Towards a learning approach for abbreviation detection and resolution

Klaar Vanopstal, Bart Desmet, Véronique Hoste

LT³, Language and Translation Technology Team University College Ghent {klaar.vanopstal,bart.desmet,véronique.hoste}@hogent.be

Department of Applied Mathematics & Computer Science Ghent University Krijgslaan 281 (S9), 9000 Gent, Belgium

May 19, 2010

Background

- Background
- 2 Annotation

- Background
- 2 Annotation
- 3 Pattern-based approach

- Background
- 2 Annotation
- 3 Pattern-based approach
- 4 Learning-based approach

- Background
- 2 Annotation
- 3 Pattern-based approach
- 4 Learning-based approach
- 5 Conclusions and future work

Problem

Information explosion \Rightarrow growing number of (bio)medical abbreviations.

New abbreviations are created; not always known to the reader.

⇒ automatic detection and resolution

Use

- information retrieval
- information extraction
- NER
- anaphora resolution

Corpus

- English
 - AbbRE: reliable standard but limited size
 - Medstract: publicly available and commonly used

Corpus

- English
 - AbbRE: reliable standard but limited size
 - Medstract: publicly available and commonly used
- Dutch: no resources available

Corpus

- English
 - AbbRE: reliable standard but limited size
 - Medstract: publicly available and commonly used
- Dutch: no resources available
- Abstracts from 2 medical journals:
 - Nederlands Tijdschrift voor Geneeskunde (NTvG); 29,978 words
 - Belgisch Tijdschrift voor Geneeskunde (TvG); 36,757 words
 - \Rightarrow total of 66,739 words

Different types of abbreviations included in annotations:

Truncation

Example

adm for administration

Different **types** of abbreviations included in annotations:

Truncation

Example

adm for administration

First letter initialization

Example

AAA for <u>abdominal</u> <u>aortic</u> <u>aneurysm</u>

Different **types** of abbreviations included in annotations:

Truncation

Example

adm for administration

First letter initialization

Example

AAA for <u>abdominal</u> <u>aortic</u> <u>aneurysm</u>

Opening letter initialization

Example

HeLa for Henrietta Lacks

Syllabic initialization

Example

BZD for <u>benzodiazepine</u>

Syllabic initialization

Example

BZD for benzodiazepine

Substitution initialization

Example

Fe for iron

Syllabic initialization

Example

BZD for <u>benzodiazepine</u>

Substitution initialization

Example

Fe for iron

Combination of letters and numbers

Example

CXCR4 for chemokine receptor fusin

Labels

 ABBR: Dutch abbreviations which have a full form in their local context

Example

Hoge-resolutie-computertomografie (HRCT)

EN: High resolution computed tomography (HRCT)

Labels

 ABBR: Dutch abbreviations which have a full form in their local context

Example

Hoge-resolutie-computertomografie (HRCT)

EN: High resolution computed tomography (HRCT)

ABBR_DE: Dutch abbreviations with full form in abstract (not in local context)

Example

de pathofysiologie van het CFS

EN: the pathophysiology of CFS

3. **DEF**: Dutch full forms which define an abbreviation in their local context

Example

Hoge-resolutie-computertomografie (HRCT)

EN: High resolution computed tomography (HRCT)

DEF: Dutch full forms which define an abbreviation in their local context

Example

Hoge-resolutie-computertomografie (HRCT)

EN: High resolution computed tomography (HRCT)

4. **ABBR_IN_COMP**: part of a compound word; no definition in the abstract

Example

HIV-patiënten

(EN: HIV patients)

ABBR_IN_COMP_DE: part of a compound word; full form in abstract

Example

ernstige *reumatoïde artritis* (RA)-vasculitis. Bij de ziekte van Wegener en **RA**-vasculitis...

 \underline{EN} : severe rheumatoid arthritis (RA) vasculitis. Wegener's disease and RA vasculitis...)

