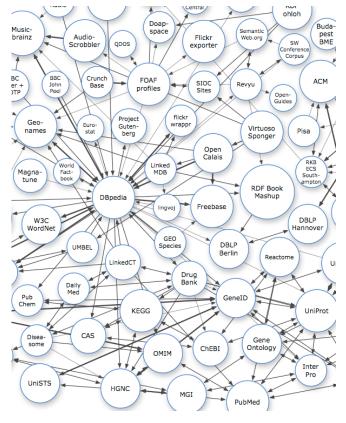


Question Answering Biographic Information and Social Networks Powered by the Semantic Web

Peter Adolphs, Xiwen Cheng, Tina Klüwer, Hans Uszkoreit & Feiyu Xu German Research Center for Artifical Intelligence (DFKI) Language Technology Lab

> Presenter: Peter Adolphs peter.adolphs@dfki.de

German Research Center for Artificial Intelligence


LREC 2010 • Valletta, Malta • 20 May 2010

Motivation

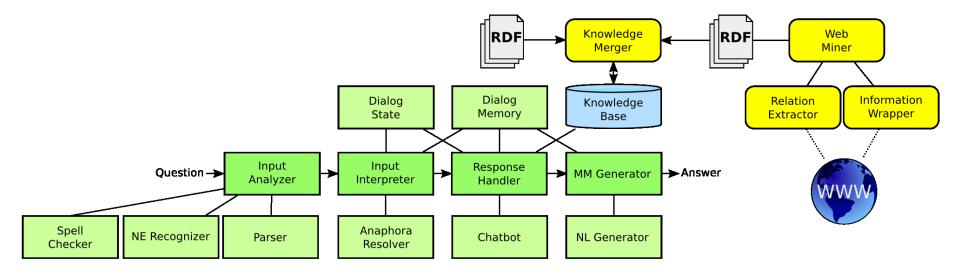
Semantic Web:

- "The Semantic Web will bring structure to the meaningful content of Web pages" (Berners-Lee et al, 2001)
- Today: genuine Semantic Web resources + Semantic Web versions of large, sometimes community-driven databases and websites
- Our questions:
 - How can we use these data in an knowledge-intensive AI applications?
 - How can we acquire such data from the Web?
 - How can we interface Semantic Web data with the human?

Linked Data Visualization from <u>http://linkeddata.org/</u>

Gossip Galore

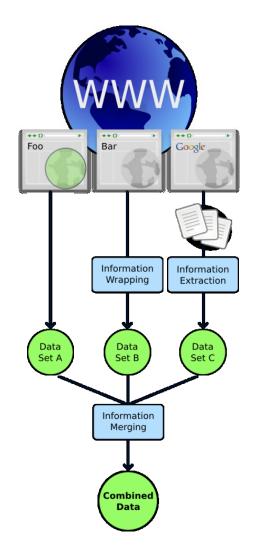
- A user-friendly natural language interface to biographical information
- Embodied Conversational Agent Gossip Galore
- Q/A methods employed:
 - Semantic Knowledge
 Encoding and Retrieval
 - Natural Language Query Analysis
 - Multimodal Answer Generation
 - Finite-State Dialogue Models



Two major parts:

- Knowledge Management Components (yellow)
- Dialogue-Enabled Question Answering Components (green)
- Interface between the components: Knowledge Base

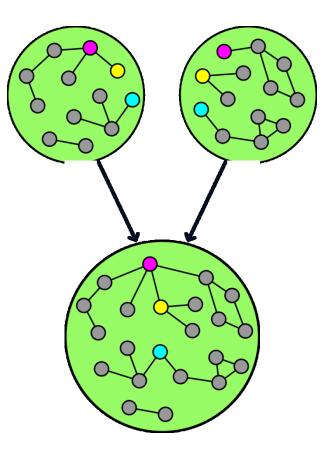
Part 1 Knowledge Acquisition



Question Answering Biographic Information and Social Networks Powered by the Semantic Web

