Generic Ontology Learners on Application Domains

Francesca Fallucchi¹ Maria Teresa Pazienza¹ Fabio Massimo Zanzotto¹

¹DISP University of Rome Tor Vergata Rome, Italy {fallucchi, pazienza, zanzotto}@info.uniroma2.it

LREC 2010, Malta, May 2010

Motivations •00	Probabilistic Ontology Learning	Experimental Evaluation	Conclusions O
Matinat			

- Learning methods require large general corpora and knowledge repositories
- In specific domains ontologies are extremely poor
- Manually building ontologies is a very time consuming and expensive task
- Automatically creating or extending ontologies needs large corpora and existing structured knowledge to achieve reasonable performance

Motivations ○●○ Probabilistic Ontology Learning

Experimental Evaluation

Motivation

Problems

- Scarcity of domains covered by existing ontologies
- Not relevant existing ontologies to expand for target domain

ヘロト ヘアト ヘリト・

Problems

- Scarcity of domains covered by existing ontologies
- Not relevant existing ontologies to expand for target domain

₩

Solution

- We propose a model that can be used in different specific knowledge domains with a small effort for its adaptation
- Our model is learned from a generic domain that can be exploited to extract new informations in a specific domain

Probabilistic Ontology Learning

- Corpus Analysis
- A Probabilistic Model
- Logistic Regression
- Experimental Evaluation
 - Experimental Set-Up
 - Agreement
 - Results

Probabilistic Ontology Learning

Experimental Evaluation

Our Learner Model

- Model exploits the information learned in a background domain for extracting information in an adaptation domain
- Model is based on the probabilistic formulation
- Model takes into consideration corpus-extracted evidences over a list of training pairs
- Model is used to estimate the probabilities of the new instances computing a new feature space

・ロン・雪と ・ ほと・ ほと

Probabilistic Ontology Learning

Experimental Evaluation

Conclusions O

Corpus Analysis

Probabilistic Ontology Learning

Experimental Evaluation

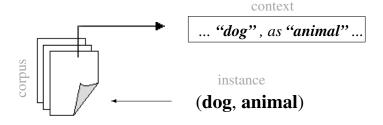
Conclusions O

Corpus Analysis

Probabilistic Ontology Learning

Experimental Evaluation

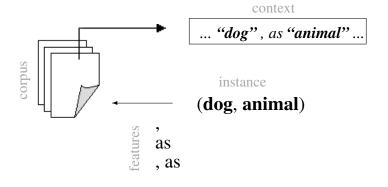
Corpus Analysis



Probabilistic Ontology Learning

Experimental Evaluation

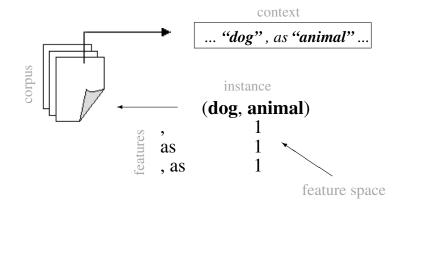
Corpus Analysis



Probabilistic Ontology Learning

Experimental Evaluation

Corpus Analysis



◆□▶ ◆圖▶ ◆注▶ ◆注▶

Probabilistic Ontology Learning

Experimental Evaluation

Conclusions O

Corpus Analysis

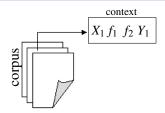
・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ・

Probabilistic Ontology Learning

Experimental Evaluation

Conclusions O

Corpus Analysis



・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ・

Motivations 000	Probabilistic Ontology Learning	Experimental Evaluation	Conclusions o
Corpus	Analysis		
	context		

