes at least a traditional object oriented
design, such as that of OKBC (Chaudhri, Farquhar, Fikes,
Karp, & Rice, 1998)). In fact CODA does not even leaves
to the developer the task of generating new ontology data,
while just asks for specific objects to be associated and
thus produced for given ontology learning tasks. For
example, pairs of terms could be produced by taxonomy
learners, which need then to be projected as IS-A or
type-of relationships by the framework.

Plugging of algorithms for automatic linguistic
enrichment of ontologies

In such a scenario, the user is interested in enriching
ontologies with linguistic content originated from external
lexical resources. The Linguistic Watermark library -
which is already been used in tools for (multilingual)
linguistic enrichment of ontologies (Pazienza, Stellato, &
Turbati, 2010) and which constitutes a fundamental
module of CODA - supports uniform access to

31

heterogeneous resources wrapped upon a common model
for lexical resource definition, allows for their integration
with ontologies and for evaluation of the acquired
information. Once more, the objective is to relieve
developers from technical details such as resource access,
ontology interaction and update, by providing standard
facilities associated to tasks for ontology-lexicon
integration/enrichment, and thus leaving up to them the
sole objective of implementing enrichment algorithms.

User Interaction for Knowledge Acquisition and
Validation

User interaction is a fundamental aspect when dealing
with decision-support systems. Prompting the user with
compact and easy-to-analyze reports on the application of
automated processes, and putting at his hands instruments
for validating choices made by the system can
dramatically improve the outcome of processes for
knowledge acquisition as well as support supervised
training of these same processes. CODA front-end tools
should thus provide CODA specific applications
supporting training of learning-based COD components,
automatic acquisition of information from web pages
visualized through the browser (or management of info
previously extracted from entire corpora of documents)
and editing of main CODA data structures (such as UIMA
CAS types, projection documents and, obviously,
ontologies). Interactive tools should support iterative
refinement of massive production of ontology data as well
as human-centered process for ontology
development/evolution.

This last important environment is a further very relevant
objective, and motivated us to define and develop
UIMAST, an extension for Semantic Turkey (Griesi,
Pazienza, & Stellato, 2007; Pazienza, Scarpato, Stellato,
& Turbati, 2008), - a Semantic Web Knowledge

Acquisition and Management platform
2
 hosted on the

Firefox Web Browser - to act as a CODA front-end for
doing interactive knowledge acquisition from web pages.

5. UIMAST: A CODA-based tool supporting
dynamic ontology population

The UIMAST Project
3
 originated in late 2008, with the

intent of realizing a system for bringing UIMA support to
Semantic Turkey’s functionalities for Knowledge
Acquisition. The project has been organized around two
main milestones:

– Supporting manual production of UIMA CAS
compliant annotations

– Reuse UIMA annotators to automatically extract
information from web pages and project them over
the edited ontology

Milestone 1 has been reached in early 2009, with the first
release of UIMAST. This release features:

1. A UIMA Type System Editor (figure 2 above), more
intuitive to use than the Eclipse-based one bundled
with UIMA, in that it provides a taxonomical view of
edited Feature Structures, showing explicit and
inherited attributes for each Type.

2. Interactive UIMA annotator: Semantic Annotations
taken through Semantic Turkey can be projected as

2 https://addons.mozilla.org/it/firefox/addon/8880 is the official

page on Firefox add-ons site addressing Semantic Turkey

extension, while http://semanticturkey.uniroma2.it/ provides an

inside view about Semantic Turkey project, with updated

downloads, user manuals, developers support and access to ST

extensions.
3 http://semanticturkey.uniroma2.it/extensions/uimast/. The idea for

the project has been awarded with IBM UIMA Innovation Award

http://download.boulder.ibm.com/ibmdl/pub/software/dw/univer

sity/innovation/2007_uima_recipients.pdf

Figure 2. UIMAST Type System Editor

32

UIMA Annotations. A xml based projection
language

4
allows to project standard annotations taken

against any domain ontology with respect to a given
Type System. Currently there is no system supporting
manual production of UIMA annotations from Web
Pages. Annotations taken by human annotators can be
reused to train machine-learning based AEs as well as
to evaluate the output of AEs by producing golden-
standard annotated documents.

Annotations taken through feature 2 can be exported in
different formats, providing that their content can be
projected according to begin/end attributes of UIMA
AnnotationBase feature. By default, UIMAST exploits x-
pointer annotations taken through the RangeAnnotator

5

extension of Semantic Turkey.
During Milestone 2, we produced a cross-SOFA

6

annotator which is able to parse content of specific
document formats (such as HTML, PDF etc…) and
produce cross-annotations setting links between pure raw-
text surrogates of analyzed documents and their original

4http://semanticturkey.uniroma2.it/extensions/uimast/schemas/pr

ojection-20081117.xsd
5 http://semanticturkey.uniroma2.it/extensions/rangeannotator/
6 SOFA: Subject OF Analysis, a perspective over a (multimodal)

artifact, see UIMA User guide

source formats. An HTML version of this annotator thus
accepts HTML documents, stores their content in a
dedicated HTML SOFA, then runs an HTML SAX parser
erupting raw-text content which is stored in a dedicated
SOFA and cross-linked with the tag elements of the
former one.
X-pointer annotations taken over the HTML page can thus
be easily aligned with annotations taken over raw-text.
This alignment allows to produce standard char-offset
annotations starting from those manually taken with the
interactive UIMA annotator, as well as to project
automatically generated annotations produced by UIMA
AEs (which usually work over raw text content) over
X-Pointer references; as a consequence they can be
visualized inside the same web page under analysis
(which is the objective of milestone 2).
Currently, the new release of UIMAST provides:

1. A projection editor (figure 3: supporting only simple
Class and Property projections)

2. A UIMA pear installer, able to load UIMA pear
packages

3. The Visual Knowledge Acquisition Tool (KA Tool or
simply KAT).

KAT provides visual anchors for users willing to semi-
automatically import textual information present inside

Figure 3. Editing Projections in UIMAST: from simple TS feature EmailAddress to ontology Datatype property email

33

web pages into the current working ontology of Semantic
Turkey. While knowledge acquisition in standard
Semantic Turkey requires the user to perform manual
work (discovery of useful info and annotation) and
decision making (produce data from annotated elements),
UIMAST KAT heavily exploits the background
knowledge available from the Type System of the loaded
AEs and the projection document, as well as beneficiating
of support coming from CODA components in the form of
smart suggestions, resolved identities etc…) thus speeding
up the acquisition process in the direction of automatizing
the task.
In an ordinary KA session, the user starts by defining the
tool setup: this implies loading one or more UIMA pears

7

through the pear installer and then loading a projection
document associated to the currently edited ontology and
the imported pears (all of the above may be stored as
default settings for the ontology project being edited so
that this process will not need to be repeated each time).
After tool setup, the user can immediately inspect web
pages containing interesting data which can be extracted
by the loaded AEs. The KAT then highlights all the text
sections of the web page which have been annotated by
the AEs. Each of these dynamically added highlights is
not a purely visual alteration of the underlying HTML, but
an active HTML component providing fast-to-click
acceptance of proposed data acquisitions as well as more
in-depth decision making procedures.
As an example of integrated process involving different
resources in a user defined application, see figure 4 where

7 A UIMA components package

a simple Named Entity Recognizer (the one bundled with
UIMA sample AEs) has been projected towards ontology
class Person. The AE has been launched and named
entities discovered over the page have been highlighted.
When the user passes with the mouse over one of these
highlighted textual occurrences, the operation available
from the projection doc is shown, and the user can right
away either authorize its execution, or modify its details.
In the example in the figure, the user has been prompted
with the subtree rooted in the projected ontology class,
and the user chooses to associate selected name to class
Researcher instead of the more general Person. Should an
identity resolution component discover that the given text
may correspond to an existing resource (from the same
edited ontology or from an external ENS), then he may
choose to associate the taken annotation to it or reject it
and create a new one.

6. Conclusion

The engineering of complex processes involving
manipulation, elaboration and transformation of data and
synthesis of knowledge is a recognized and widely
accepted need, which lead in these years to the
reformulation of tasks in terms of processing blocks other
than (more than?) resolution steps. While traditional
research fields such as Natural Language Processing and
Knowledge Representation/Management have now found
their standards, cross-boundary disciplines between the
two need to find their way towards real applicability of
approaches and proposed solutions. CODA aims at filling
this gap by providing on the one hand a common

Figure 4. Knowledge Acquisition with UIMAST

34

environment for ontology development through
knowledge acquisition, and on the other one by reusing
the many solutions and technologies which years of
research on these fields made easily accessible .
We hope that the ongoing realization of CODA will lead
to a more mature support for research in the fields of both
ontology learning and ontology/lexicon interfaces, .

7. References

Baker, C., Fillmore, C., & Lowe, J. (1998). The Berkeley
FrameNet project. COLING-ACL. Montreal, Canada.

Basili, R., Vindigni, M., & Zanzotto, F. (2003).
Integrating Ontological and Linguistic Knowledge for
Conceptual Information Extraction. IEEE/WIC
International Conference on Web Intelligence.
Washington, DC, USA.

Bouquet, P., Stoermer, H., & Bazzanella, B. (2008). An
Entity Naming System for the Semantic Web. In
Proceedings of the 5th European Semantic Web
Conference (ESWC 2008). Springer Verlag.

Buitelaar, P., Declerck, T., Frank, A., Racioppa, S.,
Kiesel, M., Sintek, M., et al. (2006). LingInfo: Design
and Applications of a Model for the Integration of
Linguistic Information in Ontologies. OntoLex06.
Genoa, Italy.

Buitelaar, P., Olejnik, D., & Sintek, M. (2004). A Protégé
Plug-In for Ontology Extraction from Text Based on
Linguistic Analysis. Proceedings of the 1st European
Semantic Web Symposium (ESWS). Heraklion, Greece.

Carpenter, B. (1992). The Logic of Typed Feature
Structures. Cambridge Tracts in Theoretical Computer
Science ((hardback) ed., Vol. 32). Cambridge
University Press.

Chaudhri, V. K., Farquhar, A., Fikes, R., Karp, P., &
Rice, J. P. (1998). OKBC: A programmatic foundation
for knowledge base interoperability. In Proceedings of
the Fifteenth National Conference on Artificial
Intelligence (AAAI-98) (pp. 600-607). Madison,
Wisconsin, USA: MIT Press.

Cimiano, P. (2006). Ontology Learning and Population
from Text Algorithms, Evaluation and Applications
(Vol. XXVIII). Springer.

Cimiano, P., & Völker, J. (2005). Text2Onto - A
Framework for Ontology Learning and Data-driven
Change Discovery. Proceedings of the 10th
International Conference on Applications of Natural
Language to Information Systems, (pp. 227-238).
Alicante.

Cimiano, P., Haase, P., Herold, M., Mantel, M., &
Buitelaar, P. (2007). LexOnto: A Model for Ontology
Lexicons for Ontology-based NLP. In Proceedings of
the OntoLex07 Workshop (held in conjunction with
ISWC'07).

Cunningham, H., Maynard, D., Bontcheva, K., & Tablan,
V. (2002). GATE: A Framework and Graphical
Development Environment for Robust NLP Tools and
Applications. In Proceedings of the 40th Anniversary
Meeting of the Association for Computational
Linguistics (ACL'02). Philadelphia.

Ferrucci, D., & Lally, A. (2004). Uima: an architectural
approach to unstructured information processing in the
corporate research environment. Nat. Lang. Eng. , 10
(3-4), 327-348.

Gennari, J., Musen, M., Fergerson, R., Grosso, W.,
Crubézy, M., Eriksson, H., et al. (2003). The evolution
of Protégé-2000: An environment for knowledge-based
systems development,. International Journal of
Human-Computer Studies , 58 (1), 89–123.

