How complex is discourse structure?

Markus Egg and Gisela Redeker

Humboldt-Universität Berlin/Rijksuniversiteit Groningen

LREC 2010

University of Malta, 20 May, 2010

Outline of the talk

- introduction: representations of discourse structure
- crucial phenomena
 - crossed dependencies
 - multiple-parent structures
 - a combination of these: potential list structures
- conclusion and outlook

- discourse is structuctured by discourse relations that combine smaller segments into larger ones
- discourse relations typically comprise cause/result, lists, or elaboration
- most discourse structure theories and annotated corpora assume that discourse structure is a tree
- in particular those that implement some version of Rhetorical Structure Theory (RST; Mann and Thompson 1988; Taboada and Mann 2006)
 - the WSJ Discourse Tree Bank (Carlson et al. 2003)
 - the Potsdam Commentary Corpus (Stede 2004)
- this assumption has come under attack as too restricted (Wolf and Gibson 2005, 2006; Lee et al. 2008)

- Wolf and Gibson (W&G) claim that discourse structure is much more complex and requires a representation in terms of chain graphs
 - (1) (C_1) "He was a very aggressive firefighter. (C_2) He loved the work he was in," (C_3) said acting Fire Chief Larry Garcia. (C_4) "He couldn't be bested in terms of his willingness and his ability to do something to help you survive." (ap-890101-0003)

• but the discourse structure of (1) can also be modelled as tree (Egg and Redeker 2008)

(3) elab_n / $elab_n$ C_3

- such competing analyses of the examples suggest evaluating W&G's corpus
 - the Discourse Graphbank (DGB; Wolf et al. 2005)
 - 135 texts from the AP Newswire and Wall Street Journal
- it comprises 10.3% more relations than a tree analysis could maximally have
- there are crossed dependencies
- 41.22% of the segments have multiple parents (W&G 2005)
- our goal: distinguish the complexity inherent in the data and the one arising from specific design choices in W&G's annotation
- our sample: the first 14 texts in the DGB (approx. 10% of the corpus)

Crossed dependencies

- crossed dependencies in the DGB
 - relations link (widely) non-adjacent discourse segments
 - many of these relations are ELABORATION relations
 - $\ast~50.5\%$ of crossed dependencies in the DGB are <code>ELABORATION</code>
 - $\ast\,$ in our sample, this holds for 69% of the relations with a gap of ${\geq}6$ units
- ELABORATION relations are problematic anyway (e.g., Knott et al. 2001)
 - many of them operate between coherence and cohesion
 - they target concepts and not entire discourse segments
 - they appear to be inspired by lexical or referential cohesion
- $\bullet\,$ correlation beween two problems in the DGB
 - relations that are based on cohesion (Egg and Redeker 2008)

- relations that introduce crossed dependencies (Webber et al. 2003) Markus Egg and Gisela Redeker, LREC 2010

- a typical instance of multiple-parent structures (MPS) in the DGB: embedded quotes, as in (4) [= (1)]
 - (4) (C_1) "He was a very aggressive firefighter. (C_2) He loved the work he was in," (C_3) said acting Fire Chief Larry Garcia. (C_4) "He couldn't be bested in terms of his willingness and his ability to do something to help you survive." (ap-890101-0003)
- these texts very often quote a source
 - message and source are linked by ATTRIBUTION (Carlson and Marcu 2001)
 - the message is considered more important than the source
 - importance is modelled in terms of subordination
 - the source is encoded as satellite and the message as nucleus

- the critical instances have the source embedded in the message
- for embedded sources, W&G annotate the attribution to left and right and link parts of the message pairwise
- example (4) in their analysis [= (2)]

• RST-based analysis of (4)

- this analysis uses the nuclearity principle of Marcu (1996)
- the RST-based analyses have one ATTRIBUTION relation less
- the sample comprises 11 such embedded-source constellations
- $\bullet\,$ these additional relations are 8% of the 138 excess relations for the sample

• this is approx. 1/3 of MPS in general, further work is necessary $_{\rm Markus\ Egg\ and\ Gisela\ Redeker,\ LREC\ 2010}$

- Lee et al. (2008) annotate MPS in the Penn Discourse Treebank (PDTB)
 - (6) [If this seems like pretty weak stuff around which to raise the protectionist barriers,] (C_1) it may be (C_2) because these shows need all the protection they can get. (C_3) European programs usually target only their own local audience (...). (2361)
- in (6), they regard C_2 as the immediate argument of two causal discourse relations , linking it to both C_1 and C_3
- empirical evidence:
 - each discourse relation and its arguments are annotated independently
 - in cases like (6), a (syntactically) subordinated segment is reselected
 - there are 349 instances of this constellation in the PDTB

- in an alternative tree-structure analysis of (6), the causal relation introduced by *because* links C_1 to the segment consisting of C_2 and C_3
- general question: relation between Lee et al.'s (2009) results and the PDTB annotation manual (Prasad et al. 2006)
 - annotators were explicitly required to specify the smallest arguments possible for the discourse relation in question
 - many satellites can be left out in a text without resulting in discoherence
 - in (6), this might have caused the annotators to choose C_2 (instead of C_2 and C_3) as the second argument of *because*
 - manual investigation of at least a relevant sample of the examples needed