 $X_1 f_1 f_2 Y_1$

 f_1 f_2 (X_1,Y_1)

corpus

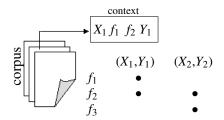
・ロット 小田 マネ 田 マン

Probabilistic Ontology Learning

Experimental Evaluation

Conclusions O

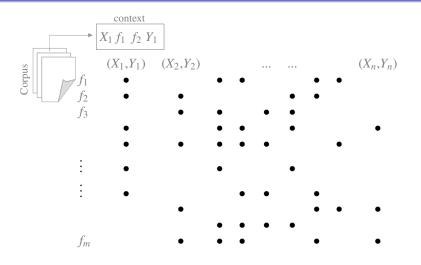
Corpus Analysis



Probabilistic Ontology Learning 00000000 Corpus Analysis context $X_1 f_1 f_2 Y_1$ corpus (X_1, Y_1) (X_2, Y_2) (X_n, Y_n) f_1 f_2 f_3 : : f_m

Motivations	Probabilistic Ontology Learning	Experimental Evaluation	Conclusions
	0000000		
_			

Instances Matrix



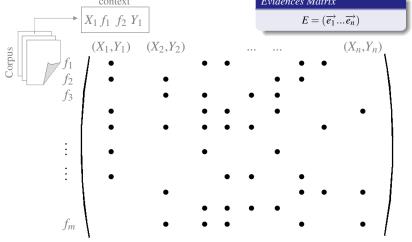
・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

 Motivations
 Probabilistic Ontology Learning
 Experimental Evaluation
 C

 000
 000
 0000000
 0000000
 0000000
 0000000

 Instances Matrix

 V1
 f.
 <



◆□▶ ◆圖▶ ◆理▶ ◆理▶ 「理」 例

Probabilistic Ontology Learning

Experimental Evaluation

A Probabilistic Model

Probabilistic model for learning ontologies form corpora

- Ontology is seen as a set O of relations R over pairs $R_{i,j}$
- If $R_{i,j}$ is in O, i is a concept and j is one of its generalization

Goal: Estimate Posterior Probability

 $P(R_{i,j} \in O|E)$

where E is a set of evidences extracted from corpus

A B > A B > A B >

Probabilistic Ontology Learning

Experimental Evaluation

Logistic Regression

Logit

Given two variables *Y* and *X*, the probability *p* of *Y* to be 1 given that X = x is: p = P(Y = 1 | X = x) and $Y \sim Bernoulli(p)$

$$logit(p) = \ln\left(\frac{p}{1-p}\right)$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Probabilistic Ontology Learning

Experimental Evaluation

Logistic Regression

Logit

Given two variables *Y* and *X*, the probability *p* of *Y* to be 1 given that X = x is: p = P(Y = 1 | X = x) and $Y \sim Bernoulli(p)$

$$logit(p) = \ln\left(\frac{p}{1-p}\right)$$

$$logit(p) = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Probabilistic Ontology Learning

Experimental Evaluation

Conclusions O

Logistic Regression

Logit

Given two variables *Y* and *X*, the probability *p* of *Y* to be 1 given that X = x is: p = P(Y = 1 | X = x) and $Y \sim Bernoulli(p)$

$$logit(p) = \ln\left(\frac{p}{1-p}\right)$$

$$logit(p) = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k$$

Given regression coefficients the probability is

$$p(x) = \frac{\exp(\beta_0 + \beta_1 x_1 + ... + \beta_k x_k)}{1 + \exp(\beta_0 + \beta_1 x_1 + ... + \beta_k x_k)}$$

・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト

Probabilistic Ontology Learning

Experimental Evaluation

Conclusions O

Estimating Regression Coefficients

We estimate the regressors $\beta_0, \beta_1, ..., \beta_k$ of $x_1, ..., x_k$ with

- maximal likelihood estimation
- $logit(p) = \beta_0 + \beta_1 x_1 + ... + \beta_k x_k$
- solving a linear problem

Probabilistic Ontology Learning

Experimental Evaluation

Conclusions O

Estimating Regression Coefficients

We estimate the regressors $\beta_0, \beta_1, ..., \beta_k$ of $x_1, ..., x_k$ with