Griesi, D., Pazienza, M., & Stellato, A. (2007). Semantic
Turkey - a Semantic Bookmarking tool (System
Description). In E. Franconi, M. Kifer, & W. May (A
cura di), The Semantic Web: Research and
Applications, 4th European Semantic Web Conference,
ESWC 2007, Innsbruck, Austria, June 3-7, 2007,
Proceedings. Lecture Notes in Computer Science. 4519,
p. 779-788. Springer.

Harman, D. (1992). The DARPA TIPSTER project.
SIGIR Forum , 26 (2), 26-28.

Miller, G. A., Beckwith, R., Fellbaum, C., Gross, D., &
Miller, K. (1993). Introduction to WordNet: An On-line
Lexical Database.

Pazienza, M. T., & Stellato, A. (2006). Exploiting
Linguistic Resources for building linguistically
motivated ontologies in the Semantic Web. Second
Workshop on Interfacing Ontologies and Lexical
Resources for Semantic Web Technologies
(OntoLex2006), held jointly with LREC2006.
Magazzini del Cotone Conference Center, Genoa, Italy.

Pazienza, M. T., Stellato, A., & Turbati, A. (2010). A
Suite of Semantic Web Tools Supporting Development
of Multilingual Ontologies. In G. Armano, M. de
Gemmis, G. Semeraro, & E. Vargiu (Eds.), Intelligent
Information Access. Studies in Computational
Intelligence Series. Springer-Verlag.

Pazienza, M., & Stellato, A. (2006). Linguistic
Enrichment of Ontologies: a methodological
framework. Second Workshop on Interfacing
Ontologies and Lexical Resources for Semantic Web
Technologies (OntoLex2006). Genoa, Italy.

Pazienza, M., Scarpato, N., Stellato, A., & Turbati, A.
(2008). Din din! The (Semantic) Turkey is served!
Semantic Web Applications and Perspectives. Rome,
Italy.

Pazienza, M., Stellato, A., & Turbati, A. (2008).
Linguistic Watermark 3.0: an RDF framework and a
software library for bridging language and ontologies in
the Semantic Web. Semantic Web Applications and
Perspectives, 5th Italian Semantic Web Workshop
(SWAP2008). FAO-UN, Rome, Italy.

Peter, H., Sack, H., & Beckstein, C. (2006).
SMARTINDEXER – Amalgamating Ontologies and
Lexical Resources for Document Indexing. Workshop
on Interfacing Ontologies and Lexical Resources for
Semantic Web Technologies (OntoLex2006). Genoa,
Italy.

Peters, W., Montiel-Ponsoda, E., Aguado de Cea, G., &
Gómez-Pérez, A. (2007). Localizing Ontologies in
OWL. In Proceedings of the OntoLex07 Workshop
(held in conjunction with ISWC'07).

Shi, L., & Mihalcea, R. (2005). Putting Pieces Together:
Combining FrameNet, VerbNet and WordNet for
Robust Semantic Parsing. CICLing 2005, (pp. 100-
111). Mexico.

Velardi, P., Navigli, R., Cucchiarelli, A., & Neri, F.
(2005). Evaluation of ontolearn, a methodology for
automatic population of domain ontologie. In Ontology
Learning from Text: Methods, Applications and
Evaluation. IOS Press.

35

Building a French-speaking community around UIMA, gathering research,
education and industrial partners, mainly in Natural Language Processing and

Speech Recognizing domains

Nicolas Hernandez, Fabien Poulard, Matthieu Vernier, Jérôme Rocheteau

LINA (CNRS - UMR 6241) – University of Nantes
2 rue de la Houssinière – B.P. 92208, 44322 NANTES Cedex 3, France

first.last@univ-nantes.fr

Abstract
We report on the efforts we have made to build a UIMA French-speaking community both in Natural Language Processing and Speech
Recognizing domains that would bring together researchers, industrials and educational interests. We present the services we set up as
well as the resources we distribute freely under open licences to accomplish this objective. Most of them are currently available on the
uima-fr.org Web Portal.

1. Introduction
Nowadays, it is crucial for a NLP (Natural Language Pro-
cessing) laboratory which aims at playing a role within the
national and the international community to acquire a ro-
bust middleware backbone to support its research and engi-
neering activities. The issues are numerous:

• to ensure interoperability among the team members
and with the project partners;

• to reuse existing software tools and consequently to
benefit from preceding development efforts;

• to go beyond the prototype stage and to make possible
the transfer toward industrial releases; In particular by
taking into account scalable issues and distributed ar-
chitecture;

• to be able to build more complex business applica-
tions;

• to be promptly operational and responsive to answer
scientific and engineering national and international
project calls;

• to demonstrate its know-how by deploying its software
results as web services for example;

• to extend its business activities to data processing
other than text such as audio or video.

In France, although GATE1, NLTK2 and Nooj3 have been
used as educational and research tools, there is no common
agreement on the use of a particular platform for these pur-
poses. Instead, it is not rare than researchers produce ad hoc
solutions for their workflow management and language en-
gineering problems.

1gate.ac.uk
2www.nltk.org
3www.nooj4nlp.net

Since December 2007, the NLP team of the LINA lab. at
the University of Nantes (Nantes Atlantic Computer Sci-
ence Laboratory) has explored the Apache UIMA frame-
work as a middleware architecture to support its educa-
tional, research and engineering projects.
By comparison with the above-cited platforms, the Apache
UIMA (Unstructured Information Management Architec-
ture4) framework (Ferrucci and Lally, 2004) suits our needs
for several reasons: Apache UIMA is an open, industrial-
strength, scalable and extensible platform for creating, in-
tegrating and deploying unstructured (or semi-structured)
information (text, audio, video...) management applica-
tions which help to build the bridge from unstructured in-
formation to structured knowledge. Apache UIMA disso-
ciates the engineering middleware problems from NLP is-
sues, its principles (semantic search and content analytics)
result from a standardization effort at OASIS5, its interna-
tional community is very active, its Apache license fits re-
search objectives and allows collaboration with industrial
partners, and it is integrated in the Eclipse IDE (Integrated
Development Environment).
So far the French-speaking community has paid little at-
tention to this framework, mainly because, since Apache
UIMA is a recent framework (the first Apache release is
from December 2007), there were few NLP components
compared to other frameworks like GATE; In particular for
processing French. It is also correct to say that although
several tools were available from the first release (such as
a standalone workflow manager, an annotation viewer or a
web REST service UIMA workflow deployer), the graphic
user interfaces of these tools have remained quite basic.
In this paper, we report on the efforts we have made to
build a UIMA French-speaking community both in Natu-
ral Language Processing and Speech Recognizing domains
that would bring together researchers, industrials and edu-
cational interests. Our intentions of building this commu-
nity are twofold:

1. to encourage the French-speaking academic and in-

4incubator.apache.org/uima
5www.oasis-open.org/committees/uima

36

dustrial organizations which have not yet adopt a mid-
dleware solution to use UIMA as a common develop-
ment framework and middleware architecture for their
research and engineering projects;

2. to improve the collaborative development of common
UIMA-based NLP tools and components for process-
ing French.

We present the services we have set up as well as the re-
sources we distribute freely under open licences to accom-
plish this objective. Most of them are currently available on
the uima-fr.org Web Portal. They consist of:

• A web portal to discuss and exchange information
about UIMA;

• A bundle of scripts and resources for automatically in-
stalling the whole of the Apache UIMA SDK;

• A bundle of UIMA-based components including some
French NLP preprocessing components, a type map-
per and a semantic rule-based analyser;

• A bundle of UIMA tools including an Analysis Engine
Apache Maven archetype and an advanced web rest
server;

• Course and training materials.

Among similar efforts all around the world (Germany,
Japan, UK, USA), we count the LTI repository at the
Carnegie Mellon University6, the Apache repository7, the
DKPro repository at the Darmstadt University 8 (Gurevych
et al., 2007), the Julie lab repository9 at the Jena Univer-
sity(Hahn et al., 2007) and the U-Compare project reposi-
tory10 (Kano et al., 2009).
These efforts are mainly dedicated to host UIMA tools
and components. In comparison, we also focus on ser-
vices and resources to help colleagues to quickly be produc-
tive with UIMA. Nevertheless it is important to notice that
the project aims at encouraging the creation of a French-
speaking community but it is not strictly dedicated to pro-
cess French.
This project has been supported by both an IBM Unstruc-
tured Information Analytics 2008 Innovation Award and
several LINA’s research projects. The LINA have been
using actively the UIMA framework in several ANR (Na-
tional Research Agency) and local research projects. In the
PIITHIE11 project, we develop and deploy semantic and
discourse analyzers as web services, in order to detect pla-
giarism and text reuse. In the Blogoscopie12 project, we

6uima.lti.cs.cmu.edu
7incubator.apache.org/uima
8www.ukp.tu-darmstadt.de/software/dkpro
9www.julielab.de/Resources/Software/NLP_

Tools.html
10u-compare.org/components
11www.piithie.com financed by the ANR under the Soft-

ware Technologies Program 2006–2008
12www.blogoscopie.org financed by the ANR under the

Software Technologies Program 2006–2008

develop a component for opinionmining in blogs. In the C-
Mantic13 project, we aim at developing a semantic search
engine with UIMA for the semantic analysis parts. In the
Miles14 project, UIMA will be used as the architecture to
connect various geographically distributed components for
speaker recognizing in text transcription. All these projects
involve various academic and industrial partners.

2. The UIMA concepts
In the UIMA jargon, the Common Analysis Structure (CAS)
is the data structure which is exchanged between the UIMA
workflow components. It includes the data, subject of anal-
ysis and called the Artefact, and the metadata, in general
simply called the Annotations, which describe the data. The
annotations are stored in an index within the CAS. The an-
notations structure is called the Types System (TS) and con-
sist of an implementation of a given annotation scheme. A
UIMA workflow is made of three types of components: the
Collection Reader (CR) which imports the data to process
(for example from the Web or from the file system...) and
turns it into a CAS. The Analysis Engines (AE) which lit-
erally process the data (including but not restricted to NLP
analysis tasks); The annotations result from AE process-
ing. And lastly the CAS Consumer (CC) which exports the
annotations (for example to a database or to an XML rep-
resentation of the analysis results).

3. The uima-fr.org web portal services
As part of the efforts, we count the launch of a French-
speaking web portal about UIMA, uima-fr.org. This
portal aims at developing a UIMA French-speaking com-
munity by providing services for French-speaking users
and developers, researchers or professionals from both aca-
demic and industrial organizations to discuss and exchange
information about UIMA.
Currently, the portal offers three main services allowing
anyone to inform and to share informations about UIMA.

• a discussion list sympa.univ-nantes.fr/wws/
info/discussion-uima-fr;

• a feed aggregator designed to collect posts from the
blogs of any members of the community and display
them on a single page uima-fr.org/planet;

• and a resource repository available under open license;

The first two services, the discussion list and the feed ag-
gregator, aim at collecting FAQ explanations and HOWTO
procedures in French. They act as a first step toward a more
structured version of the content that a wiki could offer for
example. Topics cover both users and developers interests,
dealing with install, use, teaching and development issues
both with the Apache UIMA framework and the third-part
tools and components.
The third service aims at freely distributing the documenta-
tion, the tutorial and the education resources as well as the
ready-to-use UIMA-based components and UIMA tools we
created.

13www.c-mantic.org financed by the ANR under the Data
mining and knowledge 2007–2009

14Regional project, ”Pays de Loire” 2007–2009

37

4. Scripts and resources for installing the
Apache UIMA SDK

The Apache UIMA Software development kit (SDK) is
made of several tools and dependencies namely the Java
Sun Development Kit (JDK), the Eclipse Integrated Devel-
opment Environment (IDE), some Eclipse plugins and the
Apache UIMA framework itself. This basic environment
can be extended to include Apache Tomcat or other third-
part tools or uima-based components.
Despite the fact that it exists a well-made documentation
to help the installation and the use of all these tools and
dependencies, it is not always easy to get into it because
each tool has it own installation instructions, because it also
may require a few engineer skills or sensitivity, because it
can take some times to handle all of that. . .
To avoid all these disheartening aspects, we decided to pro-
vide some scripts to assist the download, the configuration,
the installation of the UIMA SDK as well as its run within
the Eclipse IDE.
We worked out that Eclipse would support the use of UIMA
workflows and the development of UIMA-based compo-
nents. The scripts were dedicated to run on Debian-like
systems. They were validated on Ubuntu 8.10 Hardy and
9.04 Jaunty. Currently two versions of them are distributed:

• a light version which requires the launch of a down-
load script to retrieve the tools and the dependencies
of the UIMA SDK;

• and a standalone version which directly includes all
the required tools as a resources package. The
20100207 version integrated the JDK 6u17, Eclipse
Galileo 3.5 IDE, the subeclipse Subversion and
the m2eclipse Maven eclipse plugins, the Apache
UIMA 2.3.0-incubating framework, the Apache Tom-
cat 6.0.20 web server and the OpenNLP v1.3 toolkit.

