Evaluating Lexical Substitution: Analysis and New Measures

Sanaz Jabbari, Mark Hepple, Louise Guthrie

Department of Computer Science University of Sheffield

- Lexical Substitution
- SemEval-2007: English Lexical Substition Task
- Metrics: analysis and revised metrics
 - Notational Conventions
 - ◇ Best Answer Measures
 - ♦ Measures of Coverage
 - ♦ Measures of Ranking

Lexical Substitution

- Lexical Substitution Task (LS):
 - find replacement for target word in sentence, so as to preserve meaning (as closely as possible)
 - e.g. replace target word *match* in: They lost the <u>match</u>
 - possible substitute: game gives:
- Target words may be sense ambiguous
 - so, task implicitly requires word sense disambiguation (WSD)
 - in above e.g., context disambiguates target *match*, and so determines what may be good substitutes
- McCarthy (2002) proposed LS be used to evaluate WSD systems
 - ◇ implicitly requires WSD
 - ◇ approach side-steps divisive issues of standard WSD evaluation

e.g. what is the appropriate *sense inventory*?

Jabbari et al. (USheffield)

Evaluating Lexical Substitution

They lost the game

SemEval-2007: English Lexical Substition Task

- The English Lexical Substitution Task (ELS07):
 - ♦ task at SemEval–2007
- Test items = sentence with an identified target word
 - systems must suggest substitution canidates
- Items selected to be targets were:
 - all sense ambiguous
 - ◇ ranged over parts-of-speech (N, V, Adj, Adv)
 - $\diamond~\sim 200$ targets terms, 10 test sentences each

• Gold standard:

- \diamond 5 annotators, asked to propose 1–3 substitutes per test item
- ♦ gold standard records set of proposed candidates
- ◇ and the *count* of annotators that proposed each candidate
 - assumed that a higher count indicates a better candidate

- Test data consists of N items i, with $1 \le i \le N$
- Let A_i denote system response for item *i* (answer set)
- Let *H_i* denote human proposed substitutes for item *i* (gold std)
- Let *freq_i* be a function returning the *count* for each term in *H_i*
 - i.e. count of annotators proposing that term
 - \diamond for any term *not* in H_i , *freq*_i returns 0
- Let maxfreq_i denote maximal count of any term in H_i
- Let *m_i* denote the *mode answer* for *i*
 - exists only if item has a single most-frequent response

Notational Conventions (contd)

• For any set of terms *S*, use $|S|^i$ to denote the *summed count values* of the terms in *S* according to *freq*_i, i.e.:

$$S|^i = \sum_{a \in S} freq_i(a)$$

EXAMPLE:

- Assume item *i* with target *happy* (adj), with human answers:
 - \diamond $H_i = \{g|ad, merry, sunny, jovial, cheerful\}$
 - ♦ and associated counts: (3,3,2,1,1)
 - ♦ abbreviate as: $H_i = \{G:3, M:3, S:2, J:1, Ch:1\}$
- THEN:
 - $maxfreq_i = 3$
 - $|H_i|^i = 10$
 - \diamond mode m_i is not defined (> 1 terms share max value)

Best Answer Measures

- Two ELS07 tasks involve finding a 'best' substitute for test item
- FIRST TASK: system can return *set* of answers *A_i*. Score as:

$$best(i) = rac{|A_i|^i}{|H_i|^i imes |A_i|}$$

- \diamond have $|A_i|^i$ above: summed 'count credits' for answer terms
- \diamond have $|A_i|$ below: number of answer terms
 - so returning > 1 term only allows system to 'hedge its bets'
 - optimal answer includes only a single term having max count value

• PROBLEM:

 \diamond dividing by $|H^i|$ means even optimal response gets score well below 1

e.g. for gold std example $H_i = \{G:3, M:3, S:2, J:1, Ch:1\}$ optimal answer set $A_i = \{G\}$ gets score $\frac{3}{10}$ or 0.3

Problem fixed by removing |H_i|, and dividing instead by maxfreq_i:

(new) best(i) =
$$\frac{|A_i|^i}{\max freq_i \times |A_i|}$$

• **EXAMPLES**: with gold std $H_i = \{G:3, M:3, S:2, J:1, Ch:1\}$, find:

- ♦ optimal answer $A_i = \{G\}$ gets score 1
- ♦ good 'hedged' answer $A_i = \{G, S\}$ gets score 0.83
- ♦ hedged good/bad answer $A_i = \{G, X\}$ gets score 0.5
- ♦ weak but correct answer $A_i = \{J\}$ gets score 0.33

SECOND TASK: requires single answer from system

- its 'best guess' answer bg_i
- ♦ answer receives credit only if it is *mode answer* for test item:

$$mode(i) = \left\{ egin{array}{cc} 1 & ext{if } bg_i = m_i \ 0 & ext{otherwise} \end{array}
ight.$$

• PROBLEMS:

- reasonable to have task where only single term allowed
- BUT has some key limitations approach:
 - is *brittle* only applies to items with a unique mode
 - loses information valuable to ranking systems
 - i.e. no credit for answer that is good but not mode

Best Answer Measures (contd)