- maximal likelihood estimation
- $logit(p) = \beta_0 + \beta_1 x_1 + ... + \beta_k x_k$
- solving a linear problem

$$\overrightarrow{logit(p)} = E\beta$$

where

$$E = \begin{pmatrix} 1 & e_{11} & e_{12} & \cdots & e_{1n} \\ 1 & e_{21} & e_{22} & \cdots & e_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & e_{m1} & e_{m2} & \cdots & e_{mn} \end{pmatrix}$$

Probabilistic Ontology Learning

Experimental Evaluation

Background Ontology Learner

Using a logistic regressor based on the Moore-Penrose pseudo-inverse matrix (Fallucchi and Zanzotto, RANLP 2009)

$$\widehat{\beta} = X_{C_B}^+ l$$

where:

• $X_{C_B}^+$ is the pseudo-inverse matrix of the evidences matrix X_{C_B} obtained from a generic corpus C_B

• *l* is the logit vector $(\overrightarrow{logit(p)})$

Probabilistic Ontology Learning

Experimental Evaluation

Estimator for Application Domain

The logit of the testing pairs

$$l' = lpha X_{C_A} \widehat{eta}$$

where:

- α is a parameter used to adapt the model by the β vector to the new domain
- X_{C_A} is the inverse evidence matrix obtained from an *adaptation* domain corpus C_A
- $\hat{\beta}$ is the regressors vector

Probabilistic Ontology Learning

Experimental Evaluation

Conclusions O

Estimator for Application Domain

The logit of the testing pairs

$$l' = lpha X_{C_A} \widehat{eta}$$

where:

- α is a parameter used to adapt the model by the β vector to the new domain
- X_{C_A} is the inverse evidence matrix obtained from an *adaptation* domain corpus C_A
- $\hat{\beta}$ is the regressors vector

Then, step by step testing pairs probability

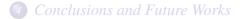
$$p_i = \frac{\exp(l_i)}{1 + \exp(l_i)}$$

Probabilistic Ontology Learning
 Corpus Analysis
 A Probabilistic Model

• Logistic Regression

3 Experimental Evaluation

- Experimental Set-Up
- Agreement
- Results



Motivations		

Probabilistic Ontology Learning

Experimental Evaluation

Experimental Set-Up

Target Ontologies

- Training: pairs that are in hyperonym relation in WordNet ==> about 600000 pairs of words
- Testing: pairs in Earth Observation Domain ==> about 404 pairs of words
- Orpus
 - Training: English Web as Corpus, ukWaC (Ferraresi,2008) ==> about 2700000 web pages
 - Testing: corpus related to *Earth Observation Domain* ==> about 8300 web pages

Feature Spaces

- bag-of-words and n-grams
- windows: length 3 tokens
- ==> about 280000 features

イロト 不得 とうほう イヨン

Annotators for Testing Pairs

- Three annotators (*A*₁, *A*₂ and *A*₃) to build three different ontologies
- Two annotators are expert in the domain (A₁ and A₂), the third one is not (A₃)
- A_1 and A_2 have different levels of expertise: A_1 is a young expert in the domain and A_2 an older one
- Each annotator made a binary classification of 641 pairs of words in Earth Observation Domain

Annotators for Testing Pairs

- Three annotators (*A*₁, *A*₂ and *A*₃) to build three different ontologies
- Two annotators are expert in the domain (A₁ and A₂), the third one is not (A₃)
- A_1 and A_2 have different levels of expertise: A_1 is a young expert in the domain and A_2 an older one
- Each annotator made a binary classification of 641 pairs of words in Earth Observation Domain Only 404 pairs are found in *Earth Observation Corpus*

Evaluating the Quality of Annotations

Quality of the annotation procedure according to inter-annotation agreement among annotators

• Pairwise Agreement

- Inter-annotators agreement for each pair of annotators
- Contigency table
- Multi $-\pi$ Agreement
 - Inter-annotators agreement for all annotators together
 - Agreement table