In order to follow the progress of the resources, the scripts
were written to work with a property file where the version
and the url of the tools to use can be set up. These scripts
are distributed under GPLv3 license.

5. UIMA-based components
We present below some French NLP preprocessing compo-
nents as well as a type mapper and a semantic rule-based
components.

5.1. French NLP preprocessing components and type
system

In order to open the French NLP community to UIMA, we
focused on the development and the distribution of prepro-
cessing components which are commonly used in most of
the NLP applications. The underlying idea was to offer a
base from which collegues could directly start to work on
their own applications and issues without losing times.
The components we worked out and distribute now permit
the following processing: URI-based data import, MIME
type recognition, text extraction, language recognition,
NLP preprocessing (tokenization, stemming, POS tagging,
lemmatization). We decided to wrap widely known and
used tools whenever it was possible at least for three main

reasons: First, it is a tremendous work to redevelop from
scratch and we did not have the time neither the fund to do
it. Second, so that novice people in UIMA but not in NLP
wouldn’t be too lost. And last but not the least, in order
to enjoy the evolutions of other tools progressing indepen-
dently.
Namely, we wrap the following tools and libraries: Apache
Tika15 (toolkit for detecting and extracting metadata and
structured text content from various documents using ex-
isting parser libraries), nGRAMj (a Java based library
providing robust and state of the art language recogni-
tion/guessing) 16, the Snowball library17 (French stemmer),
Brill (POS tagger) 18, TreeTagger Schmidt (POS tagger and
lemmatizer) 19, Flemm (lemmatizer) 20. In future work, we
will include wrappers for TreeTagger and Minipar chun-
kers.
Our Tika Annotator acts in a complementary way with the
Apache one since it works with URI as input and provided
Dublin Core compliant markup annotations whenever the
types of information are available. Compared to the Tree-
Tagger wrapper of DKPro Repository, we map the Tree-
Tagger outputs to the MulText annotation scheme.
Based on the capabilities of the available preprocess-
ing tools for lemmatization, postagging and chunking in
French, we have designed a Multext21 compliant type sys-
tem to annotate morphosyntaxic informations, with a par-
ticular attention to French language. This type system is
currently experimented in our projects. Similarly to the
Julie lab and U-compare project’s type systems (Hahn et
al., 2007; Kano et al., 2009), we intend to make the type
system as generic as possible. Our type system is compli-
ant with them as well as offering a specialization for French
language.

5.2. A Type Mapper Component
One of the major issue dealing with any workflow man-
agement frameworks is the components interoperability.
UIMA components only exchange data. So the data struc-
ture of the shared data is important since it ensures the in-
teroperability.
Currently, there are at least three proposals for a tool- and
domain-independent type system: The CCP meta model
type system (Verspoor et al., 2009), the Julie lab’s type
system (Hahn et al., 2007) and the U-Compare project’s
type system (Kano et al., 2009). The former consists of a
simple annotation hierarchy where the domain semantics is
captured through pointers into external resources. The sec-
ond and the third roughly consist of an abstract hierarchy of
NLP concepts covering the various linguistic analysis lev-
els.

15incubator.apache.org/tika/
16ngramj.sourceforge.net
17snowball.tartarus.org
18en.wikipedia.org/wiki/Brill_tagger
19www.ims.uni-stuttgart.de/projekte/

corplex/TreeTagger
20www.univ-nancy2.fr/pers/namer/

Telecharger_Flemm.htm
21aune.lpl.univ-aix.fr/projects/MULTEXT and

nl.ijs.si/ME/ Multilingual POS Tagset projects

38

According to us, tool and domain-independent type sys-
tems should be used whenever it is possible, at least as
an example frame. But in our opinion, it will always be
necessary to develop software converters from/to the pro-
posed standard solution at least for two main raisons: First,
in order to ensure the compatibility with pre-existing an-
notated data and processing softwares (which may have
taken considerable time and funding to develop); this di-
rectly concerns the current tool- and domain-independent
type systems22. Second, the need for new ad hoc type sys-
tem will always exist for some problem adequacy reasons
(unexplored application/domain/language, new or opposite
theoretical approach, language dependency) and economic
specifications (software resources to use imperatively).
For all these reasons, we decided to develop a generic con-
verter Analysis Engine, called the Type Mapper, to per-
mit the mapping of types or features values into others.
The precondition for type mapping is that all the concerned
types inherit from uima.tcas.Annotation so that they could
have a begin and end offset. For each annotation of a given
type, our Type Mapper component creates one or several
annotations at the same offset. The code is totally generic
except it requires both to put in the build path the various
type systems classes involved as well as to set up the in-
put/output capabilities of the converter. The mapping rules
are specified in an external file as a parameter.
The preprocessing components package described in Sec-
tion 5.1. includes a version for mapping the POS taggers
and lemmatizer outputs to the Multext scheme.

5.3. A semantic rule-based analyser
Analysis is one of the major NLP tasks. A semantic rule-
based analyser should enable to create or update annota-
tions according to rules expressed over other annotations.
Currently, the Apache Regular Expression Annotator
(RegexAnnotator) is an analysis engine which can create or
update annotations but unfortunately it is dedicated to text
surface analysis at the character level. The Apache Lucene
CAS indexer (Lucas) are CAS consumers that stores anno-
tations in an external index. It is then possible to make some
structured searches in a Lucene application. The IBM Se-
mantic Search, also referenced in the Apache UIMA repos-
itory, works similarly. These solutions are external appli-
cations and are not part of a UIMA workflow (at least na-
tively). The Apache Configurable Feature Extractor (CFE)
enables feature extraction from a CAS according to rules
expressed using the Feature Extraction Specification Lan-
guage (FESL). This is assurely a step toward the solution
we are looking for but the CFE is a Cas Consumer and it
does not enable natively annotation creation or update. The
TextMarker component (Kluegl et al., 2009)23 is a very ap-
pealing project but so far it remains very complex to use
and quite dependent of the Eclipse environment.
Based on the Type Mapper we presented in Section 5.2., we
started to develop a semantic rule-based analysis engine.

22The U-Compare project comes with some ad hoc Type Sys-
tem converters from CCP, OpenNLP and Apache which turn them
into the U-Compare Type System. It offers also some U-Compare
Type System to OpenNLP.

23tmwiki.informatik.uni-wuerzburg.de

We start from the Type Mapper since a semantic rule can
be considered as a mapping operation from a contextually
constrained source type. Currently, we are maintaining two
development branches.
The former is based on the Apache UIMA API (Applica-
tion Programming Interface). From a formal language we
defined with ANTLR (ANother Tool for Language Recog-
nition)24, constraints are dynamically generated over the
annotations, then the annotations are filtered according to
the constraints. So far, the constraint language permits to
specify annotations features and covered text values.
The latter branche follows an alternative approach. The
idea was to transpose the problem to another domain where
a request language over structured data and its processing
engine are already available. The Lucas Annotator and
the IBM Semantic Search developers chose to transpose
to a database request problem. We chose to transpose the
CAS analysis problem to a XML analysis problem. The
XPath language offers to express constraints over a struc-
ture somehow quite similar to the text structure with the
possibility to specify directions within. Futhermore it has
several functions, in particular String functions. The ma-
jor drawback is that XML is by definition a tree structure
but not necessary the CAS. We solve the problem by us-
ing the JXPath25 library which applies XPath expressions
to graphs of objects of all kinds by setting a context node.
So far, the two branches progress at the same level. This
work is hosted at the Google forge26.

6. UIMA tools
Below we present some tools we have been developed dur-
ing our projects and we wish to distribute to the community.

6.1. An Advanced Web Rest Server
Among the tools available in the Apache repository, the
Simple Server permits to provide UIMA analysis as a REST
service. The server processes text raw data attached in
HTTP request and outputs analysis results in an XML
ad hoc format.
For the need of the PIITHIE project, we extended this ver-
sion in three ways: First, the input source does not need
to be attached to the HTTP request but can be specified by
an URI (Universal Reference Identifier). The Server auto-
matically upload the resource from the URI thanks to the
JAVA API. Second, URI can refer to any resource formats.
We included the Tika library in the server side. Third, the
server can process XMI data in input and provides XMI in
output. The server can turn the XMI into a CAS as long as
the described annotations belong to a type system available
in its classpath.
Recently, we decided to distribute this work and to ex-
tend it with new features such as PEAR (Processing Engine
ARchive), collection and access rights management. This
project is hosted at the Google forge27.

24www.antlr.org
25commons.apache.org/jxpath
26code.google.com/p/uima-type-mapper
27code.google.com/p/advanced-uima-web-rest-server

39

6.2. An Analysis Engine Maven Archetype
Apache Maven28 is a build manager for Java projects. One
of its features is the archetype facility which offers a way
to define template project.
We built an Analysis Engine Maven Archetype in order to
save the best practices we defined as well as to enable new
developers jumping board as quickly as possible.
The archetype creates a repository project dedicated to
the development of an Analysis Engine adding the UIMA
nature to it. It comes with an annotator code and
descriptor templates which include generic parameters.
These parameters are meant to specify the input/output
views/types/encoding. The archetype also creates some ba-
sic files such as a README and a LICENSE files.

7. Course and training materials
In order to animate and to train the community to the UIMA
framework, we organized a training session during the 10th
edition of the LSM/RMLL29 (Libre Software Meeting) con-
ferences 2009. This session presented how to build and to
carry out processing chains and to develop his own UIMA
components. For this purpose, we built tutorial-handouts,
exercices and answers codes, and videos. We have also
used Apache UIMA as a framework for educational pur-
pose. We wrote course materials for Master’s programs.
We focused on writing UIMA components and interfacing
UIMA with WEKA (Machine Leaning Library). All these
resources are referenced on the uima-fr.org web por-
tal.

8. Conclusion and future works
Many of the mentioned resources are currently dispatched
on several web pages (LINA web pages30, uima-fr.org
planet and repository, Google forge projects). We are cur-
rently setting up a main index in the uima-fr.org repos-
itory. The UIMA-based components and UIMA tools are
distributed under Apache 2.031 or GPLv3 32 license. The
training resources are distributed under a double License
CC-by-sa fr 2.033 and GNU FDL34. One of our future works
will concern the distribution of the components across an
Apache Maven repository since it handles automatically the
download of package dependencies.
The list of components we presented remains uncomplete.
Indeed, our components bundle includes a Command Line
analysis engine which performs on a given view the shell
command specified and get the result in a dedicated annota-
tion. This annotator is useful to easily and quickly integrate
external softwares. The bundle includes also a XML-to-
CAS analysis engine which parses any well formed XML

28maven.apache.org
292009.rmll.info
30www.lina.univ-nantes.fr/-TALN-.html
31www.apache.org/licenses/LICENSE-2.0.html
32GNU General Public License www.gnu.org/licenses/

gpl.html
33Creative Commons Attribution-Noncommercial-Share Alike

2.0 France License creativecommons.org/licenses/
by-nc-sa/2.0/fr

34GNU Free Documentation License, www.gnu.org/
licenses/fdl-1.2.html

data files and maps the XML structure, the elements and
the attributs into generic annotation feature structures.
Some other components and tools are also planed depend-
ing on our project participations. In particular, in the con-
text of the European TTC 2010–2012 project, we will de-
velop UIMA wrappers for term extraction and alignement
tools as well as UIMA collection management tools.
These resources and services have been set up by the Com-
puter Sciences Laboratory of Nantes Atlantic (LINA), we
invite anyone who wants to contribute to come and dis-
cuss in the uima-fr.org discussion list. Initially, due
to some projects, the community was meant to be in Natu-
ral Language Processing and Speech Recognizing domains
but it is widely open to any unstructured data management
with UIMA issues.