• Instead, propose *should* have a 'single answer' task

- ♦ BUT don't require a mode answer
- rather, assign full credit for an optimal answer
- but lesser credit also for a correct/non-optimal answer
- Metric the best-1 metric:

$$best_1(i) = \frac{freq_i(bg_i)}{maxfreq_i}$$

- i.e. score 1 if $freq_i(bg_i) = maxfreq_i$
 - Iesser credit for answers with lower human count values
 - metric applies to all test items

Measures of Coverage

- Third ELS07 task: 'out of ten' (oot) task
 - tests if systems can field a wider set of substitutes
 - systems may offer set A_i of up to 10 guesses
 - \diamond metric assesses proportion of total gold std credit covered

$$oot(i) = \frac{|A_i|^i}{|H_i|^i}$$

• PROBLEM: does nothing to penalise *incorrect* answers

• ALTERNATIVE VIEW: if aim is to return a broad set of answer terms

- ◇ an *ideal system* will return *all and only* the correct substitutes
- a good system will return as many correct answers as possible, and as few incorrect answers as possible

Jabbari et al. (USheffield)

Evaluating Lexical Substitution

Measures of Coverage (contd)

- This view suggests instead want metrics like precision and recall
 - ♦ to reward correct answer terms (recall), and
 - ♦ to punish incorrect ones (precision)
 - taking count weightings into account
- Definitions without count weighting (not the final metrics):
 - ♦ correct answer terms given by: $|H_i \cap A_i|$
 - ♦ Recall:

$$R(i) = \frac{|H_i \cap A_i|}{|H_i|}$$

Precision:

$$P(i) = \frac{|H_i \cap A_i|}{|A_i|}$$

Measures of Coverage (contd)

- For the *weighted* metrics, no need to intersect $H_i \cap A_i$
 - count function freq, assigns count 0 to incorrect terms
 - \diamond so weighted correct terms is just $|A_i|^i$
- Recall (weighted): $R(i) = \frac{|A_i|^i}{|H_i|^i}$

same as oot metric (but no limit to 10 terms)

- For precision issue arises:
 - what is the 'count weighting' of *incorrect* answers?
 - must specify a *penalty* factor applied per incorrect term
- Precision (weighted):

$$P(i) = \frac{|A_i|^i}{|A_i|^i + k|A_i - H_i|}$$

Measures of Coverage (contd)

• EXAMPLES:

- Assume same gold std $H_i = \{G:3, M:3, S:2, J:1, Ch:1\}$
- ♦ Assume penalty factor k = 1
- Answer set $A_i = \{G, M, S, J, Ch\}$
 - all and only the correct terms
 - gets *P* = 1, *R* = 1
- Answer set $A_i = \{G, M, S, J, Ch, X, Y, Z, V, W\}$
 - contains all correct answers plus 5 incorrect ones
 - gets R = 1, but only P = 0.66 (10/(10+5))
- Answer set $A_i = \{G, S, J, X, Y\}$
 - has 3 out of 5 correct answers, plus 2 incorrect ones
 - gets R = 0.6 (6/10) and P = 0.75 (6/6+2))

Measures of Ranking

- Argue that core task for LS is coverage
- Coverage tasks will mostly be tackled by combining:
 - method to rank candidate terms (drawn from lexical resources)
 - means of drawing a *boundary* between good ones and bad
- So, may be useful to have means to assess ranking ability *directly* i.e. to aid process of system development
- Method (informal):
 - consider *list* of up to 10 candidates from system
 - at each rank position 1..10, compute what (count-weighted) proportion of *optimal* performance an answer list achieves
 - ◇ average over the 10 values so-computed

$$H_i = \{G:3, M:3, S:2, J:1, Ch:1\} \mapsto$$

rank	1	2	3	4	5	6	7	8	9	10
freq	3	3	2	1	1	0	0	0	0	0
cum.freq	3	6	8	9	10	10	10	10	10	10

 $A_i = (S, Ch, M, J, G, X, Y, Z, V) \mapsto$

rank	1	2	3	4	5	6	7	8	9	10
freq	2	1	3	1	3	0	0	0	0	0
cum.freq	2	3	6	7	10	10	10	10	10	10

 $rank(i) = \frac{1}{10} \times \left(\frac{2}{3} + \frac{3}{6} + \frac{6}{8} + \frac{7}{9} + \frac{10}{10} + \frac{10}{10} + \frac{10}{10} + \frac{10}{10} + \frac{10}{10} + \frac{10}{10} + \frac{10}{10}\right) = 0.87$

$$H_i = \{G:3, M:3, S:2, J:1, Ch:1\} \mapsto$$

rank	1	2	3	4	5	6	7	8	9	10
freq	3	3	2	1	1	0	0	0	0	0
cum.freq	3	6	8	9	10	10	10	10	10	10

 $A_i = (X, Y, S, Ch, M, Z, J, V, G) \mapsto$

rank	1	2	3	4	5	6	7	8	9	10
freq	0	0	2	1	3	0	1	0	3	0
cum.freq	0	0	2	3	6	6	7	7	10	10

 $rank(i) = \frac{1}{10} \times \left(\frac{0}{3} + \frac{0}{6} + \frac{2}{8} + \frac{3}{9} + \frac{6}{10} + \frac{6}{10} + \frac{7}{10} + \frac{7}{10} + \frac{10}{10} + \frac{10}{10}\right) = 0.52$