Annotation Time Stamps - Temporal Metadata from the Linguistic Annotation Process

Katrin Tomanek Udo Hahn
Jena Language \& Information Engineering (JULIE) Lab
Friedrich-Schiller-Universität Jena, Germany

http://www.julielab.de

Economizing the Creation of Training Material

Standard Procedure

Economizing the Creation of Training Material

Standard Procedure

Active Learning

Evaluation of Active Learning

learning curves

- "Does Active Learning really reduce annotation time ?"
- requires cost-sensitive evaluation of Active Learning
- but: how to simulate AL with true annotation cost?
\rightarrow corpus with annotation time stamps

The $\mathrm{Muc7}_{\mathcal{T}}$ Annotation Project

- re-annotation of well-known corpus
- Muc7 corpus (news-wire)
- ENAMEX types (PER, LOC, ORG)
- reproducable annotation guidelines
- (hopefully) reasonably large for AL simulations
- store annotation time information for each annotation unit

Annotation Units

Sentences

- most natural linguistic unit
- might be too coarse for some applications

Complex Noun Phrases (CNPs)

- top-level NPs derived from sentence constituency structure
- by definition Muc7 entities occur within CNPs
- smallest syntactic unit completely covering entity mentions
- 98.95% of Muc7's ENAMEX entities contained in CNPs
- remaining 1.05% mostly due to parsing errors

Complex Noun Phrases

Annotation Principles

- one annotation example shown at a time
- Muc7 document
- single annotation unit (sentence or CNP) highlighted and annotatable
- annotation examples randomly shuffled
- in order to guarantee independence of single annotations (avoid learning/synergy effects due to consecutive reading of a text)
- annotation in blocks of 500/100 annotation examples
- to be annotated without breaks and under quiet noise conditions
- to avoid exhaustion effects
- annotation GUI controlled by keyboard shortcuts
- avoids "mechanical" annotation overhead
- assumption: measured time reflects only cognitive process

Annotation Principles

4/14/10

Flls Extra

$14 / 500$

NEW YORK
the $\$ 60,000$ dally cost of iented salvage ships to the pilce of high-tech forensic equipment to pollce overtime, the Investigaton Into the crash of Trans World Alrilnes Flight 800 Is already the natlon's most expenslve alrciatt-accldent Investlgatlon. The Investigatlon's full cost WIII not be known until it is completed, a process that is Ilkely to take months. But federal and local officlals sald that expenses were rapldy approaching $\$ 10$ million, and a disputs has already srupted over whether TWA, Its Insurer and other prlvate partles will help pay the bills. Eatlet this Wesk, Natlonal Transportation Safety Eoard officlals sent a letter to TWA asking the aliline for a voluntary payment of \$ 5 millon toward salvage and tecovery costs, according to Mark Abels, a company spokesman. But Abels sald TwA 's positlon was that it boie no responslbilty to help pay the government's bils. "We think thls is a government expenditure, "Abels sald. Peter Goelz, a satety board spokesman, sald that the agency expected that private partles would resist paying tor the Inquiry if it was determined that the crash of Filght 800 was caused by a cilminal act. It not, the declsion of how much, It any, Indildual companles will pay is latgely up to them.
board officlals estimated that the Investigation was costing the agency mole than $\mathbf{1 0 0 , 0 0 0}$ a day, of 3 millon to date. The agency has an annual budget of $\$ 38$ million, but only about $\$ 1$ millon of that is dedicated to accident Investigations Ilke the TWA case, The agency 's resources have also been taxed by a other recent disasters, Including the crash of a Valujet plane Into the Florlda Everglades in May." Certalnly, this Is the most expenslve accldent Investlgatlon that we have encountered, "sald Bernard Loeb, the director of the safety boald 's office of avation salety. A satety board spokesman sald that betors the TWA Inquiry, the agency 's previous largest expenditure probably Involved the Investigation of the 1994 crash of a USAlt Jet upon its approach to Pittsburgh. He sald that Inquiry had cost $\$ 1$ millon. Loeb sald the agency often turned to prlvate partles Ilke an alrine 's Insurer of a plane 's manutacturer to contrlbute to an Investigatlon's salvage costs. But the chaliman of TWA 's Insurer disputed the notion that such contributions were toutine and sald that an aliling 's insurer typlally pald only for the cost of environmental cleanups at a crash site. "The government is obviously expending a lot of effort and cost,

Annotation Principles

- one annotation example shown at a time
- Muc7 document
- single annotation unit (sentence or CNP) highlighted and annotatable
- annotation examples randomly shuffled
- in order to guarantee independence of single annotations (avoid learning/synergy effects due to consecutive reading of a text)
- annotation in blocks of 500/100 annotation examples
- to be annotated without breaks and under quiet noise conditions
- to avoid exhaustion effects
- annotation GUI controlled by keyboard shortcuts
- avoids "mechanical" annotation overhead
- assumption: measured time reflects only cognitive process

Annotators

- 2 students with good general English skills
- original Muc7 guidelines
- extensive training on Muc7 test set
- final annotations: Muc7 set on airplain crashes completely annotated by both annotators

Annotation Performance

- agreement with Muc7 annotations
- $\kappa_{A}=0.95$ and $\kappa_{B}=0.96$
- $F_{A}=0.92$ and $F_{B}=0.94$
- both annotators perform similarly on different blocks
- annotation performance largely stationary

Annotation Time Measurements

- times similar for both annotators
- learning effect for annotator B up to block 9
- quite stationary annotation times
sentence-level annotation

CNP-level annotation

Variability of Annotation Times

sentence-level annotation

CNP-level annotation

- annotation times subject to high variance
- confirms findings of Settles et al. 2008 and Ringger et al. 2008

Application of $\mathrm{MUC7}_{\mathcal{T}}$

Cost-sensitive Evaluation of Active Learning

Experimental settings

- Named Entity Recognition with Conditional Random Fields

$$
P_{\theta}(\vec{y} \mid \vec{x})=\frac{1}{Z_{\theta}(\vec{x})} \cdot \prod_{i=1}^{n} \exp \left(\sum_{j=1}^{k} \lambda_{j} f_{j}\left(y_{i-1}, y_{i}, \vec{x}, i\right)\right)
$$

- straight-forward approach to Active Learning
- Uncertainty Sampling
- utility function

$$
u(\theta, \vec{x})=1-\max _{\vec{y}^{\prime} \in \mathcal{Y}} P_{\theta}\left(\vec{y}^{\prime} \mid \vec{x}\right)
$$

Evaluation

Savings of Active Learning over Random Selection

- number of tokens: 67.8\%
- annotation time: 44.0%

Summary

- $\mathrm{MuC7}_{\mathcal{T}}$ is a corpus with information on annotation time
- annotation time stamps are new breed of linguistic metadata
- coarse- and fine-grained time measurement
- allows for more realistic evaluation of selective sampling strategies (e.g., Active Learning)
- currently also used to learn predictive annotation cost models (ongoing research, see Tomanek et al. 2010)

Acknowledgements

Boot Strep

http://www.julielab.de

