Word boundaries in French: Evidence from large speech corpora

Rena Nemoto ${ }^{\otimes \otimes}$, Martine Adda-Decker ${ }^{\otimes}$, Jacques Durand ${ }^{\diamond}$

${ }^{\otimes}$ LIMSI-CNRS, ${ }^{\otimes}$ Univ. Paris-Sud 11, Orsay France,
\diamond CLLE-ERSS (UMR5263) CNRS \& Univ. Toulouse, France
digite•

Outline

- Motivation: acoustic cues for word boundaries?
- Methodology \& corpus
- Lexical f_{0} profiles
- Lexical duration profiles
- Conclusion

Motivation

- context: French interdisciplinary research projects (Computer Sciences, Linguistics)
- preliminary question: how do ASR systems locate word boundaries? mainly rely on lexical \& word n-gram information
- question: are there acoustic cues signaling word boundaries in French?
- make use of large corpora and automatic processing tools
- hypothesis: prosodic cues (f_{0}, duration)
\Longrightarrow produce empirical evidence from large corpora
\Longrightarrow investigate whether prosodic realisations may contribute to address the word segmentation problem
\Longrightarrow increase our knowledge of prosodic realisations in French words

Hypotheses

- French: f_{0} and duration tend to increase on most prosodic word endings (continuation)

Example:
prosodic words homophonic French prosody (le couple)(est complet)... /lakuplckõple/ le couple est complet (le couplet)(complet)...
le couplet complet

- prosodic word endings are a subset of (content) word endings
- influential factors: word length, word-final schwa, POS...

Corpus

- French TECHNOLANGUE-ESTER1 corpus (Galliano 2005)
- broadcast news shows from French radio stations
- subset of 13 hours of male speakers
- 165k word tokens - 14k word types
- mainly "prepared" journalistic speech style

Methodology: processing steps

audio stream:

- f_{0} measurements each 5 ms (Praat, Boersma 2005) audio + word streams:
- word \& vowel boundaries (LIMSI speech alignment system, Gauvain 2005) word stream:
- POS tags (Treetagger, Schmid 1994)

word soutient la position de

Methodology: syllabic word length classes

n : syllabic word length
word class $n _\mathbf{0}$: words with n syllables and no final schwa word class $n _1$: words with n syllables and with final schwa

n	$n _s$	\#words	examples
0	$0 _0$	13 k	$l^{\prime} ; \mathrm{d}^{\prime} ;$ de
1	$1 _0$	72 k	vingt; reste
2	$2 _0$	36 k	beaucoup; journal
3	$3 _0$	16 k	notamment; militaire
4	$4 _0$	6 k	présidentielle
		$\#$ words+ / $\partial /$	
0	$0 _1$	12 k	de; le; que
1	$1 _1$	4 k	reste; test
2	$2 _1$	2 k	ministre
3	$3 _1$	0.7 k	véritable
4	$4 _1$	0.2 k	nationalistes

Methodology: grammatical vs content word classes

Lexical f_{0} profiles

f_{0} profiles: computed for each word class ($n _s, \ldots$)
only vowels with voicing ratio over 70% were used (rejection rate 10\%)

$$
\left(\text { voicing ratio }=\frac{\text { number of voiced frames }}{\text { total number of frames }}\right)
$$

for each vowel a mean f_{0} value was computed (all voiced frames of segment) values in Hz converted to semitones (st), 120 Hz as reference frequency
example: $\mathrm{n} _\mathrm{s}=2 _0$
2_0 : class of bisyllabic words without final schwa:
f_{0} profile: (average f_{0} of rank 1 vowels) + (average f_{0} of rank 2 vowels)

Mean f_{0} profiles of n-syllabic lexical words

lexical words without final schwa (1-4 syll.)
word classes:
1_0 monosyllabic words without final schwa
2_0 bisyllabic words without final schwa
3_0 trisyllabic words without final schwa
4_0 4-syllabic words without final schwa profiles are aligned w.r.t. to the final syllable n

x-axis: vowel rank (w.r.t. final syllable vowel) - y-axis: f_{0} (in semitones)

Mean f_{0} profiles of n-syllabic lexical words

left: words without final schwa (1-4 syll.) right: with final schwa ($1-3$ syll.)

x-axis: vowel rank (w.r.t. final syllable vowel) - y-axis: f_{0} (in semitones)
(i) f_{0} much higher for the final syllable n than for the preceding ones.
(ii) for trisyllables,$+ \mathrm{f}_{0}$ delta maximal between final \& penultimate vowels difference tends to increase with word syllabic length.
(iii) monosyllabic f_{0} as high as that of the final syllable of longer words.
(iv) final schwa ($n _1$) profiles globally higher f_{0} than $n_{0} 0$ profiles,
(v) delta between final syllable n and final schwa : 2-3 st.
(vi) weak initial accentuation

Mean f_{0} profiles of n-syllabic noun phrases (no final schwa)

left: nouns (1-4 syll.)
right: det + noun 13k occ. (2-5 syll.)

x-axis: vowel rank (w.r.t. final syllable vowel) - y-axis: f_{0} (in semitones)
(i) noun phrase: f_{0} minimal on 1st syllable
(ii) max. delta f_{0} between 1st syllable (monosyllabic det.) \& last syllable within a temporal window of some syllables, f_{0} may provide cues for phrase boundaries, at least for the noun phrase case (determiner noun)

Lexical duration profiles: based on vocalic durations

mean vocalic segment duration for each vowel rank $k=1$...n
left: nouns (no final schwa) right: noun phrase (no final schwa)

x-axis: vowel rank (w.r.t. final vowel) - y-axis: vocalic segment duration (ms)
(i) final vowel duration $\sim 100 \mathrm{~ms}$ on average
(ii) all other vowels $\sim 60 \mathrm{~ms}$ on average
high segment duration: cue for word ending (noun)

Lexical inter-vocalic duration (IVD) profiles

mean IVD for each vowel rank $k=1 \ldots n$ (between preceding \& present vowels) left: nouns (no final schwa) right: noun phrase (no final schwa)

x-axis: vowel rank (w.r.t. final vowel) - y-axis: IVD duration (ms)
(i) high inter-vocalic duration $\sim 180 \mathrm{~ms}$ on final vowels
(ii) very high IVD $\sim 220 \mathrm{~ms}$ on phrase-initial vowels high IVD: cue for prosodic word boundaries (in particular noun phrase start)

Conclusions

Are there acoustic cues signaling word boundaries in French?

- Hypotheses concerning influential factors: syllabic word length, presence/absence of word-final schwa, syntax
- 13 hours of broadcast news speech - 165 k words - male speakers
- Automatic tools for annotation: f_{0}, duration, vowels, syllabic rank, POS
- Original methodology to study prosodic regularities of French words via average lexical profiles

Word boundary information evidenced via average f_{0}, VD, IVD profiles: word final syllable f_{0} rises long word final syllable lengths long IVD on phrase boundaries

Conclusions \& perspectives

Measurable cues contributing to word boundary location can be found!

Future studies:
other POS sequences, more prosodic words, more detailed f_{0} patterns other speaking styles (especially spontaneous speech), other languages

Findings for ASR:
acoustic modelling
post-processing step for error recovery (improved boundary location)

Thank you for your attention