Acknowledgements
Currently, the research leading to these results has received fund-
ing from the European Community’s Seventh Framework Pro-
gramme (FP7/2007-2013) under Grant Agreement no 248005.

9. References
David Ferrucci and Adam Lally. 2004. Uima: an architec-

tural approach to unstructured information processing in
the corporate research environment. Natural Language
Engineering, 10(3-4):327–348.

Iryna Gurevych, Max Mühlhäuser, Christof Müller, Jürgen
Steimle, Markus Weimer, and Torsten Zesch and. 2007.
Darmstadt knowledge processing repository based on
uima. In Proceedings of the First Workshop on Unstruc-
tured Information Management Architecture at Biannual
Conference of the Society for Computational Linguistics
and Language Technology, Tübingen, Germany.

Udo Hahn, Ekaterina Buyko, Katrin Tomanek, Scott Piao,
John McNaught, Yoshimasa Tsuruoka, and Sophia Ana-
niadou. 2007. An annotation type system for a data-
driven nlp pipeline. In The LAW at ACL 2007 – Proceed-
ings of the Linguistic Annotation Workshop, pages 33–
40. Prague, Czech Republic, June 28-29, 2007. Strouds-
burg, PA: Association for Computational Linguistics.

Yoshinobu Kano, Luke McCrohon, Sophia Ananiadou, and
Jun’ichi Tsujii. 2009. Integrated NLP evaluation sys-
tem for pluggable evaluation metrics with extensive in-
teroperable toolkit. In Proceedings of the Workshop on
Software Engineering, Testing, and Quality Assurance
for Natural Language Processing (SETQA-NLP 2009),
pages 22–30, Boulder, Colorado, June. Association for
Computational Linguistics.

Peter Kluegl, Martin Atzmueller, and Frank Puppe. 2009.
Textmarker: A tool for rule-based information extrac-
tion. In Christian Chiarcos, Richard Eckart de Castilho,
and Manfred Stede, editors, Proceedings of the Biennial
GSCL Conference 2009, 2nd UIMA@GSCL Workshop,
pages 233–240. Gunter Narr Verlag.

Karin Verspoor, William Baumgartner Jr., Christophe
Roeder, and Lawrence Hunter. 2009. Abstracting the
types away from a uima type system. In 2nd UIMA
Workshop at Gesellschaft für Sprachtechnologie und
Computerlinguistik (GSCL), Tagung, Germany, October.

40

Generating an NLP Corpus from Java Source Code: The SSL Javadoc Doclet

Ninus Khamis, Juergen Rilling, and René Witte

Department of Computer Science and Software Engineering
Concordia University, Montréal, Canada

Abstract
Source code contains a large amount of natural language text, particularly in the form of comments, which makes it an emerging target
of text analysis techniques. Due to the mix with program code, it is difficult to process source code comments directly within NLP
frameworks such as GATE. Within this work we present an effective means for generating a corpus using information found in source
code and in-line documentation, by developing a custom doclet for the Javadoc tool. The generated corpus uses a schema that is easily
processed by NLP applications, which allows language engineers to focus their efforts on text analysis tasks, like automatic quality control
of source code comments. The SSLDoclet is available as open source software.

1. Introduction
One of the main challenges in Software Engineering is per-
forming software maintenance tasks on an application that
a developer is unfamiliar with. An important software en-
gineering artefact used by developers and maintainers to
assist in software comprehension and maintenance is source
code documentation. Source code documents provide the
insight needed by developers and maintainers to effectively
perform their tasks, and therefore ensuring the quality of
this documentation is extremely important. In-line docu-
mentation is at the forefront of explaining a programmer’s
original intentions for a given implementation. The blocks
of text are inserted directly in source code, and are designed
to efficiently assist others in understanding the source code.
Since in-line documentation is written in natural language,
they are a prime candidate for applying NLP and text mining
methods, e.g., for quality assurance, ontology population,
or traceability recovery. However, inline comments are
mixed with source code in a way that makes them difficult
to work with directly when using standard NLP tools such as
GATE (Cunningham et al., 2002). Javadoc (Kramer, 1999)
is a standard inline documentation tool that extracts and
transform source code comments to HTML. This format is
very well suited for human end users, but again not ideal
for machine processing as many semantics are lost in this
translation. For NLP processing, a meta-data language such
as XML (Ray, 2003) is preferable.
In this paper, we introduce the Semantic Software Lab Doclet
(SSLDoclet), which is a custom Javadoc doclet that is able
to generate a corpus using information found in source code
and in-line documentation. The goal of the SSLDoclet is to
covert the information found in source code by encoding it
using an XML schema that is specifically designed for NLP
applications. Our doclet is available under an open source
license.1

2. Background
Javadoc (Kramer, 1999) is an automated tool that gener-
ates API documentation using Java source code and in-line
documentation. In Figure 1 we show part of an API docu-
mentation generated using the Javadoc tool and the standard

1SSLDoclet, http://www.semanticsoftware.info/javadoclet

Figure 1: Excerpt of an API Documentation generated using
the Standard Javadoc Doclet

doclet.
Javadoc comments added to source code are distinguished
from normal comments by a special comment syntax (/**).
The javadoc tool extracts the source code and comments
in order to transform the information into a variety of output
formats, such as HTML, LATEX, or PDF.
Javadoc provides an API that enables users to implement
their own doclets2 in order to generate documents using a
desired output format.

3. Design & Implementation
Javadoc’s standard doclet generates API documentation us-
ing the HTML format. While this is convenient for human
consumption, automated NLP analysis applications require
a more structured XML format.
The Javadoc library is in charge of parsing a source directory
and providing an interface to a set of objects that is created
as a result of the static source code analysis. Generation of
the XML documents is then made possible by developing a
custom doclet that uses the Javadoc library.
Implementing a custom doclet enabled us to (i) control what
information from the source code will be included in the
corpus, and (ii) mark up the information using a schema that
NLP applications can easily process.

2Java Doclet Overview, http://java.sun.com/j2se/1.4.2/docs/
tooldocs/javadoc/overview.html

41

3.1. SSL Javadoc Doclet Design

In this section, we discuss in detail the level granularity and
structure used when marking up Java source code using our
SSLDoclet. As a running example, consider Figure 2, which
shows an Abstract Class declaration taken from the open
source project ArgoUML.

package org.argouml.notation.providers;

import java.beans.PropertyChangeListener;
import org.argouml.model.Model;
import org.argouml.notation.NotationProvider;

/∗∗
∗ This abstract class forms the basis of all Notation providers
∗ for the text shown in the Fig that represents the CallState.
∗ Subclass this for all languages.
∗
∗ @author mvw@tigris.org
∗/

public abstract class CallStateNotation extends NotationProvider

Figure 2: An Abstract Class Declaration taken from Ar-
goUML’s Source Code

In Figure 3, we show the same declaration marked up using
our XML meta-data tags, attributes, and elements.

<Abstract Class Block>
<Abstract Class>CallStateNotation</Abstract Class>
<Package>org.argouml.notation.providers</Package>
<Extends Block>

<Extends superclass="Object"
qualifiedType="org.argouml.notation.NotationProvider"

superclassFullType="java.lang.Object"
type="Abstract_Class">

NotationProvider
</Extends>
<Extends Comment>

A class that implements this abstract class manages a
text shown on a diagram. This means it is able to
generate text that represents one or more UML objects.
And when the user has edited this text , the model may be
adapted by parsing the text .
Additionally , a help text for the parsing is provided,
so that the user knows the syntax.

</Extends Comment>
</Extends Block>
<Class Comment Block>

<Class Comment>
This abstract class forms the basis of all Notation
providers for the text shown in the Fig that represents
the CallState.
Subclass this for all languages.

</Class Comment>
<Author>mvw@tigris.org</Author>

</Class Comment Block>

Figure 3: A Section of the Corpus, generated using an Ab-
stract Class Declaration

What makes XML superior over HTML for representing
information that needs to be analysed by NLP applications,
is that XML is much more versatile than HTML, and en-
ables users to use custom tags and attributes to mark up
the information of the XML elements (Ray, 2003), whereas
with HTML we are limited to pre-defined tags such as <p>
or <head>, and predefined attributes such as font-size.
Such tags are designed to be rendered by a browser for
human consumption (Antoniou and van Harmelen, 2008).

3.2. Marking Up Source Code
Our SSLDoclet is able to model both the syntactic and se-
mantic information found in Java source code, such as:

• Parent/Child relationships between generalized and spe-
cialized Classes.

• The Package an Interface or (Abstract) Class belongs
to.

• Fields, Constructors and Methods of a Class.

• The types, modifiers (private, public, protected), and
constant values of the fields.

• The return types, parameter list, and thrown exceptions
of a method.

In Figure 3, we show how our doclet represents the infor-
mation for the CallStatNotation abstract class, us-
ing the <Package> and <Extends> tags to model the
package the abstract class belongs to, and the superclass
that it extends. Figure 4 shows how the parameters of the
intialiseListener method are modelled using the
XML tag <Parameter>.

<Methods>
<Method Block>
<Method modifier="public"

visibility ="public" signature="()">
enable

</Method>
<Method Comment Block>

<Method Comment>
Method to enable the module.<p>
If it cannot enable the module because some other
module is not enabled it can return
< ;code>false< ;/ code>.
In that case the module loader will defer this
attempt until all other modules are loaded (or until
some more of ArgoUML is loaded if at startup). Eventually
it is only this and some other modules that is not loaded
and they will then be listed as having problems.

</Method Comment>
</Method Comment Block>
<Return Block>

<Return>boolean</Return>
<Return Comment>true if all went well</Return Comment>

</Return Block>
</Method Block>
</Methods>

Figure 4: A Section of the Corpus Generated using a Method
Declaration

Both figures demonstrate how our doclet is able to represent
more information effectively using XML attributes, com-
pared to the standard HTML output. For example, we now
also know that the parent of the CallStatNotation’s
superclass is Object, and that the listener parameter
of the intialiseListener method has the type Prop-
ertyChangeListener.

3.3. Marking Up Source Code Comments
Our SSLDoclet is also able to mark up the natural lan-
guage information found in Javadoc comments, such as
the docComment, block, and in-line tags.
Figure 2 shows an example of a Javadoc comment that in-
cludes a docComment, and uses the @author in-line tag.
And in Figure 3, we show how Javadoc comments are

42

Figure 5: Corpus Generated using the SSLDoclet loaded within GATE

marked-up using the <Extends Comment> tag, which
contains the comment belonging to a super class. Ad-
ditionally, the figure shows how the class comment be-
longing to CallStatNotation is represented using the
<Class Comment> and <Author> tags.

The SSLDoclet uses a schema that maintains the relation-
ships found in source code, and represents the information
using a combination of XML tags, attributes and elements.
In Figure 6, we show how the relationships found in the
sample source code is modelled. We eliminated the XML
elements and attributes for readability purposes.

The information generated using the SSLDoclet could have
been modelled in a number of different ways; however, it
is important to keep in mind that when a corpus is loaded
within an NLP framework such as GATE, the XML tags
are interpreted as annotations, the XML elements are in-
terpreted as entities of the annotation they belong to, and
finally the XML attributes are interpreted as features of the
annotation.

Our SSLDoclet is designed to generate a corpus using a
schema that best utilizes how NLP frameworks interpret the
information when initially loaded within the environment.
In Figure 5, we show how annotations, features, and entities
are created using only the original markups supplied by the
corpus.

