The Role of Parallel Corpora in Bilingual Lexicography

Enikő Héja
Research Institute for Linguistics, HAS eheja@nytud.hu

Outline

- The project
- The role of parallel corpora in lexicography
- Workflow
- Results
- Conclusions and future work

EFNILEX (EFNIL)

- Objectives:
- Dictionaries for human use covering every day vocabulary for medium density languages
- 20.000-45.000 entries (depending on the size of available resources)
- Methodology:
- Statistical word alignment
- Based on parallel corpora
- Language pairs:
- Hungarian - Slovenian
- Hungarian - Lithuanian

Advantages

- Parallel corpus $=>$ Corpus-driven technique to diminish the role of lexicographers' intuition
- Usage-based, representative translations
- Clear ranking between more likely and less likely translations
- Most-used translation equivalents are ranked higher (Example I)
- Provided contexts facilitate the creation of encoding dictionaries (Example II)
- Compilation of the reversed dictionary is more simple

Advantages - a Sample

- Positive evidence that the various sub-senses of a word are translated in the same way

HUN LEMMA	LIT LEMMA	TRANSLATIONAL PROBABILITY	FREQUENCY OF HUN LEMMA	FREQUENCY OF LIT LEMMA
Születik	Gimti $(-$ sta,-è $)$	0.579005	169	174

HUN	LIT
Ö 1870-ben született	Jis gimė 1870 metais
He was born in 1870	
De Fache mintha erre született volna	Bet Fasas, regis, tiesiog tam gimęs
As if Fache was born to do this	

Advantages - a Sample

Úgy látszik, szerencsétlen csillagzat alatt születtél	Turbūt gimei po nelaiminga ̌̌vaigžde
It seems that you were born under an unlucky star	
..., mert ikrei születtek.	..., nes jai gimé dvynukai.
..., because twins were born to her.	
Maga úriembernek született.	Tu gimei džentlemanu.
You was born a gentleman.	
... hogy Buddha nem lótuszvirágból született?kad Buda gimé ne iš lotoso žiedo?
...that Buddha was born from a lotus flower?	

Difficulties

- Creation of the parallel corpus is tedious
- Dictionaries generated by word alignment comprise only one-to-one mappings between lemmata
- Does not handle MWEs, collocations, verbal constructions => can be added based on the provided contexts manually afterwards

Resources and Tools

- Resources: goal: a 10.000.000-token corpus for each language
- Tools: language dependent tools are needed for each language
- Sentence splitting
- Tokenising
- Lemmatising
- Disambiguating between lemmata

Resources

- Lithuanian-Hungarian, Slovenian-Hungarian
- Collecting direct translations yielded only moderate success
- Instead, translations from a third language
- Parallel web pages from the web ($\sim 200,000$ tokens per language).
- Literature from the web (mainly resources of Hungarian digital archives: MEK, DIA)
- Texts from national corpora
- Lithuanian: Lithuanian National Corpus, Lithuanian-English parallel corpus
- Slovenian: FIDA corpus

Tools

- Language specific tools were available in the form of toolchains
- LIT: Centre of Computational Linguistics, Vytautas Magnus University
- SLO: Jozef Stefan Institute, freely available at http://nl.ijs.si/jos/analyse/
- HUN: Research Institute for Linguistics, used for the annotation of the Hungarian National Corpus

Workflow

Evaluation Steps

- The quality of the resulting dictionary depends highly on the factors below:
- Quality of input texts
- Quality of sentence alignment
- Quality of word alignment

Size of Parallel Corpora

- Lithuanian-Hungarian

LITHUANIAN	$1,765,000$ tokens	147,158 aligned unit (AU)
HUNGARIAN	$2,121,000$ tokens	$147,158 \mathrm{AU}$

- Slovenian-Hungarian

SLOVENIAN	733,000 tokens	$38,574 \mathrm{AU}$
HUNGARIAN	666,000 tokens	$38,574 \mathrm{AU}$

Most Probable Translation Candidates I

- After word alignment we had the following data at our disposal:

HUN LEMMA	LIT LEMMA	Translational probability P($\left.\mathbf{W}_{\text {target }} \mid \mathbf{W}_{\text {sorrce }}\right)$	Corpus frequency HUN LEMMA	Corpus frequency LIT LEMMA
Ajak (lip)	Lūpa	0.77063	312	509
Alagút (tunel)	Tunelis	0.755043	145	157

- Objective: to find the "ideal" values for these parameters

Most Probable Translation Candidates II

- We set these values based on the evaluation of the HUN-SLO translation candidates
- Every lemma should occur at least 5 times $=>$ to have sufficient amount of data to give a reliable estimation of $\mathrm{P}(\mathrm{tr})$
- If $\mathrm{P}(\operatorname{tr})<0.5$, the proportion of correct translation candidates drops considerably
- 65% of the translation candidates is correct

