Extensive Evaluation of a FrameNet-WordNet mapping resource

Diego De Cao Danilo Croce Roberto Basili

DISP University of Rome Tor Vergata Rome, Italy {decao, croce, basili}@info.uniroma2.it

LREC 2010, Malta

<ロ> (四) (四) (三) (三) (三) (三)

2 Unsupervised Model to make a FrameNet - WordNet mapping

- 3 Empirical Analysis
- 4 Comparative Analysis

5 Conclusions

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

(日)

Frame Semantics

Frames (Fillmore, 1985) are conceptual structures modeling *prototypical situations*. A frame is *evoked* in texts through the occurrence of its lexical units.

Frame Semantics

Frames (Fillmore, 1985) are conceptual structures modeling *prototypical situations*. A frame is *evoked* in texts through the occurrence of its lexical units.

Frames and knowledge constraints

• Lexical constraints: (predicate) words evoke frames.

Frame Semantics

Frames (Fillmore, 1985) are conceptual structures modeling *prototypical situations*. A frame is *evoked* in texts through the occurrence of its lexical units.

Frames and knowledge constraints

- Lexical constraints: (predicate) words evoke frames.
- Conceptual constraints: Frames are characterized by *roles*, as *Frame elements*

▲□▶▲□▶▲□▶▲□▶ □ のQで

Frame Semantics

Frames (Fillmore, 1985) are conceptual structures modeling *prototypical situations*. A frame is *evoked* in texts through the occurrence of its lexical units.

Frames and knowledge constraints

- Lexical constraints: (predicate) words evoke frames.
- Conceptual constraints: Frames are characterized by *roles*, as *Frame elements*
- Semantic constraints: Predicate arguments are selectionally constrained by a system of semantic types

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

FrameNet: the coverage problem

+ The frame semantics is a good model for some tasks

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

FrameNet: the coverage problem

- + The frame semantics is a good model for some tasks
- The lack coverage of lexical evidence make unreliable the use of FrameNet in such tasks

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

FrameNet: the coverage problem

- + The frame semantics is a good model for some tasks
- The lack coverage of lexical evidence make unreliable the use of FrameNet in such tasks
- + Some Lexical resources are available.

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

FrameNet: the coverage problem

- + The frame semantics is a good model for some tasks
- The lack coverage of lexical evidence make unreliable the use of FrameNet in such tasks
- + Some Lexical resources are available.
- The automatic extension of FrameNet is an hard track.

- + The frame semantics is a good model for some tasks
- The lack coverage of lexical evidence make unreliable the use of FrameNet in such tasks
- + Some Lexical resources are available.
- The automatic extension of FrameNet is an hard track.

Multilinguality FrameNet coverage

• The Frame Semantics model is language independent.

- + The frame semantics is a good model for some tasks
- The lack coverage of lexical evidence make unreliable the use of FrameNet in such tasks
- + Some Lexical resources are available.
- The automatic extension of FrameNet is an hard track.

Multilinguality FrameNet coverage

- The Frame Semantics model is language independent.
- The FrameNet project was developed for english.

- + The frame semantics is a good model for some tasks
- The lack coverage of lexical evidence make unreliable the use of FrameNet in such tasks
- + Some Lexical resources are available.
- The automatic extension of FrameNet is an hard track.

Multilinguality FrameNet coverage

- The Frame Semantics model is language independent.
- The FrameNet project was developed for english.
- Some FrameNet projects in other language are starting (e.g. Italian, Spanish)

- + The frame semantics is a good model for some tasks
- The lack coverage of lexical evidence make unreliable the use of FrameNet in such tasks
- + Some Lexical resources are available.
- The automatic extension of FrameNet is an hard track.

Multilinguality FrameNet coverage

- The Frame Semantics model is language independent.
- The FrameNet project was developed for english.
- Some FrameNet projects in other language are starting (e.g. Italian, Spanish)
- May be Lexical resources used as support to develop FrameNet in other language?

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

• is a large lexical database.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

- is a large lexical database.
- contains 155K lemmas (wrt. 11K Lexical Units in FrameNet).

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- is a large lexical database.
- contains 155K lemmas (wrt. 11K Lexical Units in FrameNet).
- has been developed in different languages.

- - is a large lexical database.
 - contains 155K lemmas (wrt. 11K Lexical Units in FrameNet).
 - has been developed in different languages.
 - The relations between synsets are useful to extend the FrameNet Lexical Unit set.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- WordNet
 - is a large lexical database.
 - contains 155K lemmas (wrt. 11K Lexical Units in FrameNet).
 - has been developed in different languages.
 - The relations between synsets are useful to extend the FrameNet Lexical Unit set.