It is important that the information within a corpus be repre-
sented using a structure that enables the NLP environment
to form an initial foundation that acts as the starting point
for the automated NLP analysis.

<Abstract Class Block>
<Abstract Class/>

<Package/>
<Extends Block>

<Extends/>
<Extends Comment/>

</Extends Block>
<Class Comment Block>

<Class Comment/>
<Author/>

</Class Comment Block>
<Constructors>
<Constructor Block>

<Constructor/>
<Constructor Comment Block>

<Constructor Comment/>
</Constructor Comment Block>
<Constructor Block>

<Constructor/>
<Parameter Block>
<Parameter/>
<Parameter Comment/>
</Parameter Block>

</Constructor Block>
</Constructors>
<Methods>

<Method Block>
<Method/>
<Parameter Block>

<Parameter/>
<Parameter Comment/>

</Parameter Block>
</Method Block>

</Methods>
</Abstract Class Block>

Figure 6: SSLDoclet Schema

4. Application and Evaluation
To execute the SSLDoclet, it is passed as a parameter to
javadoc when processing a source directory. In Figure 7

43

Table 1: Open Source Project Versions, Lines of Code (LOC), Number of Comments and Identifiers, and Process Duration

Project LOC Number of Comments Number of Identifiers Duration (sec.)
ArgoUML v0.24 250,000 6,871 13,974 3.4
ArgoUML v0.26 600,000 6,875 14,262 8.9
ArgoUML v0.28.1 800,000 7,168 14,789 12.2
Eclipse v3.3.2 7,000,000 32,172 158,009 93.1
Eclipse v3.4.2 8,000,000 33,919 163,238 115.7
Eclipse v3.5.1 8,000,000 34,360 165,945 123.1

we show an example of a Javadoc ant task that indicates
(i) the path and the name of the doclet, (ii) the path to the
source directory, (iii) the name of the package in the source
directory that needs to be processed, and finally (iv) any
other additional parameters, for example, to increase the
default Java heap space.

<target name="docs" depends="jar">
<javadoc docletpath = "${doclet.dir}/

${ant.project.name}.jar"
doclet = "${doclet}"
sourcepath = "${src.dir}"
packagenames = "info.semanticsoftware.doclet"
additionalparam = "-J-Xmx256m"
/>

</target>

Figure 7: Javadoc Ant Task that accepts the SSLDoclet as a
Parameter

An NLP framework such as GATE can now process the gen-
erated XML meta-data as annotations, entities and features,
which form the basis for the automated NLP analysis. In
Figure 8, we show how GATE interprets the meta-data found
within the corpus for the intialiseListener method.

Figure 8: Annotations and Features created by GATE for a
Method Declaration generated by the SSLDoclet

4.1. SSLDoclet Benchmarks
We performed a performance evaluation of our doclet to
assess the time needed for creating a corpus from source
code. Here, the SSLDoclet is passed as a parameter to the
Javadoc parser. The parser is extremely efficient compared
to other parsers when processing an entire source directory.
In Table 1, we show the time required to process different
versions of the ArgoUML and Eclipse open source projects.

4.2. Example Application: The JavadocMiner
We developed several NLP applications that currently use
a corpus generated by the SSLDoclet as input. The
JavadocMiner is a GATE application that assesses the qual-
ity of in-line documentation written in natural language

found in source code. In Figure 9, we show an illustra-
tion of the processing resources that currently make up the
JavadocMiner GATE pipeline. Each processing resource
adds additional information in form of annotations to the
corpus.

5. Related Work
A number of other doclets exist that can create XML files
using javadoc and information found in source code, such
as the xml-doclet,3 Mavens’s XMLDoclet,4 and finally
the jeldoclet.5

However, when looking at the schema generated by these
doclets, we observed that the doclets were not necessarily
designed for generating a corpus to be used within NLP
applications.
For example, the xml-docletmarks up information using
only XML tags and elements and does not make use of
XML attributes to represent information. As mentioned
earlier, XML attributes are interpreted by NLP frameworks
as features of an annotation.
A doclet that generates a schema that closely resembles
the SSLDoclet is the jeldoclet. The jeldoclet how-
ever does not attempt to differentiate between the different
types of comments, which could minimize the descriptive-
ness of the corpus. The jeldoclet also does not capture
the information provided by Javadoc when a certain class
implements or extends another class, as shown in Figure 3.
The source data being represented, and the output format
is the same for all XML generating doclets, and the XML
documents generated using the doclets mentioned herein
can be loaded within an NLP framework. However, how
the information is marked-up can drastically change the
number of annotations, features and entities that are created,
which can have a cascading effect on the rest of processing
resource within the NLP application.
Having the most number of annotations, features or entities
as result of how the information is marked up within an XML
document is not necessarily beneficial. Providing a schema
that enables NLP frameworks to differentiate between what
is an annotation, feature, and entity is important when gen-
erating an XML document that is to be used as a corpus.
None of the existing doclets that we examined were capable
of doing so. For example, since the xml-doclet marks
up all the information using XML tags only, no features
are created when the document is loaded within an NLP
framework and the number of annotations would exceed

3XML-Doclet, http://code.google.com/p/xml-doclet/
4Maven Doclet, http://maven.apache.org/maven-1.x/
5jeldoclet, http://jeldoclet.sourceforge.net/

44

Figure 9: The JavadocMiner Pipeline for analysing the Quality of Source Code Comments

that of the SSLDoclet for the same amount of information.
This will actually have a negative impact on the amount of
work needed by the language engineers to make use of the
generated corpus.
To conclude, even though there exists a number of XML
generating doclets that can be downloaded from the net, we
feel that our SSLDoclet differs from the rest due to its ability
to generate XML output using a schema that is optimized
for further NLP processing, which is an application scenario
not targeted by existing efforts.

6. Conclusion & Future Work
In this paper, we presented a novel approach for using a
custom doclet and Javadoc to generate a corpus that can be
used as input to an NLP application. We emphasized the
benefits of representing the information found in Java source
code and in-line documentation using XML meta-data over
HTML to facilitate automated NLP analyses.
We discussed how the SSLDoclet is able to generate a corpus
using information found in both source code and in-line
documentation. We also showed how the corpus can be
used within existing text mining applications such as the
JavadocMiner (Khamis et al., 2010).
And finally, we compared our SSLDoclet with other doclets
that are currently published, and pointed out that it is the
first to be explicitly designed for generating a corpus that is
to be used within NLP applications. In particular, it is able
to better differentiate between an annotation, feature, and
entity, which the existing doclets are unable to do.
Future work is specifically needed in two areas: first,
marking-up more of the information provided by Javadoc

(for example, the information that exist in enumerations).
This can be achieved by implementing more services using
the Javadoc API. And second, enabling the user to generate
multiple documents (a corpora) using a single source direc-
tory containing multiple files. The SSLDoclet will parse
each source code file separately and generate an AST for
each Java class. While this will add functionality to the
SSLDoclet, we believe that it already provides significant
functionality for language engineers targeting NLP analysis
of source code and its inline comments.

7. References
Grigoris Antoniou and Frank van Harmelen. 2008. A Se-

mantic Web Primer. The MIT Press, 2 edition, March.
H. Cunningham, D. Maynard, K. Bontcheva, and V. Tablan.

2002. GATE: an Architecture for Development of Robust
HLT Applications. Proceedings of the 40th Anniversary
Meeting of the Association for Computational Linguistics
(ACL).

Ninus Khamis, René Witte, and Juergen Rilling. 2010. Au-
tomatic Quality Assessment of Source Code Comments:
The JavadocMiner. In 15th International Conference on
Applications of Natural Language to Information Systems
(NLDB 2010). Cardiff University, June 23-25.

Douglas Kramer. 1999. API documentation from source
code comments: a case study of Javadoc. In SIGDOC ’99:
Proceedings of the 17th annual international conference
on Computer documentation, pages 147–153, New York,
NY, USA. ACM.

Erik T. Ray. 2003. Learning XML. O’Reilly & Associates,
Sebastopol, California, 2nd edition, September.

45

Software Framework for Topic Modelling with Large Corpora

Radim Řehůřek and Petr Sojka

Natural Language Processing Laboratory
Masaryk University, Faculty of Informatics

Botanická 68a, Brno, Czech Republic
{xrehurek,sojka}@fi.muni.cz

Abstract
Large corpora are ubiquitous in today’s world and memory quickly becomes the limiting factor in practical applications of the Vector
Space Model (VSM). In this paper, we identify a gap in existing implementations of many of the popular algorithms, which is their
scalability and ease of use. We describe a Natural Language Processing software framework which is based on the idea of document
streaming, i.e. processing corpora document after document, in a memory independent fashion. Within this framework, we implement
several popular algorithms for topical inference, including Latent Semantic Analysis and Latent Dirichlet Allocation, in a way that makes
them completely independent of the training corpus size. Particular emphasis is placed on straightforward and intuitive framework design,
so that modifications and extensions of the methods and/or their application by interested practitioners are effortless. We demonstrate the
usefulness of our approach on a real-world scenario of computing document similarities within an existing digital library DML-CZ.

1. Introduction
“Controlling complexity is the essence of computer programming.”

Brian Kernighan (Kernighan and Plauger, 1976)

The Vector Space Model (VSM) is a proven and powerful
paradigm in NLP, in which documents are represented as
vectors in a high-dimensional space. The idea of represent-
ing text documents as vectors dates back to early 1970’s
to the SMART system (Salton et al., 1975). The original
concept has since then been criticised, revised and improved
on by a multitude of authors (Wong and Raghavan, 1984;
Deerwester et al., 1990; Papadimitriou et al., 2000) and
became a research field of its own. These efforts seek to ex-
ploit both explicit and implicit document structure to answer
queries about document similarity and textual relatedness.
Connected to this goal is the field of topical modelling (see
e.g. (Steyvers and Griffiths, 2007) for a recent review of
this field). The idea behind topical modelling is that texts
in natural languages can be expressed in terms of a limited
number of underlying concepts (or topics), a process which
both improves efficiency (new representation takes up less
space) and eliminates noise (transformation into topics can
be viewed as noise reduction). A topical search for related
documents is orthogonal to the more well-known “fulltext”
search, which would match particular words, possibly com-
bined through boolean operators.
Research on topical models has recently picked up pace,
especially in the field of generative topic models such as La-
tent Dirichlet Allocation (Blei et al., 2003), their hierarchical
extensions (Teh et al., 2006), topic quality assessment and
visualisation (Chang et al., 2009; Blei and Lafferty, 2009).
In fact, it is our observation that the research has rather got-
ten ahead of applications—the interested public is only just
catching up with Latent Semantic Analysis, a method which
is now more than 20 years old (Deerwester et al., 1990). We
attribute reasons for this gap between research and practice
partly to inherent mathematical complexity of the inference
algorithms, partly to high computational demands of most
methods and partly to the lack of a “sandbox” environment,

which would enable practitioners to apply the methods to
their particular problem on real data, in an easy and hassle-
free manner. The research community has recognised these
challenges and a lot of work has been done in the area of
accessible NLP toolkits in the past couple of years; our con-
tribution here is one such step in the direction of closing the
gap between academia and ready-to-use software packages1.

Existing Systems

The goal of this paper is somewhat orthogonal to much of
the previous work in this area. As an example of another
possible direction of applied research, we cite (Elsayed et
al., 2008). While their work focuses on how to compute
pair-wise document similarities from individual document
representations in a scalable way, using Apache Hadoop
and clusters of computers, our work here is concerned with
how to scalably compute these document representations
in the first place. Although both steps are necessary for a
complete document similarity pipeline, the scope of this
paper is limited to constructing topical representations, not
answering similarity queries.
There exist several mature toolkits which deal with Vec-
tor Space Modelling. These include NLTK (Bird and
Loper, 2004), Apache’s UIMA and ClearTK (Ogren et al.,
2008), Weka (Frank et al., 2005), OpenNLP (Baldridge
et al., 2002), Mallet (McCallum, 2002), MDP (Zito et al.,
2008), Nieme (Maes, 2009), Gate (Cunningham, 2002), Or-
ange (Demšar et al., 2004) and many others.
These packages generally do a very good job at their in-
tended purpose; however, from our point of view, they also
suffer from one or more of the following shortcomings:

1Interest in the field of document similarity can also be seen
from the significant number of requests for a VSM software pack-
age which periodically crop up in various NLP mailing lists. An-
other indicator of interest are tutorials aimed at business appli-
cations; see web search results for “SEO myths and LSI” for an
interesting treatment on Latent Semantic Indexing marketing.