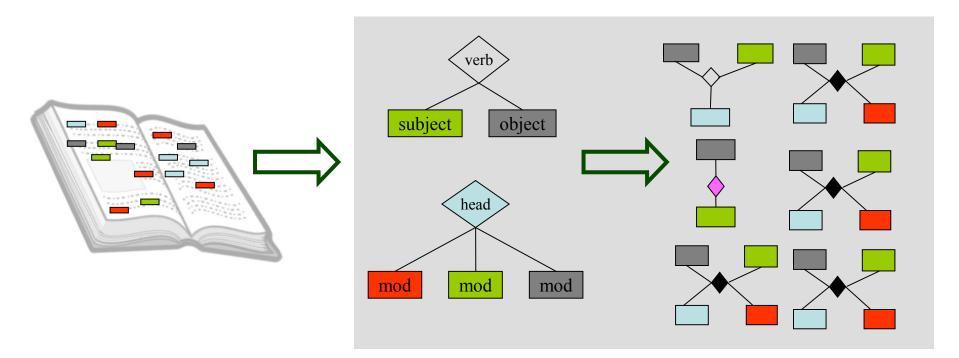
Knowledge Acquisition from the Web

- Different kinds of knowledge sources
 - Information is offered in structured form (e.g. as SQL or RDF exports)
 - Information provided in semi-structured form on web pages (e.g. price tables for products, info boxes in Wikipedia, etc.)
 - Free natural-language text
- Different approaches for these sources
 - Structured data can be used more or less directly
 - Information Wrapping for accessing semi-structured web pages
 - Information Extraction

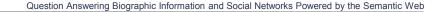


Procedure:

- Instances with the same referent have to be identified
- Knowledge bases are then merged by graph union
- Semantic Web:
 - RDF provides a simple framework for such a scenario
 - Ideal for fragmentary data as delivered by Information Extraction
 - Missing data can sometimes be inferred from fragmentary data using domain models

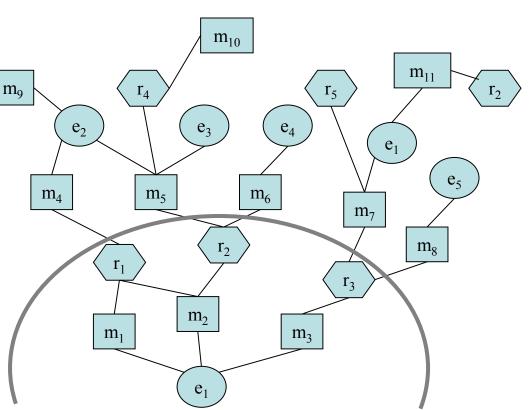

- Knowledge Base (KB) about people in the pop music domain
- Populated using
 - Information Wrapping from semi-structured web sites such as Wikipedia and NNDB
 - Minimally supervised relation extraction with DARE from raw text

- Entities:
 - 38,758 people including 16,532 artists
 - 1,407 music groups
 - Relations:
 - 14,909 parent-child
 - 16,886 partner
 - -4,214 sibling
 - 308 influence/influenced
 - 9,657 group membership



Relation Extraction with DARE

- Domain Adaptive Relation Extraction Based on Seeds
- General framework for automatically learning mappings between linguistic analyses and target semantic relations with minimal human intervention (Xu et al, 2008; Xu, 2007)



Relation Extraction with DARE

- Relation instances, mentionings, rules
- Rule learning with bootstrapping (sketch):
 - Use confirmed relation instances as seed data
 - Find mentionings of the seed in the text
 - Bottom-up extraction of all patterns for the *i*-ary projections of the target relation $(1 \le i < n)$
 - Extract further relation instances with the new rules and use these as seeds in the next iteration

- YAGO is a huge semantic knowledge base, being developed by the group of Gerhard Weikum at Max-Planck-Institute Saarbrücken
- Automatically constructed from the semi-structured parts of Wikipedia (infoboxes) and the taxonomic structure of WordNet
- Made available in RDF format (among others)