Challenge

Is it possible to make an automatic mapping between FrameNet Lexical Units and WordNet synsets?

▲□▶▲□▶▲□▶▲□▶ □ のQで

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

FrameNet - WordNet mapping: Related Works

• (Burchardt et al., 2005) Detour: a system for predicting frame assignment of potential lexical units not covered by FrameNet.

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

FrameNet - WordNet mapping: Related Works

- (Burchardt et al., 2005) Detour: a system for predicting frame assignment of potential lexical units not covered by FrameNet.
- (Shi and Mihalcea, 2005) a model to automatic map FrameNet verbal lexical units to VerbNet verbs.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

FrameNet - WordNet mapping: Related Works

- (Burchardt et al., 2005) Detour: a system for predicting frame assignment of potential lexical units not covered by FrameNet.
- (Shi and Mihalcea, 2005) a model to automatic map FrameNet verbal lexical units to VerbNet verbs.
- (De Cao et al., 2008), we proposed an unsupervised model for inducing Lexical Units by combining distributional, i.e. corpus, evidence as well as paradigmatic information derived from Wordnet.

FrameNet - WordNet mapping: Related Works

- (Burchardt et al., 2005) Detour: a system for predicting frame assignment of potential lexical units not covered by FrameNet.
- (Shi and Mihalcea, 2005) a model to automatic map FrameNet verbal lexical units to VerbNet verbs.
- (De Cao et al., 2008), we proposed an unsupervised model for inducing Lexical Units by combining distributional, i.e. corpus, evidence as well as paradigmatic information derived from Wordnet.
- (Tonelli and Pighin, 2009) a mapping between FrameNet Lexical Units and WordNet synsets is studied as a classification task according to a supervised learning model.

A paradigmatic view of Frames

The relationship between word senses and frames is very rich, the latter including synonimic/antinomic lexical units as well as topically related LU pairs.

イロト 不得 とうほう イヨン

-

A paradigmatic view of Frames

The relationship between word senses and frames is very rich, the latter including synonimic/antinomic lexical units as well as topically related LU pairs.

Examples

• A sense for an LU *l* can be precisely (i.e. univocally) related to the frame of *l* (e.g. *father* as a verb, for Kinship).

▲□▶▲□▶▲□▶▲□▶ □ のQで

A paradigmatic view of Frames

The relationship between word senses and frames is very rich, the latter including synonimic/antinomic lexical units as well as topically related LU pairs.

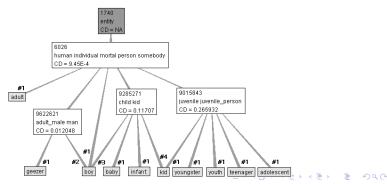
Examples

- A sense for an LU *l* can be precisely (i.e. univocally) related to the frame of *l* (e.g. *father* as a verb, for Kinship).
- A sense can also evoke more than one frame (e.g. "*child*, *kid*" for Kinship and People_by_age).

A paradigmatic view of Frames

The relationship between word senses and frames is very rich, the latter including synonimic/antinomic lexical units as well as topically related LU pairs.

Examples


- A sense for an LU *l* can be precisely (i.e. univocally) related to the frame of *l* (e.g. *father* as a verb, for Kinship).
- A sense can also evoke more than one frame (e.g. "*child*, *kid*" for Kinship and People_by_age).
- A sense can be a <u>narrower</u> notion than a frame, and *more than one sense* evoke the same frame (e.g. "*child, kid*" and "*child, kid*, *youngster*, ..." for People_by_age)

Developing a Paradigmatic Model for frames

Task Definition

Given the set of lexical units $lu \in F$ **Determine** the suitable generalizations α in WN able to subsume most of the lexical units in *F*

An example:

A Paradigmatic model of Frames

Definition

The WordNet model $WN_F(\Gamma, W)$ of a frame *F*, is a graph

$$WN_F(\Gamma, W) = \langle W, S_F, L_F, h, sim_{WN}, m \rangle$$

where:

- $W \subset F$ are the subset of all LUs in *F* having the same part-of-speech $\Gamma \in \{verb, noun, adjective\},\$
- S_F are synsets in WN needed to generalize words $w \in W$
- $L_F \subset S_F$ are the lexical senses of $w \in W$ subsumed by S_F
- $h \subseteq S_F \times S_F$ is the projection of the hyponymy relation in S_F
- *m* ⊆ *W* × 2^{*L_F*} is the lexical relation between words *w* ∈ *W* and synsets in *L_F*
- $sim_{WN}: S_F \to \Re$ is a weighting function of senses $\sigma \in S_F$

The Paradigmatic Model for nouns

Solution: Conceptual Density metric (Basili et al., 2004)

For each $w \in W$, the semantic similarity in F_W is computed according to the conceptual density metric (Basili et al., 2004).