Preliminary Results

	NUMBER OF TRANSLATION- CANDIDATES ABOVE THE THRESHOLD	EXPECTED NUMBER OF CORRECT TRANSLATION- CANDIDATES
HUNGARIAN- SLOVANIAN	4969	3230
HUNGARIAN- LITHUANIAN	4025	2616

Evaluation: Useful Translation Candidates

- Correct translational equivalents [gyümölcs - vaisius (fruit)]
- Partially correct translational equivalents $=>$ Post editing is needed
- Improper lemmatization
- Only partial match in the case of MWEs compounds [fofelügyelő - vyriausiasis inspektorius (chief inspector)] collocations [bíborosi testület - Kardinoly kolegija (cardinal college)]
- Looser semantic relation (e.g. hypernymy)
[lúdtoll (literally: goose-feather) - plunksna (literally: feather, pen)] intended meaning in both cases: quill pen

Evaluation: Useless Translation Candidates

- Irrelevant vocabulary (e.g. recurrent proper names) [Abdul - Abdulas]
- Incorrect translation candidates
- Usually due to the loose translations of texts

Evaluation - Data

- Out of 4025 HUN-LIT translation pair 863 pairs were sampled
- freq $\geq 5, \mathrm{P}\left(\mathrm{w}_{\text {target }} \mid \mathrm{w}_{\text {source }}\right) \geq 0.5$
- Evaluation intervals:
- $0.5 \leq \quad \mathrm{P}\left(\mathrm{w}_{\text {target }} \mid \mathrm{w}_{\text {source }}\right)<0.7$
- $0.7 \leq \quad \mathrm{P}\left(\mathrm{w}_{\text {target }} \mid \mathrm{w}_{\text {source }}\right)<1$
- $P\left(w_{\text {target }} \mid w_{\text {source }}\right)=1$

Results

	Useful candidates		Useless candidates	
$P(\operatorname{tr})$	OK	Post-editing	Irrelevant	Incorrect
$[0.5,0.7)$	52.1%	32.9%	2.3%	12.7%
Sum	$\Sigma 85 \%$		$\Sigma 15 \%$	
$[0.7,1)$	65.3%	31.9%	0.6%	2.2%
Sum	$\Sigma 97,2 \%$		$\Sigma 2,8 \%$	
1	38%	13%	49%	0%
Sum	$\Sigma 51 \%$		$\Sigma 49 \%$	

- Proportion of incorrect translation pairs is low
- 85% of translation pairs are useful in the 1 . probability range
- $\mathbf{9 7 , 2} \%$ of translation pairs are useful in the 2 . range
- $\mathrm{P}(\operatorname{tr})=1$ produces the lowest proportion of useful candidates and the highest ratio of irrelevant pairs

Related Meanings I

- Presupposition: frequent words tend to have more meanings than less frequent ones
- Lithuanian-Hungarian dictionary:
- Frequency of Lithuanian lemma is min. 100
- Translational probability was considerably decreased $(0.5 \boldsymbol{\rightarrow}$ 0.02)

Related Meanings - Example I

LIT	HUN	$\mathbf{P}\left(\mathbf{w}_{\mathbf{t}} \mid \mathbf{w}_{\mathbf{s}}\right)$	ENG
puikus	jó	0.128	good
puikus	remek	0.071	great, all right
puikus	tökéletes	0.052	perfect
puikus	szép	0.048	nice
puikus	pompás	0.035	splendid
puikus	jól	0.035	well
puikus	nagyszerü	0.035	great
puikus	finom	0.028	fine
puikus	gyönyörű	0.02	marvelous

-Puiku, - atsakè balsas. -Remek - válaszolta a hang. (-All right the voice answered)
-Puikus darbas.
-Szép munka volt.
(-Good job)

Related Meanings - Example II

- Use in the creation of encoding dictionaries

aiškiai tisztán		[literally: pure+ly] (clearly)	
PERCEPTION	N lát, látszik, hall	('see', 'seem', 'hear')	
aiškiai	világosan	[literally:	
PERCEPTION	N the same verbs as in the first case		
COGNITION	N megért, gondolkodik ('understand', 'think')		
COMMUNICA	ICATION beszél, válaszol ('speak', 'answer')		
aiškiai	láthatóan [literally: visible $+l y$] (visibly)		
('be worried', 'amuse', 'enjoy', 'do not like')	aggódik, mulattat, élvez, nem tetszik		
aiškiai			(we
PERCEPTION			

- Tisztán, világosan, jól can modify verbs of perception with the same meaning
- Láthatóan refers to the fact that the emotional change a person underwent did not remain hidden
- Világosan is used with verbs of cognition and communication meaning that the content of the act is comprehensible
- Tisztán would mean that the speech conveying the message was clearly pronounced

Conclusion and Future Work

- The corpus-driven nature of this method decreases the role of human intuition during dictionary building
- Translations are provided together with their contexts
- Translations can be ranked according to their likelihood
- Size of parallel corpora has to be augmented
- Automatic treatment of MWEs, collocations and verbal constructions should be included in the workflow

Thank you for your attention!