ABBR_IN_COMP_DE: part of a compound word; full form in abstract

Example

ernstige *reumatoïde artritis* (RA)-vasculitis. Bij de ziekte van Wegener en **RA**-vasculitis...

<u>EN</u>: severe rheumatoid arthritis (RA) vasculitis. Wegener's disease and RA vasculitis...)

6. ABBR_NO_DEF: abbreviations without full form

Example

AIDS, HIV

7. **ABBR_EN**: English abbreviation with Dutch/English definition in local context

Example

endosonografie (EUS)

EN: endoscopic ultrasound (EUS)

 ABBR_EN: English abbreviation with Dutch/English definition in local context

Example

endosonografie (EUS)

EN: endoscopic ultrasound (EUS)

8. **DEF_EN**: English full form which accompanies an English abbreviation

Example

Mini Mental State Examination (MMSE)

 \Rightarrow Kappa score: 0.89

	NTvG	TvG
ABBR	11.60	14.25
ABBR_DE	30.62 22.55	
ABBR_IN_COMP	7.14	22.43
ABBR_IN_COMP_DE	16.85 4.96	
ABBR_NO_DEF	27.65 29.12	
ABBR_EN	6.14 6.69	
TOTAL %	3.36	2.19

Table: Labels and their frequencies in the corpus (%)

	NTvG	TvG
def: loc	17.74%	20.94 %
def: broad	17.74% 47.47%	27.50%
def: loc/broad	65.21%	48.45%

Table: Abbreviations and defined abbreviations in the corpus

 \Rightarrow Between 45% and 52% of the abbreviations are undefined

• English abbreviations with Dutch full form: no match

Example

HAART = krachtige antiretrovirale therapie

• English abbreviations with Dutch full form: no match

Example

HAART = krachtige antiretrovirale therapie

Parenthetical patterns

Example

gunstige uitkomst (score 5)

• English abbreviations with Dutch full form: no match

Example

HAART = krachtige antiretrovirale therapie

Parenthetical patterns

Example

gunstige uitkomst (score 5)

Syllabic initialization

Example

CVS = chronische-vermoeidheidssyndroom

EN: $CFS = \mathbf{c}$ hronic \mathbf{f} atigue \mathbf{s} yndrome)

• English abbreviations with Dutch full form: no match

Example

HAART = krachtige antiretrovirale therapie

Parenthetical patterns

Example

gunstige uitkomst (score 5)

Syllabic initialization

Example

CVS = chronische-vermoeidheidssyndroom

EN: $CFS = \mathbf{c}$ hronic \mathbf{f} atigue \mathbf{s} yndrome)

Pattern-based approach - Related research

⇒ Use of patterns to detect abbreviations:

Pattern-based approach - Related research

- ⇒ Use of patterns to detect abbreviations:
 - short uppercase words
 - typical patterns: "long form (short form)" or "short form (long form)"

Pattern-based approach - Related research

- ⇒ Use of patterns to detect abbreviations:
 - short uppercase words
 - typical patterns: "long form (short form)" or "short form (long form)"
 - identification of definitions:
 - window of 2*N (Taghva & Gilbreth, 1999)
 or 3*N words (Stanford Medical Abbreviation Method (Chang & Schütze, 2006))
 - text markers: () " =
 - linguistic cues: "short", "or" (Park & Byrd, 2001)

 + use of NLP tools to refine the search space of the definitions (Pustojevski et al., 2001) and/or to tackle the problem of function word matching

Example

ADL = activiteiten van het dagelijkse leven

EN: daily life activities

Related research Own approach Results

2 steps:

2 steps:

Abbreviation detection

2 steps:

- Abbreviation detection
- Definition matching

Related research Own approach Results

Step 1: abbreviation detection:

Step 1: abbreviation detection:

• capital letters / combinations of capital letters with 1-3 lowercased letters or numbers