- Currently YAGO knows
 - more than 2 million entities (like persons, organizations, cities, etc.).
 - 20 million relations
- We mainly use facts about persons, such as
 - full name, given name,
 - bornIn, bornOnDate, diedIn, diedOnDate
 - actedIn, created, directed, discovered, graduatedFrom, interestedIn, isCitizenOf, participatedIn, produced, worksAt, wrote

- Merging rules operating on name and full name from Rascalli, full name and given name from YAGO (<Rascalli Name, Rascalli Full Name, Yago Full Name, Yago Given Name>)
 - Rascalli Name == Yago Full Name e.g. <"Clarence Brown"; "Clarence Leon Brown"; "Clarence Brown"; "Clarence">
 - Rascalli Full Name == Yago Full Name e.g. <"Lord Haw-Haw"; "William Joyce"; "William Joyce"; "William">
- + additional info if necessary, e.g.: Rascalli Name == Yago Given Name && Rascalli Birthday == Yago bornOnDate

- Dealing with fragmentary name information (culture-dependent heuristics)
 - Siblings sharing same surname could have the same parents, e.g.
 - Julia Roberts hasParent Walter Roberts;
 - Eric Roberts hasParent Walter;
 - Julia Roberts hasSibling Eric Roberts;
 - → Walter == Walter Roberts
 - A couple could have the same children, e.g.
 - Madonna hasChild Rocco;
 - Guy Richie hasChild Rocco Richie;
 - Madonna hasHusband Guy Richie;
 - → Rocco == Rocco Richie

Merged Knowledge Base

People: 618,445 Published: 50,601 Movies: 34,458 Locations: 20,733

bornIn = 44339bornOnDate = diedIn = 15886diedOnDate = originatedFrom = livesIn = hasGender = actedIn = created = directed = discovered = graduatedFrom = hasNationality = hasWebsite = interestedIn = isCitizenOf = madeCoverFor = participatedIn = produced = worksAt = wrote = 4152causeOfDeath = hasPartyAffliation = hasProfession = hasReligion = hasSexualOrientation = hasRemain =

hasMember = 1407 isMemberOf = 8924

hasWonPrize = 16967 hasAlbum = 2663 influences = 3043 academicAdvisor = 1307

hasChild = 6868 hasSon = 4067 hasDaughter = 2775

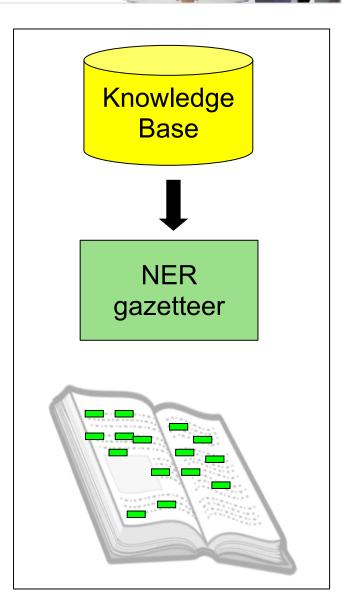
hasParent = 12594 hasMother = 3383 hasFather = 4219

hasSibling = 2076 hasBrother = 2076 hasSister = 1100

```
hasPartner = 18793
hasSpouse = 16323
hasHusband = 7034
hasWife = 6458
hasBoyFriend = 1962
hasGirlFriend = 2076
```

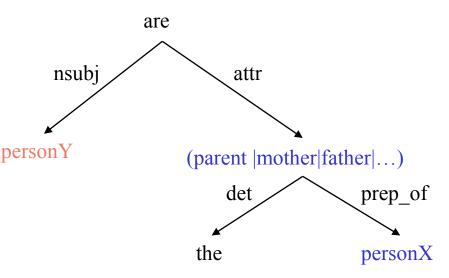

Part 2 Dialog Processing

Question Answering Biographic Information and Social Networks Powered by the Semantic Web



- We support wh-, yes/no, how many-questions involving exactly one query triple
- Approach: linguistic input analysis component, which...
 - Gets the user input
 - Processes the dependency structure belonging to the input
 - Delivers a semantic representation belonging to the dependency structure
 - Assures robustness via an additional string pattern based component

Concept Identification


- NER as a bridge from surface strings to semantic concepts
- Gazetteers are derived from the Knowledge Base, associating names and words with ontology instance identifiers Examples:
 - "Richard Gere" \rightarrow g:Person.8134
 - "Deep Purple" \rightarrow g:Group.1358
 - "buddhist" \rightarrow g:Religion.3367

- Hybrid approach to robust input processing
- Cascaded input processors, currently:
 - Dependency parsing
 - Fuzzy string matching baseline
- Using dependency patterns for input analysis, the 1067 paraphrases for the string matching baseline could be reduced to 212 dependency tree patterns

E.g. "Who are the parents of Mick Jagger?"