Given W, a synset α in WordNet used to generalize *n* different nouns $w \in W$, the conceptual density, $cd^{F_W}(\alpha)$, of α with respect to F_W is defined as:

$$cd^{F_W}(\alpha) = rac{\sum_{i=0}^h \mu^i}{area(\alpha)}$$

where h is the estimated depth of a tree able to generalize the n nouns, i.e.

$$h = \begin{cases} \lfloor log_{\mu}n \rfloor & \text{iff } \mu \neq 1\\ n & \text{otherwise} \end{cases}$$

 μ is the average branching factor in the Wordnet subhierarchy dominated by α , *area*(α) is the number of nodes in the α subhierarchy.

▲日▼▲雪▼▲画▼▲画▼ 画 ものの

・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト

The Paradigmatic Model for adjectives and verbs

Adjectives

Similarity among *adjectives* is computed on the basis of the synonymy relation, as follows:

$$sim_{WN}(ul) = \begin{cases} 1 & \text{iff } \exists l \in F \text{ such that} \\ l \text{ is a synonym of } ul \\ \varepsilon & \text{otherwise} \end{cases}$$

The Paradigmatic Model for adjectives and verbs

Adjectives

Similarity among *adjectives* is computed on the basis of the synonymy relation, as follows:

$$sim_{WN}(ul) = \begin{cases} 1 & \text{iff } \exists l \in F \text{ such that} \\ l \text{ is a synonym of } ul \\ \varepsilon & \text{otherwise} \end{cases}$$

Verbs

For *verbs* the co-hyponymy relation is applied. The similarity $sim_{WN}(ul)$ is defined as follows:

$$sim_{WN}(ul) = \begin{cases} 1 & \text{iff } \exists K \subset F \text{ such that} \\ |K| > \tau \text{ AND} \\ \forall l \in K, l \text{ is a co-hyponim of } ul \\ \varepsilon & \text{otherwise} \end{cases}$$

ヘロト 人間 とくほ とくほとう

A Paradigmatic Model of Frames

Properties

• The WordNet model $WN_F(\Gamma, W)$ is the *best* projection of Wordnet for the target frame *F*, according to the *hyperonimy relation* among senses of the LUs and the *conceptual density* metrics

イロト 不得 とうほう イヨン

A Paradigmatic Model of Frames

Properties

- The WordNet model $WN_F(\Gamma, W)$ is the *best* projection of Wordnet for the target frame *F*, according to the *hyperonimy relation* among senses of the LUs and the *conceptual density* metrics
- The distribution of relevance across the senses of LUs is local to *F*

▲□▶▲□▶▲□▶▲□▶ □ のQで

A Paradigmatic Model of Frames

Properties

- The WordNet model $WN_F(\Gamma, W)$ is the *best* projection of Wordnet for the target frame *F*, according to the *hyperonimy relation* among senses of the LUs and the *conceptual density* metrics
- The distribution of relevance across the senses of LUs is local to *F*
- Potential polisemy effects are captured as more than one lexical sense can be retained

▲□▶▲□▶▲□▶▲□▶ □ のQで

A Paradigmatic Model of Frames

Properties

- The WordNet model WN_F(Γ, W) is the *best* projection of Wordnet for the target frame F, according to the *hyperonimy relation* among senses of the LUs and the *conceptual density* metrics
- The distribution of relevance across the senses of LUs is local to *F*
- Potential polisemy effects are captured as more than one lexical sense can be retained
- Irrilevant senses for F are discarded

ヘロト ヘロト ヘロト ヘロト

æ

Resource Statistics

	Nouns	Verbs	Adjectives
Targeted Frames	364	412	111
Targeted LUs	3.602	3.325	762
Average LUs per frame	9,89	8,07	6,86
Number of Evoked Senses	11.034	18.781	2.320
Average Polysemy	3,06	5,64	3,04
Active Lexical Senses	4.221	4.868	921
Average Active Lexical Senses			
per word over frames	1,17	1,46	1,20