46

No topical modelling. Packages commonly offer super-
vised learning functionality (i.e. classification); topic
inference is an unsupervised task.

Models do not scale. Package requires that the whole cor-
pus be present in memory before the inference of top-
ics takes place, usually in the form of a sparse term-
document matrix.

Target domain not NLP/IR. The package was created
with physics, neuroscience, image processing, etc. in
mind. This is reflected in the choice of terminology as
well as emphasis on different parts of the processing
pipeline.

The Grand Unified Framework. The package covers a
broad range of algorithms, approaches and use case
scenarios, resulting in complex interfaces and depen-
dencies. From the user’s perspective, this is very desir-
able and convenient. From the developer’s perspective,
this is often a nightmare—tracking code logic requires
major effort and interface modifications quickly cas-
cade into a large set of changes.

In fact, we suspect that the last point is also the reason why
there are so many packages in the first place. For a developer
(as opposed to a user), the entry level learning curve is so
steep that it is often simpler to “roll your own” package
rather than delve into intricacies of an existing, proven one.

2. System Design
“Write programs that do one thing and do it well. Write programs
to work together. Write programs to handle text streams, because

that is a universal interface.”
Doug McIlroy (McIlroy et al., 1978)

Our choices in designing the proposed framework are a
reflection of these perceived shortcomings. They can be
explicitly summarised into:

Corpus size independence. We want the package to be
able to detect topics based on corpora which are larger
than the available RAM, in accordance with the current
trends in NLP (see e.g. (Kilgarriff and Grefenstette,
2003)).

Intuitive API. We wish to minimise the number of method
names and interfaces that need to be memorised in
order to use the package. The terminology is NLP-
centric.

Easy deployment. The package should work out-of-the-
box on all major platforms, even without root privileges
and without any system-wide installations.

Cover popular algorithms. We seek to provide novel,
scalable implementations of algorithms such as TF-
-IDF, Latent Semantic Analysis, Random Projections
or Latent Dirichlet Allocation.

We chose Python as the programming language, mainly be-
cause of its straightforward, compact syntax, multiplatform
nature and ease of deployment. Python is also suitable for
handling strings and boasts a fast, high quality library for
numerical computing, numpy, which we use extensively.

Core interfaces
As mentioned earlier, the core concept of our framework is
document streaming. A corpus is represented as a sequence
of documents and at no point is there a need for the whole
corpus to be stored in memory. This feature is not an after-
thought on lazy evaluation, but rather a core requirement
for our application and as such reflected in the package
philosophy. To ensure transparent ease of use, we define
corpus to be any iterable returning documents:

>>> for document in corpus:
>>> pass

In turn, a document is a sparse vector representation of its
constituent fields (such as terms or topics), again realised as
a simple iterable:2

>>> for fieldId, fieldValue in document:
>>> pass

This is a deceptively simple interface; while a corpus is
allowed to be something as simple as

>>> corpus = [[(1, 0.8), (8, 0.6)]]

this streaming interface also subsumes loading/storing matri-
ces from/to disk (e.g. in the Matrix Market (Boisvert et al.,
1996) or SVMlight (Joachims, 1999) format), and allows for
constructing more complex real-world IR scenarios, as we
will show later. Note the lack of package-specific keywords,
required method names, base class inheritance etc. This is
in accordance with our main selling points: ease of use and
data scalability.
Needless to say, both corpora and documents are not re-
stricted to these interfaces; in addition to supporting itera-
tion, they may (and usually do) contain additional methods
and attributes, such as internal document ids, means of visu-
alisation, document class tags and whatever else is needed
for a particular application.
The second core interface are transformations. Where a
corpus represents data, transformation represents the pro-
cess of translating documents from one vector space into
another (such as from a TF-IDF space into an LSA space).
Realization in Python is through the dictionary [] mapping
notation and is again quite intuitive:

>>> from gensim.models import LsiModel
>>> lsi = LsiModel(corpus, numTopics = 2)
>>> lsi[new_document]
[(0, 0.197), (1, -0.056)]

>>> from gensim.models import LdaModel
>>> lda = LdaModel(corpus, numTopics = 2)
>>> lda[new_document]
[(0, 1.0)]

2In terms of the underlying VSM, which is essentially a sparse
field-document matrix, this interface effectively abstracts away
from both the number of documents and the number of fields.
We note, however, that the abstraction focus is on the number
of documents, not fields. The number of terms and/or topics is
usually carefully chosen, with unwanted token types removed via
document frequency thresholds and stoplists. The hypothetical
use case of introducing new fields in a streaming fashion does not
come up as often in NLP.

47

2.1. Novel Implementations
While an intuitive interface is important for software adop-
tion, it is of course rather trivial and useless in itself. We
have therefore implemented some of the popular VSM meth-
ods, two of which we will describe here in greater detail.

Latent Semantic Analysis, LSA. Developed in late 80’s
in Bell Laboratories (Deerwester et al., 1990), this method
gained popularity due to its solid theoretical background
and efficient inference of topics. The method exploits co-
occurrence between terms to project documents into a low-
dimensional space. Inference is done using linear algebra
routines for truncated Singular Value Decomposition (SVD)
on the sparse term-document matrix, which is usually first
weighted by some TF-IDF scheme. Once the SVD has been
completed, it can be used to project new documents into the
latent space, in a process called folding-in.
Since linear algebra routines have always been the front
runner of numerical computing (see e.g. (Press et al., 1992)),
some highly optimised packages for sparse SVD exist. For
example, PROPACK and SVDPACK are both based on the
Lanczos algorithm with smart reorthogonalizations, and
both are written in FORTRAN (the latter also has a C-
language port called SVDLIBC). Lightning fast as they are,
adapting the FORTRAN code is rather tricky once we hit the
memory limit for representing sparse matrices directly in
memory. For this and other reasons, research has gradually
turned to incremental algorithms for computing SVD, in
which the matrix is presented sequentially—an approach
equivalent to our document streaming. This problem refor-
mulation is not trivial and only recently have there appeared
practical algorithms for incremental SVD.
Within our framework, we have implemented Gorrell’s
Generalised Hebbian Algorithm (Gorrell, 2006), a stochas-
tic method for incremental SVD. However, this algorithm
proved much too slow in practice and we also found its inter-
nal parameters hard to tune, resulting in convergence issues.
We have therefore also implemented Brand’s algorithm for
fast incremental SVD updates (Brand, 2006). This algorithm
is much faster and contains no internal parameters to tune3.
To the best of our knowledge, our pure Python (numpy) im-
plementation is the only publicly available implementation
of LSA that does not require the term-document matrix to
be stored in memory and is therefore independent of the
corpus size4. Together with our straightforward document
streaming interface, this in itself is a powerful addition to
the set of publicly available NLP tools.

Latent Dirichlet Allocation, LDA. LDA is another topic
modelling technique based on the bag-of-words paradigm
and word-document counts (Blei et al., 2003). Unlike La-
tent Semantic Analysis, LDA is a fully generative model,

3This algorithm actually comes from the field of image process-
ing rather than NLP. Singular Value Decomposition, which is at
the heart of LSA, is a universal data compression/noise reduction
technique and has been successfully applied to many application
domains.

4This includes completely ignoring the right singular vectors
during SVD computations, as the left vectors together with singular
values are enough to determine the latent space projection for new
documents.

where documents are assumed to have been generated ac-
cording to a per-document topic distribution (with a Dirich-
let prior) and per-topic word distribution. In practice, the
goal is of course not generating random documents through
these distributions, but rather inferring the distributions from
observed documents. This can be accomplished by varia-
tional Bayes approximations (Blei et al., 2003) or by Gibbs
sampling (Griffiths and Steyvers, 2004). Both of these ap-
proaches are incremental in their spirit, so that our imple-
mentation (again, in pure Python with numpy, and again
the only of its kind that we know of) “only” had to abstract
away from the original notations and implicit corpus-size
allocations to be made truly memory independent. Once the
distributions have been obtained, it is possible to assign top-
ics to new, unseen documents, through our transformation
interface.

2.2. Deployment

The framework is heavily documented and is avail-
able from http://nlp.fi.muni.cz/projekty/
gensim/. This website contains sections which describe
the framework and provide usage tutorials, as well as instal-
lation instructions.
The framework is open sourced and distributed under an
OSI-approved LGPL license.

3. Application of the Framework
“An idea that is developed and put into action is more important

than an idea that exists only as an idea.”
Hindu Prince Gautama Siddharta, the founder of Buddhism,

563–483 B.C.

3.1. Motivation

Many digital libraries today start to offer browsing features
based on pairwise document content similarity. For collec-
tions having hundreds of thousands documents, computation
of similarity scores is a challenge (Elsayed et al., 2008). We
have faced this task during the project of The Digital Mathe-
matics Library DML-CZ (Sojka, 2009). The emphasis was
not on developing new IR methods for this task, although
some modifications were obviously necessary—such as an-
swering the question of what constitutes a “token”, which
differs between mathematics and the more common English
ASCII texts.
With the collection’s growth and a steady feed of new papers,
lack of scalability appeared to be the main issue. This drove
us to develop our new document similarity framework.

3.2. Data

As of today, the corpus contains over 61,293 fulltext docu-
ments for a total of about 270 million tokens. There are
mathematical papers from the Czech Digital Mathemat-
ics Library DML-CZ http://dml.cz (22,991 papers),
from the NUMDAM repository http://numdam.org
(17,636 papers) and from the math part of arXiv http:
//arxiv.org/archive/math (20,666 papers). After
filtering out word types that either appear less than five times
in the corpus (mostly OCR errors) or in more than one half
of the documents (stop words), we are left with 315,167

48

distinct word types. Although this is by no means an excep-
tionally big corpus, it already prohibits storing the sparse
term-document matrices in main memory, ruling out most
available VSM software systems.

3.3. Results

We have tried several VSM approaches to representing doc-
uments as vectors: term weighting by TF-IDF, Latent Se-
mantic Analysis, Random Projections and Latent Dirichlet
Allocation. In all cases, we used the cosine measure to
assess document similarity.
When evaluating data scalability, one of our two main design
goals (together with ease of use), we note memory usage is
now dominated by the transformation models themselves.
These in turn depend on the vocabulary size and the number
of topics (but not on the training corpus size). With 315,167
word types and 200 latent topics, both LSA and LDA models
take up about 480 MB of RAM.
Although evaluation of the quality of the obtained similari-
ties is not the subject of this paper, it is of course of utmost
practical importance. Here we note that it is notoriously
hard to evaluate the quality, as even the preferences of differ-
ent types of similarity are subjective (match of main topic,
or subdomain, or specific wording/plagiarism) and depends
on the motivation of the reader. For this reason, we have
decided to present all the computed similarities to our li-
brary users at once, see e.g. http://dml.cz/handle/
10338.dmlcz/100785/SimilarArticles. At the
present time, we are gathering feedback from mathemati-
cians on these results and it is worth noting that the frame-
work proposed in this paper makes such side-by-side com-
parison of methods straightforward and feasible.