Example

QSRL

pANCA

CDG1A

Step 1: abbreviation detection:

• capital letters / combinations of capital letters with 1-3 lowercased letters or numbers

Example

QSRL

pANCA

CDG1A

window of 3*N words

Step 1: abbreviation detection:

 capital letters / combinations of capital letters with 1-3 lowercased letters or numbers

Example

QSRL

pANCA

CDG1A

- window of 3*N words
- text markers () = " \rightarrow list of candidate definitions

Step 2: definition matching:

Related research Own approach Results

Step 2: definition matching:

list of candidate definitions

Step 2: definition matching:

- list of candidate definitions
- matching: first letter of abbreviation words in candidate definition
 - \Rightarrow matching word + rest of the 3*N sequence = definition

Abbreviations				
	precision	recall	FB1	
TvG	83.89	78.64	81.18	
NTvG	82.05	83.07	82.56	
Definitions				
	precision	recall	FB1	
TvG	74.49	83.36	78.68	
NTvG	68.03	85.50	75.77	

Table: Results of the pattern-based approach

• Errors in abbreviation detection step

- Errors in abbreviation detection step
 - **Titles** printed in capital letters

- Errors in abbreviation detection step
 - Titles printed in capital letters
 - Roman numerals confused with capitalized i, v or x

- Errors in abbreviation detection step
 - Titles printed in capital letters
 - Roman numerals confused with capitalized i, v or x
 - **single letters** which are not abbreviations (e.g. hepatitis **A**)

- Errors in abbreviation detection step
 - Titles printed in capital letters
 - Roman numerals confused with capitalized i, v or x
 - **single letters** which are not abbreviations (e.g. hepatitis **A**)
 - abbreviations with word-internal capital letters (e.g. mmHg (EN: Torr))

- Errors in abbreviation detection step
 - **Titles** printed in capital letters
 - Roman numerals confused with capitalized i, v or x
 - **single letters** which are not abbreviations (e.g. hepatitis **A**)
 - abbreviations with word-internal capital letters (e.g. mmHg (EN: Torr))
 - abbreviations with no typical orthographical characteristics (e.g. min)

Related researc Own approach Results

• Errors in definition matching step

Related researc Own approach Results

- Errors in definition matching step
 - error percolation

- Errors in definition matching step
 - error percolation
 - mislinked words (e.g. het hepatitis-A-virus (HAV))

- Errors in definition matching step
 - error percolation
 - mislinked words (e.g. het hepatitis-A-virus (HAV))
 - function words (e.g. op evidentie gebaseerde zorg (EBZ)
 (EN: evidence-based medicine (EBM))

- Errors in definition matching step
 - error percolation
 - mislinked words (e.g. het hepatitis-A-virus (HAV))
 - function words (e.g. op evidentie gebaseerde zorg (EBZ)
 (EN: evidence-based medicine (EBM))
 - English abbreviations with a Dutch definition

Errors in definition matching step

- error percolation
- mislinked words (e.g. het hepatitis-A-virus (HAV))
- function words (e.g. op evidentie gebaseerde zorg (EBZ)
 (EN: evidence-based medicine (EBM))
- English abbreviations with a Dutch definition
- contractions (e.g. therapiegebonden secundaire myelodysplasie (t MDS) en acute leukemie (t AL).
 (EN: the incidence of therapy-related secondary myelodysplasia (t-MDS) and acute leukemia (t-AL).)