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Resource Statistics

	Nouns	Verbs	Adjectives
Targeted Frames	364	412	111
Targeted LUs	3.602	3.325	762
Average LUs per frame	9,89	8,07	6,86
Number of Evoked Senses	11.034	18.781	2.320
Average Polysemy	3,06	5,64	3,04
Active Lexical Senses	4.221	4.868	921
Average Active Lexical Senses			
per word over frames	1,17	1,46	1,20

About 10K Lexical Unit - Synset pairs

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

The evaluation problem

• All previous works have a dedicated evaluation method

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

The evaluation problem

- All previous works have a dedicated evaluation method
- Different gold standard was developed in different works

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

The evaluation problem

- All previous works have a dedicated evaluation method
- Different gold standard was developed in different works
- So results on different works are not really comparable

The evaluation problem

- All previous works have a dedicated evaluation method
- Different gold standard was developed in different works
- So results on different works are not really comparable

How do a comparative evaluation of different works?

▲□▶▲□▶▲□▶▲□▶ □ のQで

The evaluation problem

- All previous works have a dedicated evaluation method
- Different gold standard was developed in different works
- So results on different works are not really comparable

How do a comparative evaluation of different works?

Analysis

- Empirical Analysis on a Gold Standard
- Comparative Analysis with respect to other resources

Empirical Analysis: Experimental Setup

Gold Standard - (Tonelli and Pighin, 2009)

The gold standard includes:

• 386 Frames

Empirical Analysis: Experimental Setup

Gold Standard - (Tonelli and Pighin, 2009)

The gold standard includes:

- 386 Frames
- 617 Lexical Unit Frame pairs

イロト 不得 とうほう イヨン

3

Empirical Analysis: Experimental Setup

Gold Standard - (Tonelli and Pighin, 2009)

The gold standard includes:

- 386 Frames
- 617 Lexical Unit Frame pairs
- 2,158 Lexical Unit Synset pairs

▲□▶▲□▶▲□▶▲□▶ □ のQで

Empirical Analysis: Experimental Setup

Gold Standard - (Tonelli and Pighin, 2009)

The gold standard includes:

- 386 Frames
- 617 Lexical Unit Frame pairs
- 2,158 Lexical Unit Synset pairs

FrameNet version 2.0 WordNet version 2.0

Empirical Analysis: Experimental Setup

Gold Standard - (Tonelli and Pighin, 2009)

The gold standard includes:

- 386 Frames
- 617 Lexical Unit Frame pairs
- 2,158 Lexical Unit Synset pairs

FrameNet version 2.0 WordNet version 2.0

Evaluation Metrics

$$P = \frac{TP}{TP + FP}$$
 $R = \frac{TP}{TP + FN}$ $F1 = \frac{2*P*R}{P+R}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Results

	Precision	Recall	F-Measure
Tonelli-Pighin 1	0,761	0,613	0,679
Tonelli-Pighin 2	0,794	0,569	0,663
Noun	0,795	0,815	0,805
Verb	0,522	0,665	0,585
Adjectives	0,694	0,735	0,714

▲□▶▲□▶▲□▶▲□▶ □ のQで

Comparative Analysis: Experimental Setup

Systems

- The paradigmatic *PM* model of (De Cao et al., 2008)
- The SVM-based method of (Tonelli and Pighin, 2009) hereafter *TP*
- The Framenet to Wordnet maps of (Shi and Mihalcea, 2005), hereafter *F2W*

▲□▶▲□▶▲□▶▲□▶ □ のQで

Comparative Analysis: Experimental Setup

Systems

- The paradigmatic *PM* model of (De Cao et al., 2008)
- The SVM-based method of (Tonelli and Pighin, 2009) hereafter *TP*
- The Framenet to Wordnet maps of (Shi and Mihalcea, 2005), hereafter *F2W*

Statistics

• *PM* and *TP* (w, F) common pairs 3,479

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

Comparative Analysis: Experimental Setup

Systems

- The paradigmatic PM model of (De Cao et al., 2008)
- The SVM-based method of (Tonelli and Pighin, 2009) hereafter *TP*
- The Framenet to Wordnet maps of (Shi and Mihalcea, 2005), hereafter *F2W*

Statistics

- *PM* and *TP* (w, F) common pairs 3,479
- *PM*, *TP* and *F2W* (w, F) common pairs 1,027

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Results

Comparison between PM and TP

	Cohen's k	Agreement
Overall	0,69	86,0%
Noun	0,70	85,3%
Verb	0,65	86,7%
Adjectives	0,69	85,2%

Results

Comparison between PM and TP

	Cohen's k	Agreement
Overall	0,69	86,0%
Noun	0,70	85,3%
Verb	0,65	86,7%
Adjectives	0,69	85,2%