4. Conclusion

We believe that our framework makes an important step in
the direction of current trends in Natural Language Process-
ing and fills a practical gap in existing software systems. We
have argued that the common practice, where each novel
topical algorithm gets implemented from scratch (often in-
venting, unfortunately, yet another I/O format for its data in
the process) is undesirable. We have analysed the reasons
for this practice and hypothesised that this partly due to the
steep API learning curve of existing IR frameworks.
Our framework makes a conscious effort to make parsing,
processing and transforming corpora into vector spaces as
intuitive as possible. It is platform independent and requires
no compilation or installations past Python+numpy. As an
added bonus, the package provides ready implementations of
some of the popular IR algorithms, such as Latent Semantic
Analysis and Latent Dirichlet Allocation. These are novel,
pure-Python implementations that make use of modern state-
of-the-art iterative algorithms. This enables them to work
over practically unlimited corpora, which no longer need to
fit in RAM.
We believe this package is useful to topic modelling experts
in implementing new algorithms as well as to the general
NLP community, who is eager to try out these algorithms
but who often finds the task of translating the original im-

plementations (not to say the original articles!) to its needs
quite daunting.
Future work will include comparison of the usefulness of
different topical models to the users of our Digital Math-
ematical Library, as well as further improving the range,
efficiency and scalability of popular topic modelling meth-
ods.

Acknowledgments

We acknowledge the support of grant MUNI/E/0084/2009 of
the Rector of Masaryk University program for PhD students’
research. Partial support of grants by EU #250503 CIP-ICT-
PSP EuDML and by the Ministry of Education of CR within
the Centre of basic research LC536 is acknowledged, too.
We would also like to thank the anonymous reviewer for pro-
viding us with additional pointers and valuable comments.

5. References
J. Baldridge, T. Morton, and G. Bierner. 2002. The

OpenNLP maximum entropy package. Technical report.
http://maxent.sourceforge.net/.

Steven Bird and Edward Loper. 2004. NLTK: The Natural
Language Toolkit. Proceedings of the ACL demonstration
session, pages 214–217.

David M. Blei and John D. Lafferty. 2009. Visualizing
Topics with Multi-Word Expressions. Arxiv preprint
http://arxiv.org/abs/0907.1013.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan. 2003.
Latent Dirichlet Allocation. The Journal of Machine
Learning Research, 3:993–1022.

R. F. Boisvert, R. Pozo, and K.A. Remington. 1996. The
matrix market formats: Initial design. Technical report,
Applied and Computational Mathematics Division, NIST.

Matthew Brand. 2006. Fast low-rank modifications of the
thin singular value decomposition. Linear Algebra and its
Applications, 415(1):20–30, May. http://dx.doi.
org/10.1016/j.laa.2005.07.021.

Jonathan Chang, Jordan Boyd-Graber, Chong Wang, Sean
Gerrish, and David M. Blei. 2009. Reading Tea Leaves:
How Humans Interpret Topic Models. volume 31, Van-
couver, British Columbia, CA.

Hamish Cunningham. 2002. GATE, a General Architecture
for Text Engineering. Computers and the Humanities,
36(2):223–254. http://gate.ac.uk/.

S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer,
and R. Harshman. 1990. Indexing by Latent Semantic
Analysis. Journal of the American society for Information
science, 41(6):391–407.

J. Demšar, B. Zupan, G. Leban, and T. Curk. 2004. Orange:
From experimental machine learning to interactive data
mining. White Paper, Faculty of Computer and Informa-
tion Science, University of Ljubljana.

Tamer Elsayed, Jimmy Lin, and Douglas W. Oard. 2008.
Pairwise Document Similarity in Large Collections with
MapReduce. In HLT ’08: Proceedings of the 46th Annual
Meeting of the Association for Computational Linguis-
tics on Human Language Technologies, pages 265–268,
Morristown, NJ, USA. Association for Computational
Linguistics.

49

E. Frank, M. A. Hall, G. Holmes, R. Kirkby, B. Pfahringer,
and I. H. Witten. 2005. Weka: A machine learning work-
bench for data mining. Data Mining and Knowledge Dis-
covery Handbook: A Complete Guide for Practitioners
and Researchers, pages 1305–1314.

G. Gorrell. 2006. Generalized Hebbian algorithm for in-
cremental Singular Value Decomposition in Natural Lan-
guage Processing. In Proceedings of 11th Conference of
the European Chapter of the Association for Computa-
tional Linguistics (EACL), Trento, Italy, pages 97–104.

T. L. Griffiths and M. Steyvers. 2004. Finding scientific
topics. Proceedings of the National Academy of Sciences,
101(Suppl 1):5228.

Thorsten Joachims. 1999. SVMLight: Support Vector
Machine. SVM-Light Support Vector Machine http:
//svmlight.joachims.org/, University of Dort-
mund.

Brian W. Kernighan and P. J. Plauger. 1976. Software Tools.
Addison-Wesley Professional.

Adam Kilgarriff and Gregory Grefenstette. 2003. Introduc-
tion to the Special Issue on the Web as Corpus. Computa-
tional Linguistics, 29(3):333–347.

Francis Maes. 2009. Nieme: Large-Scale Energy-Based
Models. The Journal of Machine Learning Research,
10:743–746. http://jmlr.csail.mit.edu/
papers/volume10/maes09a/maes09a.pdf.

A. K. McCallum. 2002. MALLET: A Machine Learning
for Language Toolkit. http://mallet.cs.umass.
edu.

M. D. McIlroy, E. N. Pinson, and B. A. Tague. 1978. UNIX
Time-Sharing System: Forward. The Bell System Techni-
cal Journal, 57(6 (part 2)), July/August.

P. V. Ogren, P. G. Wetzler, and S. J. Bethard. 2008. ClearTK:
A UIMA toolkit for statistical natural language process-
ing. Towards Enhanced Interoperability for Large HLT
Systems: UIMA for NLP, page 32.

C. H. Papadimitriou, P. Raghavan, H. Tamaki, and S. Vem-
pala. 2000. Latent semantic indexing: A probabilistic
analysis. Journal of Computer and System Sciences,
61(2):217–235.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.
Flannery. 1992. Numerical recipes in C. Cambridge
Univ. Press, Cambridge MA, USA.

Gerard Salton, A. Wong, and C. S. Yang. 1975. A vector
space model for automatic indexing. Communications of
the ACM, 18(11):620.

Petr Sojka. 2009. An Experience with Building Digital
Open Access Repository DML-CZ. In Proceedings of
CASLIN 2009, Institutional Online Repositories and Open
Access, 16th International Seminar, pages 74–78, Teplá
Monastery, Czech Republic. University of West Bohemia,
Pilsen, CZ.

Mark Steyvers and Tom Griffiths, 2007. Probabilistic Topic
Models, pages 427–446. Psychology Press, February.

Yee Whye Teh, Michael I. Jordan, Matthew J. Beal,
and David M. Blei. 2006. Hierarchical Dirichlet Pro-
cesses. Journal of the American Statistical Association,
101(476):1566–1581.

S. K. M. Wong and V. V. Raghavan. 1984. Vector space
model of information retrieval: a reevaluation. In Pro-
ceedings of the 7th annual international ACM SIGIR
conference on Research and development in information
retrieval, pages 167–185. British Computer Society, Swin-
ton, UK.

T. Zito, N. Wilbert, L. Wiskott, and P. Berkes. 2008. Mod-
ular toolkit for Data Processing (MDP): a Python data
processing framework. Frontiers in Neuroinformatics, 2.
http://mdp-toolkit.sourceforge.net/.

50

Predicate-Argument EXtractor (PAX)

Ralf Krestel,1 René Witte,2 and Sabine Bergler2

1L3S Research Center
Leibniz Universität Hannover, Germany

2Department of Computer Science and Software Engineering
Concordia University, Montréal, Canada

Abstract
In this paper, we describe the open source GATE component PAX for extracting predicate-argument structures (PASs). PASs are used
in various contexts to represent relations within a sentence structure. Different “semantic” parsers extract relational information from
sentences but there exists no common format to store this information. Our predicate-argument extractor component (PAX) takes the
annotations generated by selected parsers and transforms the parsers’ results to predicate-argument structures represented as triples
(subject-verb-object). This allows downstream components in an analysis pipeline to process PAS triples independent of the deployed
parser, as well as combine the results from several parsers within a single pipeline.

1. Introduction
Recent NLP applications have increasingly tackled semantic
notions, such as textual entailment determination, incremen-
tal summary generation, or event extraction in BioNLP. The
basic first issue in all these tasks is the scoping of predica-
tive constructs as it is expressed in a predicate-argument
structure (PAS). PASs can be extracted from the output of
parsers; in particular dependency parsers output the compo-
nent semantic relations of subject and object directly and
assembling PAS structure amounts mainly to combining the
related semantic relations for each verb.
Great progress has been achieved over the past 10 years with
the increasing availability of different systems that tackle
the same, matured tasks (POS tagging, parsing, IR) and
with integration platforms that facilitate mixing and match-
ing different application modules in a pipeline of greater
and greater sophistication, reducing development time and
increasing reuse of tested systems. One influential integra-
tion platform is GATE (Cunningham et al., 2002), which
provides components for most steps in common NLP tasks,
including several parsers. To manage these parsers’ output
within a pipeline in need of PAS annotations, a “normalized”
output format is needed.
We present here a system that has been conceived as a GATE
component that extracts PA structures from the output of
several different parsers. It shields downstream components
from the different output formats of the different parsers
by providing a common result structure, thereby facilitat-
ing experiments that mix and match different parsers in an
analysis pipeline. Our PAX component is available under an
open source license.1

2. Predicate-Argument Structures (PASs)
Most verbs in English require a subject and an object to be
specified in a grammatical sentence. For simple sentences,
this subject-verb-object structure constitutes a complete anal-
ysis; for more complex sentences the task is to identify the
PA structure, to assign the correct arguments to all verbs,

1PAX, see http://www.semanticsoftware.info/pax

and to identify adjuncts, i.e., PPs or NPs that are not in
argument position (Merlo and Ferrer, 2006).
Dependency parsers have been addressing this as the major
issue for some time and some prioritize correct dependen-
cies over achieving a complete parse for a sentence. Even
full-fledged constituent parsers have lately offered a conver-
sion module that transforms a parse tree into dependency
notation, because these notations have been most useful for
different applications. Dependency relations are like sev-
ered components of predicate-argument structure or adjunct
specifications, but they do not make the complete event
structure explicit and it is surprisingly complex to extract
the underlying PAS from dependency parser output.
As an example, consider the sentence:

President Barack Obama will not meet the Dalai
Lama during his five-day trip to the U.S. capital.

The outputs of SUPPLE, MiniPar, RASP, Stanford Parser,
and the MuNPEx noun phrase chunker can be seen in Ta-
ble 1.

SUPPLE
qlf=[meet(e26), adv(e26, not), time(e26, present), aspect(e26, sim-
ple), voice(e26, active), lobj(e26, e27), ne tag(e27, offsets(165,
169)), name(e27, ’Lama’), ne tag(e28, offsets(159, 164)), name(e28,
’Dalai’), realisation(e28, offsets(159, 164)), qual(e27, e28), det(e27,
the), realisation(e27, offsets(155, 169)), realisation(e26, offsets(146,
169)), realisation(e26, offsets(146, 169))]

MiniPar
nn c id=43, c word=U.S., h id=44, h word=capital
obj c id=34, c word=Lama, h id=31, h word=meet
s c id=1026, c word=President, h id=1031, h word=meet

RASP
ncsubj meet:6 VV0 Obama:3 NP1
iobj meet:6 VV0 during:10 II
dobj meet:6 VV0 Lama:9 NP1

Stanford Parser
args=[57, 63], kind=dobj, args=[57, 73], kind=prep
args=[63, 59], kind=det, args=[63, 61], kind=nn

MuNPEx Noun Phrase Chunker
DET=his, HEAD=trip, HEAD END=194, HEAD START=190,
MOD=five-day

Table 1: Excerpts from the output of the different parsers
for the example sentence

Our PAX component normalises the different outputs into

51

PAS as shown in Table 2.

RASP PAS Obama – meet – trip
SUPPLE PAS – meet – Lama
MiniPar PAS Obama – meet – Lama
Stanford PAS Obama – meet – Lama

Noun Phrase PAS trip – be – five-day
Dalai – be – Lama

Table 2: Output of three different parsers with extracted
predicated-argument structures for the example sentence

As can be seen, the parsers have quite different opinions
about the input sentence. This is not an exceptional, or
special case, but typical for this task. Notice that we chose a
rather simple sentence to demonstrate the different outputs.
For more complex sentence structures, the difference in
output is even greater and the extracted predicate-argument
structures look quite different. Figure 1 gives an impression
of the output of the MiniPar parser for a complete newspaper
article.