 Often in combination with pattern-based techniques, e.g. Stanford Medical Abbreviation Method (2006), Chang et al. (2002)

- Often in combination with pattern-based techniques, e.g. Stanford Medical Abbreviation Method (2006), Chang et al. (2002)
- Pattern-based detection of abbreviations + learning-based matching with definitions

- Often in combination with pattern-based techniques, e.g. Stanford Medical Abbreviation Method (2006), Chang et al. (2002)
- Pattern-based detection of abbreviations + learning-based matching with definitions
- examples of features:
 - % of characters aligned at beginning of word
 - % of characters aligned on syllable boundary
 - number of words that were skipped (negative weight)

- Often in combination with pattern-based techniques, e.g. Stanford Medical Abbreviation Method (2006), Chang et al. (2002)
- Pattern-based detection of abbreviations + learning-based matching with definitions
- examples of features:
 - % of characters aligned at beginning of word
 - % of characters aligned on syllable boundary
 - number of words that were skipped (negative weight)

Own approach

• Preprocessing steps:

Own approach

- Preprocessing steps:
 - tokenization

Own approach

- Preprocessing steps:
 - tokenization
 - ullet POS tagging + NP chunking (Daelemans & van den Bosch, 2005)

Background Annotation Pattern-based approach Learning-based approach Conclusions and future work

Related research Own approach Results

Learning experiments

- Learning experiments
 - YamCha (Kudo & Matsumoto, 2003): open source sequence tagger using SVM

- Learning experiments
 - YamCha (Kudo & Matsumoto, 2003): open source sequence tagger using SVM
 - 10-fold cross-validation

• Feature vector:

Feature vector:

- token
- POS
- name initials
- sentence-initial position
- morphological features (initial capital letter, completely capitalized, internal capital letters, lowercased, roman number, punctuation, hyphens, exclusively consonants)
- prefix and suffix information
- symbolic word shape feature: all morphological (binary) features
- feature to match 1st letter of abbreviation against words in 3*N sequence

Results

Abbreviations				
	precision	recall	FB1	
TvG	95.31	92.26	93.76	
NTvG	96.76	90.97	93.78	
Definitions				
	precision	recall	FB1	
TvG	86.92	78.18	82.32	
NTvG	87.19	78.00	82.34	

Table: Ten-fold cross-validation results of the learning experiments.

Background Annotation Pattern-based approach Learning-based approach Conclusions and future work

Conclusions

• annotated dataset of +/- 67,000 words (Dutch, medical)

- annotated dataset of +/- 67,000 words (Dutch, medical)
- 2 approaches: pattern-based and classification-based

- annotated dataset of +/- 67,000 words (Dutch, medical)
- 2 approaches: pattern-based and classification-based
- classification-based approach **outperforms** the pattern-based approach on both tasks:

- annotated dataset of +/- 67,000 words (Dutch, medical)
- 2 approaches: pattern-based and classification-based
- classification-based approach outperforms the pattern-based approach on both tasks:
 - abbreviation detection: 93% F-score

- annotated dataset of +/- 67,000 words (Dutch, medical)
- 2 approaches: pattern-based and classification-based
- classification-based approach outperforms the pattern-based approach on both tasks:
 - abbreviation detection: 93% F-score
 - definition matching: 82% F-score

Background Annotation Pattern-based approach Learning-based approach Conclusions and future work

Background Annotation Pattern-based approach Learning-based approach Conclusions and future work

Future work

incorporate information from error analysis into learning approach

- incorporate information from error analysis into learning approach
- apply decompounding techniques (syllabic initializations)

- incorporate information from **error analysis** into learning approach
- apply decompounding techniques (syllabic initializations)
- cross-lingual matching: external sources + MT techniques

- incorporate information from error analysis into learning approach
- apply decompounding techniques (syllabic initializations)
- cross-lingual matching: external sources + MT techniques
- undefined abbreviations: external sources

- incorporate information from error analysis into learning approach
- apply decompounding techniques (syllabic initializations)
- cross-lingual matching: external sources + MT techniques
- undefined abbreviations: external sources
- F-scores per label (now focus on abbreviations and definitions)

- incorporate information from error analysis into learning approach
- apply decompounding techniques (syllabic initializations)
- cross-lingual matching: external sources + MT techniques
- undefined abbreviations: external sources
- F-scores per label (now focus on abbreviations and definitions)
- English corpus