Comparison between PM, TP, F2W using only verbs

	Cohen's k	Agreement
MapNet (TP verbs only)	0,65	85,8%
FnWnVerbMap (F2W)	0,58	82,5%

Examples of PM resource

Frame	Frame Def.	Lexical Unit	Score	Senses	WordNet Gloss
BUILDING_SUBPARTS	This frame includes words that name sub- parts of buildings that can be occupied by people.	room.n	1	4	an area within a build- ing enclosed by walls and floor and ceiling; "the rooms were very small but they had a nice view"
Fluidic_motion	In this frame a Fluid moves from a Source to a Goal along a Path or within an Area.	flow.v	0.9	7	move along, of liquids; "Water flowed into ; the cave" "the Missouri feeds into the Missis- sippi"
CAUSE_TO_MOVE_IN_PLACE	An Agent causes a Theme to move with respect to a certain Fixed_location, gen- erally with a certain Periodicity,	rotate.v	0.6	7	turn on or around an axis or a center; "The Earth revolves around the Sun"; "The lamb roast rotates on a spit over the fire"
CONNECTORS	The Connector is an artifact created to affix a Connected_item or to bind onto a Fixed_location and is primarily so used.	chain.n	0.69	10	a necklace made by a stringing objects to- gether; "a string of beads"; "a strand of pearls";

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Caparison between PM and TP

Frame	Frame Definition	LU	WordNet Gloss	System
ACCOUTREMENTS	A Wearer wears accessories, which are made of some Material and may have a Style.	choker.n	necklace that fits tightly around a woman's neck a high tight collar	PM TP
GROOMING	In this frame, an Agent engages in personal body care. An Instrument	soap.v	rub soap all over, usually with the purpose of cleaning	PM
	as a Medium.		cover with soap; "lather your body when you shower"	TP
Electricity	Lexical units in this frame refer to Electricity, in particular as a form of energy harnessed for particular uses (such as powering machines). The	electrical a	using or providing or producing or transmitting or operated by elec- tricity; "electric current"; "electric wiring"	PM
ELECTRICITY Source of the Electricity may also be expressed, or incorporated in the meaning of the LUs.	relating to or concerned with elec- tricity; "an electrical engineer"; "electrical and mechanical engi- neering industries"	TP		
Posture	An Agent supports their body in a particular Location	stance.n	a rationalized mental attitude standing posture	PM TP

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Conclusions and Futures Works

• An extensive evaluation of the Paradigmatic Model was presented

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- An extensive evaluation of the Paradigmatic Model was presented
- A comparative analysis wrt. different resources was presented

- An extensive evaluation of the Paradigmatic Model was presented
- A comparative analysis wrt. different resources was presented
- The results on the Gold Standard suggest to define other models for verbs

- An extensive evaluation of the Paradigmatic Model was presented
- A comparative analysis wrt. different resources was presented
- The results on the Gold Standard suggest to define other models for verbs
- The comparative analysis suggest a substantial agreement between methods

- An extensive evaluation of the Paradigmatic Model was presented
- A comparative analysis wrt. different resources was presented
- The results on the Gold Standard suggest to define other models for verbs
- The comparative analysis suggest a substantial agreement between methods
 - As the two methods using independent information they can be effectively integrated within a structured supervised approach.

- An extensive evaluation of the Paradigmatic Model was presented
- A comparative analysis wrt. different resources was presented
- The results on the Gold Standard suggest to define other models for verbs
- The comparative analysis suggest a substantial agreement between methods
 - As the two methods using independent information they can be effectively integrated within a structured supervised approach.
- Lexical Unit Synset pairs validated through different systems will be used as entry point for iFrame (the Italian FrameNet Project)

- An extensive evaluation of the Paradigmatic Model was presented
- A comparative analysis wrt. different resources was presented
- The results on the Gold Standard suggest to define other models for verbs
- The comparative analysis suggest a substantial agreement between methods
 - As the two methods using independent information they can be effectively integrated within a structured supervised approach.
- Lexical Unit Synset pairs validated through different systems will be used as entry point for iFrame (the Italian FrameNet Project)
- An extension through distributional evidence to make domain specific FrameNets

▲□▶ ▲□▶ ▲ □▶ ★ □ ▶ □ ● の < @

Resource Download

The resource will be publicly available at: http://sag.art.uniroma2.it/

▲□▶ ▲□▶ ▲ □▶ ★ □ ▶ □ ● の < @

Resource Download

The resource will be publicly available at: http://sag.art.uniroma2.it/

Thanks