Potential list structures 1

- multiple attachments and crossed dependencies also show up in potential list structures
 - they are of the form 'A $B_1 B_2 \ldots B_n$ '
 - all B_i stand in the same relation Rel to A
 - all B_i could be interpreted as list (or sequence)
- in (7), C_1 is elaborated by $[C_2 \ C_3]$, C_4 , and C_5

(7) (C_1) Students learn to program a computer and automated machines linked to it in a complete manufacturing operation (C_2) retrieving raw materials from the storage shelf unit (C_3) which can be programmed to supply appropriate parts from its inventory; (C_4) lifting and placing the parts in position with the robot's arm; (C_5) and shaping parts into finished products at the lathe. (ap-890101-0002)

Potential list structures 2

- W&G analyse these cases in that
 - each B_i is linked to A by Rel individually
 - the B_i are linked by parallelism (or elaboration)
- example (7) in their analysis

Potential list structures 3

 an RST-based analysis of (7) first combines the B_i and links them to A in one go

- W&G obtain many additional relations in this way
- their annotation manual requires annotators to integrate new material in a non-hierarchical way
- in our corpus sample there are five of these cases with three list elements each
- this accounts for 15 (10.9%) of the problematic relations

Conclusion and outlook

- we evaluated claims that discourse structure is more complex than tree structures
- there seems to be an interdependence between annotation manuals and the resulting complexity of representations of discourse structure
- we identified a number of crucial potentially non-treelike discourse constellations for which alternative tree-structure analyses are feasible
- it is the subject of further research to investigate whether this holds for all potentially non-treelike structures

References

- Carlson, L. and D. Marcu (2001). Discourse tagging reference manual. Available from http://www.isi.edu/~marcu/discourse/tagging-ref-manual.pdf.
- Carlson, L., D. Marcu, and M. E. Okurowski (2003). Building a discourse-tagged corpus in the framework of Rhetorical Structure Theory. In J. van Kuppevelt and R. Smith (eds), *Current Directions in Discourse and Dialogue*, 85–112. Dordrecht: Kluwer.
- Egg, M. and G. Redeker (2008). Underspecified discourse representation. In A. Benz and P. Kühnlein (eds), *Constraints in Discourse*, 117–138. Amsterdam: Benjamins.
- Knott, A., J. Oberlander, M. O'Donnell, and C. Mellish (2001). Beyond elaboration: The interaction of relations and focus in coherent text. In T. Sanders, J. Schilperoord, and W. Spooren (eds), *Text representation: linguistic and psycholinguistic aspects*, 181–196. Amsterdam: Benjamins.
- Lee, A., R. Prasad, A. Joshi, and B. Webber (2008). Departures from tree structures in discourse: Shared arguments in the Penn Discourse Treebank. In *Proceedings of the workshop 'Constraints in Discourse III'*, Potsdam.
- Mann, W. and S. Thompson (1988). Rhetorical Structure Theory: Towards a functional theory of text organization. Text 8, 243–281.
- Marcu, D. (1996). Building up rhetorical structure trees. In Proceedings of the 13th National Conference on Artificial Intelligence, Portland, 1069-1074.
- Prasad, R., E. Miltsakaki, N. Dinesh, A. Lee, A. Joshi, and B. Webber (2006). The Penn Discourse TreeBank 1.0. Annotation Manual. IRCS Technical Report IRCS-06-01, Institute for Research in Cognitive Science, University of Pennsylvania.
- Stede, M. (2004). The Potsdam Commentary Corpus. In B. Webber and D. Byron (eds), ACL 2004 Workshop on Discourse Annotation, Barcelona, Spain, 96–102. Association for Computational Linguistics.
- Taboada, M. and W. Mann (2006). Rhetorical Structure Theory: looking back and moving ahead. Discourse Studies 8, 423-459.
- Webber, B., M. Stone, A. Joshi, and A. Knott (2003). Anaphora and discourse structure. Computational Linguistics 29, 545-587.
- Wolf, F. and E. Gibson (2005). Representing discourse coherence: a corpus-based study. Computational Linguistics 31, 249-287.
- Wolf, F. and E. Gibson (2006). Coherence in natural language: data stuctures and applications. Cambridge: MIT Press.
- Wolf, F., E. Gibson, A. Fisher, and M. Knight (2005). Discourse Graphbank. Corpus number LDC 2005T08, Linguistic Data Consortium, Philadelphia.

• RST-based analysis of (4)

• this analysis uses the nuclearity principle (Marcu 1996):

A relation between a complex segment A and another segment B implies the same relation between the nucleus of A, and B

- in (3), the ELABORATION between C_1 - C_3 and C_4 is based on the same relation between C_1 - C_2 (the nucleus of C_1 - C_3) and C_4
- the source C_3 is not a right boundary for the information

- C_3 can indicate the source for C_4 , too $_{\rm Markus \; Egg \; and \; Gisela \; Redeker, \; LREC \; 2010}$