3. Resource Description
Our PAX component is intended to be used as part of a larger
processing pipeline, running after the individual parsers but
before higher-level components that make use of PASs. It
first collects the output of various parsers from the anno-
tations added by them to a document. It then computes
predicate-argument structures for each sentence as explained
in Section 4. The predicate-argument structures for each
sentence as extracted by PAX are then added as new an-
notations for this sentence and can be processed by other
components in subsequent steps.

Supported Parsers. A variety of different parsers of-
fer support for syntactic analysis of sentences. With this
resource we try to extract predicate-argument structures
using the output of different such parsers. Currently,
we support MiniPar (Lin, 1998), RASP (Briscoe et al.,
2006), SUPPLE (Gaizauskas et al., 2005), and the Stan-
ford Parser (Klein and Manning, 2003a). In addition, we
can extract PASs out of noun phrases, by making use of the
output of a noun phrase chunker like MuNPEx.2

4. Design
We now describe in more detail how to extract predicate-
argument structures from the output of different parsers as
shown in Table 1.
Our PAS extractor is based on a set of rules for each of the
three parsers. These rules determine which part of the parser
output is considered the subject, verb, and object. Because
of the different nomenclature and relations scheme of the
parsers, this has to be done individually for each parser.

4.1. SUPPLE
For SUPPLE (Gaizauskas et al., 2005), the extraction pro-
cess is quite straightforward. The parser outputs semantic
relations, which comprise a logical subject and verb, and
sometimes also a logical object. The PAS extractor there-
fore only has to filter out these elements from the output of

2Multi-lingual Noun Phrase Extractor (MuNPEx), http://www.
semanticsoftware.info/munpex

SUPPLE. The coverage of SUPPLE is lower in comparison
with other parsers. This is due to the philosophy of the
parser (Gaizauskas et al., 2005): “Rather than producing
all possible analyses or using probabilities to generate the
most likely analysis, the preference is not to offer a single
analysis that spans the input sentence unless it can be relied
on to be correct. This means that in many cases only partial
analyses are produced, but the philosophy is that it is more
useful to produce partial analyses that are correct than full
analyses which may well be wrong or highly disjunctive.”

4.2. MiniPar

To obtain predicate-argument structures that represent the
underlying sentence as closely as possible, we often have
to choose between multiple candidates for the object. We
employ a decision tree to select the grammatical structure to
fill the object slot from the parser’s output. If it exists and
relates to the subject-verb pair we choose in this order: “obj,”
“obj1,” “pred,” and “pcomp-n.”
Sometimes the object does not have a direct relation to the
verb but an indirect link through another element in common
like a “mod” construct. In this case we have to track down
and identify this relation to find a representative object. A
complex sentence can contain more than one subject and our
extractor has to be able to handle them reasonably. Besides
dealing with more than one “s” (subject) in one sentence,
it can also handle conjunctions. Table 3 gives a general
overview of the different conjunction types and how the
extractor deals with them.

Sentence X and Y buy a car.

Target PAS X – buy – car
Y – buy – car

Sentence X buys a car and sells his house.

Target PAS X – buy – car
X – sell – house

Sentence X buys a car and a house.

Target PAS X – buy – car
X – buy – house

Table 3: PAS extractor strategy for conjunctions

4.3. RASP

For RASP’s version 3 (Briscoe et al., 2006) we developed a
wrapper to be able to use it from within GATE. It calls the
appropriate script and delivers the parser’s output for further
processing.
The strategy to find subject, verb, and object relations is to
look for “ncsubj” occurrences in the parser output. They
describe a subject together with the corresponding verb. To
find a suitable object we often have to choose between dif-
ferent elements like “dobj,” “iobj,” “obj,” or “xcomp.” To
obtain predicate-argument structures that accurately repre-
sent the underlying sentence, we use the following decision
tree on what grammatical structure to use as object. If it
exists and is related to the verb of the subject, we choose in
this order: “obj,” “dobj” if dependent of an “iobj,” which
itself relates to the relevant verb, “iobj,” “dobj,” and last
“xcomp.”
Besides dealing with more than one “ncsubj” in one sen-
tence, we can also handle conjunctions. This has already

52

Figure 1: GATE screenshot of MiniPar results

been demonstrated for MiniPar in Table 3 and applies to
RASP as well.

4.4. Stanford Parser
The Stanford Parser (Klein and Manning, 2003a), (Klein
and Manning, 2003b) extracts dependency relations. We
take all “nsubj” and “nsubjpass” elements for subjects and
the associated predicates as verbs. For the object we take in
this order: “dobj,” “prepPobj,” and “dep.”
Conjunctions are already considered by the parser and there
is no further processing needed from our side.

4.5. MuNPEx Noun Phrases
Each noun phrase that contains a modifier is a candidate
for a predicate-argument structure. For example, the noun
phrase “the rich king” contains the same information as the
PAS “king – be – rich”. Adding the noun phrase predica-
tions generates additional PASs that can be especially useful
for certain task like comparing documents’ content based
on predicate-argument structures or for recognizing textual
entailment (e.g., the RTE3 tasks) between statements.

5. Implementation
Our resource is implemented as a component for the General
Architecture for Text Engineering (GATE) (Cunningham et
al., 2002). Figure 2 shows example output of the PAX com-
ponent with the detected PASs for all supported parsers. For
each parser x, a new annotation set of type xParserPaX is
added to the document. If the component detects a predicate-
argument structure in the output of the selected parser, the
sentence containing the PAS is annotated and “sub”, “obj”,

3RTE, see http://www.nist.gov/tac/2009/RTE/

and “verb” properties are added to the annotation. In addi-
tion, we try to detect simple negations within the sentences
like “not” or “never” (Figure 2).

6. Evaluation
To evaluate our PAX component, we selected an article
from the Wall Street Journal and annotated it manually with
predicate-argument structures. The structure of the sen-
tences was particularly complex with most of the time three
or more PASs per sentence. For simple sentences of the
shape “subject, verb, object” all parsers perform well and
we can extract the predicate-argument structures reliably
from the parsers’ output. Therefore we are interested in the
most difficult cases only. We excluded the noun phrase PAS
extraction from this evaluation since it is a special case also
yielding different types of errors. Table 4 gives an overview
of the performance of the different parsers with correctly
extracted PAS, wrong PAS, and partially correct PAS, where
partially means for example that the object was not found or
an indirect object instead of a direct one was found.
Some errors like unresolved pronouns, e.g. “that,” “he,”
“who” or “myself” were not considered errors of the PAS
extraction but need to be dealt with in the future, although for
some parsers we are already able to resolve these constructs.
Another possible source of errors are verb phrases like “de-
clare unconstitutional,” or “prevent s.o. from doing s.th.” If
we insist on having only one term as a predicate we need to
decide which verb reflects the intended meaning of the PAS
best.
Noun Phrases with modifiers can not always be converted
to predicate-argument structures. For example, it works fine
with “the elected President”→ “President – be – elected”;
but not for “last year’s President” 6→ “President – be – year”.

53

Figure 2: PAX results in GATE showing subject-verb-object triples extracted from MiniPar, RASP, Stanford, and MuNPEx

Sent No of SUPPLE MiniPar RASP Stanford
PAS C P F C P F C P F C P F

1 4 - 2 - - 2 - 1 2 1 1 2 1
2 4 1 - - - 2 - 2 2 - 2 2 -
3 3 - - - - 2 - 2 1 - 1 1 -
4 3 - - - - - 1 2 - - - - -
5 4 - 1 - - 2 - - 2 1 - 2 -
6 1 - 1 - - 1 - - 1 1 - 1 -
7 4 1 - - - 2 - - 3 - - 4 -
8 5 2 1 - 3 1 - - 4 1 3 1 -
9 3 - - - - 1 2 1 2 1 1 1 -

10 3 - 1 - - 1 - - - - - 1 1
11 6 1 2 - 3 1 - 2 4 - 1 1 2
12 3 1 - - - 2 - - 3 1 - - -
13 5 1 1 - 2 1 - 1 2 - 1 1 -
14 2 - - - - 1 - - 2 - - 1 -
15 3 - 1 - - 1 - - 2 - - 2 -
16 2 - 1 - - - - - 1 2 - 1 1
17 4 1 1 - - 3 - - 4 - 1 1 1
18 3 - - - - 2 - - 3 - - 3 -
19 3 1 - - - 1 - 2 - - 1 1 -
20 3 - 1 - - 2 - 1 - 2 1 2 -
21 2 - 1 - - 2 - - 2 - - 2 -
22 1 - 1 - - 1 - - 1 - - 1 -
23 4 - - - 2 - 1 2 1 1 - 1 1
24 0 - - - - - - - - - - - 1P

75 9 15 - 8 31 3 16 42 11 13 32 8
Recall 0.32 0.52 0.77 0.60

Precision 1.0 0.93 0.84 0.85

Table 4: Results for the four parsers: C=correct, P=partially
correct, F=false

7. Conclusion & Future Work
We described a strategy to extract predicate-argument struc-
tures from the output of different parsers and its implementa-
tion in the PAX component for GATE. PASs can be used to
represent content and make it comparable. Finding similar
content (e.g., for text summarization, paraphrase detection)
or entailment (RTE, inferences) are some of the application
areas of predicate-argument structures. Our component cre-
ates a common result structure for the different parsers and
thereby allows downstream analysis components to work

independently of a concrete parser’s output. This simpli-
fies the setup significantly of experiments where the impact
of different parsers on the overall application performance
needs to be measured.
In the future we want to introduce a voting algorithm to iden-
tify the best predicate-argument structures for each sentence
based on the output of multiple parsers.

8. References
E. Briscoe, J. Carroll, and R. Watson. 2006. The Second Release

of the RASP System. In Proceedings of the COLING/ACL 2006
Interactive Presentation Sessions.

H. Cunningham, D. Maynard, K. Bontcheva, and V. Tablan. 2002.
GATE: A framework and graphical development environment
for robust NLP tools and applications. In Proc. of the 40th
Anniversary Meeting of the ACL.

R. Gaizauskas, M. Hepple, H. Saggion, M. A. Greenwood, and
K. Humphreys. 2005. SUPPLE: A practical parser for natu-
ral language engineering applications. In Proc. of the 9th Intl.
Workshop on Parsing Technologies (IWPT2005), Vancouver.

Dan Klein and Christopher D. Manning. 2003a. Accurate unlex-
icalized parsing. In ACL ’03: Proceedings of the 41st Annual
Meeting on Association for Computational Linguistics, pages
423–430, Morristown, NJ, USA. Association for Computational
Linguistics.

Dan Klein and Christopher D. Manning. 2003b. Fast exact infer-
ence with a factored model for natural language parsing. In
Advances in Neural Information Processing Systems, volume 15.
MIT Press.

Dekang Lin. 1998. Dependency Based Evaluation of MINIPAR.
In Proceedings of the Workshop on the Evaluation of Parsing
Systems, First International Conference on Language Resources
and Evaluation.

Paola Merlo and Eva Esteve Ferrer. 2006. The notion of argument
in prepositional phrase attachment. Computational Linguistics,
32(3):341–378.

54

	Contents
	Effective Development with GATE and Reusable Code for Semantically Analysing Heterogeneous Documents)
	Building the Scientific Knowledge Mine (SciKnowMine)
	JULIE Lab's UIMA Collection Reader for WIKIPEDIA
	Web-based Collaborative Corpus Annotation)
	Computer-aided Ontology Development: an integrated environment
	Building a French-speaking community around UIMA)
	Generating an NLP Corpus from Java Source Code: The SSL Javadoc Doclet
	Software Framework for Topic Modelling with Large Corpora)
	Predicate-Argument EXtractor (PAX)