Probabilistic Ontology Learning

Experimental Evaluation

Conclusions O

Pairwise Agreement 404-annotation

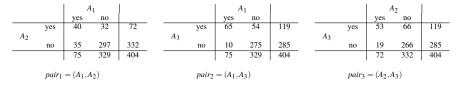


Table: Contingency tables for pairwise annotator agreement

Probabilistic Ontology Learning

Experimental Evaluation

Pairwise Agreement 404-annotation



Table: Contingency tables for pairwise annotator agreement

	A_o	A _e	kappa
$pair_1 = (A_1, A_2)$ $pair_2 = (A_1, A_3)$	0.8341584	0.7023086	0.4429077 0.5728117
$pair_2 = (A_1, A_3)$ $pair_3 = (A_2, A_3)$	0.7896040	0.6322174	0.4279336

Table: pairwise agreement

Probabilistic Ontology Learning

Experimental Evaluation

Conclusions 0

Multi $-\pi$ *Agreement* 404-annotation

pairs of words	A_1	A_2	A ₃	Yes	No
(forest,terra firma)	1	1	1	3	0
(wind,process)	0	0	0	0	3
(forest,object)	0	0	0	0	3
(cloud,state)	0	1	0	1	2
(soil,object)	0	1	1	2	1
(wind,breath)	0	0	0	0	3
(wind,act)	0	0	0	0	3
(topography,geography)	1	1	1	3	0
TOTAL	75	72	119	266 (0.22)	946 (0.78)

Table: Agreement table

э

・ロト ・聞 ト ・ 聞 ト ・ 聞 ト

Probabilistic Ontology Learning

Experimental Evaluation

Conclusions 0

Multi $-\pi$ Agreement 404-annotation

pairs of words	A_1	A2	A ₃	Yes	No
(forest,terra firma)	1	1	1	3	0
(wind, process)	0	0	0	0	3
(forest,object)	0	0	0	0	3
(cloud,state)	0	1	0	1	2
(soil,object)	0	1	1	2	1
(wind,breath)	0	0	0	0	3
(wind,act)	0	0	0	0	3
(topography,geography)	1	1	1	3	0
TOTAL	75	72	119	266 (0.22)	946 (0.78)

Table: Agreement table

 $Multi-\pi \ agreement$ $A_o = 0.82382 \qquad A_e = 0.65739$ kappa = 0.48577

・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト

Probabilistic Ontology Learning

Experimental Evaluation

Conclusions O

Experiments

Objective

To compute a model using both a *background* domain and an existing ontology can be positively used to learn the *isa* relation in Earth Observation Domain.

Experimental Evaluation

Experiments

Objective

To compute a model using both a *background* domain and an existing ontology can be positively used to learn the *isa* relation in Earth Observation Domain.

We compare two systems

- WN-System: existing hyperonym links in WordNet
- *Our-System*: our learner model

measuring their performance to replicate the three target ontologies produced by the three annotators

Probabilistic Ontology Learning

Experimental Evaluation

annotators	recall	precision	f-measure
A_1	0,36	0.184932	0,244344
A_2	0,305556	0,150685	0,201836
A_3	0,470588	0,383562	0,422642

Table: WN-System against the 3 annotators

э

・ロト ・ 日 ・ ・ 田 ト ・ 田 ト

Probabilistic Ontology Learning

Experimental Evaluation

annotators	recall	precision	f-measure
A1	0,36	0.184932	0,244344
A_2	0,305556	0,150685	0,201836
A_3	0,470588	0,383562	0,422642

Table: WN-System against the 3 annotators

annotators	recall	precision	f-measure
A_1	0,493333	0,253425	0,334842
A_2	0,4305556	0,212329	0,284404
A3	0,4369748	0,356164	0,392453

Table: Our-System against the 3 annotators

э

・ロン・雪と ・ ほと・ ほと

Probabilistic Ontology Learning
 Corpus Analysis
 A Probabilistic Model

- A Probabilistic Model
- Logistic Regression
- 3 Experimental Evaluation
 - Experimental Set-Up
 - Agreement
 - Results

Conclusions

- We propose a model adaptation strategy that use a *back-ground* domain to learn the *isa* relations in a specific domain
- Experiments show that this way of using a model identified in a *background* domain is helpful to learn the *isa* relation in Earth Observation Domain.
- We will try to learn ontologies in other target domain