- Dependency parsing and fuzzy string matching deliver semantic representation in triple structure + question type: [[RELATION] [ARG1] [ARG2]] [QTYPE]
- Possible question types, e.g.,
 - [RELATION [ARG1] [null]] [wh] Who is the boyfriend of Madonna?
 - [RELATION [ARG1] [null]] [yesno] Does Madonna have any boyfriends?
 - [RELATION [ARG1] [null]] [howmany] How many boyfriends does Madonna have?
 - [RELATION [ARG1] [ARG2]] [yesno]

Is Madonna the girlfriend of Mick Jagger?

Semantics offer more flexibility and abstraction from input and output

- Question semantics is mapped to query language
- We store all data in an OWLIM knowledge base, using SPARQL queries for access.
- Mapping from semantics to SPARQL is straight-forward: only 8 patterns are needed for simple factoid questions.
- Can be extended to questions with modified NPs, double questions, etc.

- Example: "Who is the boyfriend of Madonna?"
 - Semantics:
 [g:hasBoyfriend [g:Person.14193] [null]] [wh]
 - SPARQL:
 SELECT \$x { g:Person.14193 g:hasBoyfriend \$x}
 - Returned Answer Set:
 { g:Person.119944, g:Person.494993, ...}
- A question as "Does Madonna have any boyfriends?" only differs in answer realization due to the different question type (different expected answer)

- Set of answer triples is realized in natural language, depending on aspects of the question interpretation, answer size and general principles of cooperation
- Dimensions:
 - Question semantic type:
 - Answer size
 - Principles of cooperation:
 - overanswering questions
 - providing alternative solutions to answer the query

- Expected answer type:
 - Person ("Who")
 - Place ("Where")
 - Time ("When")
 - Quantity ("How many")
 - Truth value (yes/no)

Predicate	EAT	Size	Response
g:hasBoyfriend	Person	≥ 1	Output KB answer (list people)
g:hasBoyfriend	Quantity	≥ 1	"\$X has \$ANSWER-SIZE boyfriends."
g:hasBoyfriend	Truth Value	≥ 1	"Yes" + support answer with some examples
g:hasBoyfriend	*	= 0	"I don't know of any boyfriends of \$X."
g:hasDeathday	Time	= 1	"\$X died on \$ANSWER."
g:hasDeathday	Time	= 0	"According to my source, \$X is still alive." + open Google search page
g:hasDeathday	Time	> 1	"My sources are not clear. \$X is reported to have died on \$ANSWER-CONJUNCTION.
*	*	= 0	"Sorry, I don't have that information."

Answer Visualization

- Present supportive visual answers for specific answer types
 - Geographical maps for answers of type location
 - IMDB page for some movies
- Provide answer mainly visually where a verbal answer would be too long or too tiring
 - Example: "How are Richard Gere and Michael Jackson connected?"

We presented a system that

- Enriches Semantic Web data with information extracted from natural language text, and
- Allows to access that data in natural language (both for user questions and system answers)
- Demonstrates how existing and freshly acquired Semantic
 Web data can be exploited to widen the notorious bottleneck
 of knowledge-driven AI applications.

Further plans:

- Integrate other available Semantic Web resources to extend the covered knowledge of our agent.
- Especially focus on information available from Social Media.

THANK YOU FOR YOUR ATTENTION

Questions?

- KomParse, ProFIT programme of the Federal State of Berlin and the EFRE programme of the European Union
- TAKE project, funded by the German Ministry for Education and Research (01IW08003)

