Design and Development of Part-of-Speech-Tagging Resources for Wolof

Cheikh M. Bamba Dione Jonas Kuhn Sina Zarrieß

Department of Linguistics, University of Potsdam (Germany)

Institute for Natural Language Processing (IMS), University of Stuttgart (Germany)

- 1 Introduction: Wolof, a Low Resource Language
- 2 Starting from Scratch: Tagset Design
- 3 Fast Gold Standard Annotation
- 4 Experiments with State-of-the-art PoS Taggers

- 4月 + 4日 + 4日 + 5日 - 990

Introduction: Wolof, a Low Resource Language Starting from Scratch: Tagset Design Fast Gold Standard Annotation Experiments with State-of-the-art PoS Taggers

Wolof

- Spoken in Senegal
- Lingua franca for 80% of Senegals population (9 million speakers)
- 4 million native speakers
- West-Atlantic language

→ @ ▶ ▲ 돈 ▶ ▲ 돈 ▶ . 돈 돈 ~ 이 < @

Wolof Language

 Complex system of inflectional markers/pronouns (almost no verbal inflection) Ex. Object vs. Subjec focus

- (1) Maa lekk mburu. FOC-Subj.1SG eat bread. It was me who ate bread.
- (2) Mburu **laa lekk**. Bread FOC-Obj.1SG eat. It was bread that I ate.

 Very productive derivation morphology

Ex. Applicative

 (3) Togg-al naa xale bi ceeb. Cook-APPL 1SG child DET rice.
 I cooked rice for the child.

Wolof Resources

- No NLP tools or resources available for Wolof!
- Linguistically quite well documented (some descriptive grammars, recent work on specific aspects of the grammar)

Some online resources

- Wolof Wikipedia: 1065 articles (Problem: inconsistent orthography)
- We used the Wolof Bible
 - Consistent orthography
 - Available as a parallel corpus (e.g. English, French, Arabic translations)

- 4 同 ト 4 三 ト 三 三 - ク Q ()

Motivation

Low resource languages are ...

- investigated in theoretical linguistics, annotated corpora are missing
 - University of Potsdam: research programme on information structure, NLP resources support corpus-based, cross-lingual investigations of of information structure
- a test-bed for NLP techniques existing for well-resourced languages
- often simulated by using small sets from well-resourced languages (e.g. in research on bootstrapping, unsupervised learning techniques, ...)

Starting from Scratch: Tagset Design

- No established Part-of-Speech inventory for Wolof (not even on the level of coarse-grained lexical categories)
 - Debate about adjectives in Wolof
- Inconsistent glosses/categorisations in the theoretical literature
 - Inconsistencies for verb categories
- What is the appropriate level of tagset granularity?
 - Should the tagset capture e.g. nominal classes?

Tagset Design: General Strategy

- General desiderata for a tagset:
 - Capture interesting linguistic categories
 - Be predictable/learnable for automatic taggers
- EAGLES guidelines, Leech and Wilson [1996]
- Interleaving tagset design and annotation experiments
- Distinguishing various granularity levels

- 4 同 ト 4 ヨ ト ヨ ヨ - の 9 ()

Establishing Tagset Granularity

- Started out with fairly detailed tagset (200 tags)
- Experiments with tagset reductions
- Final "standard tagset" includes theoretically interesting distinctions that can be reasonably made by automatic PoS taggers

Granularity levels				
Definite Articles	Detailed 200 tags	Medium 44 tags	General 14 tags	Standard 80 tags
SG/b-class/proximal	ATDs.b.P	ATDs	AT	ARTD
PL/y-class/remote	ATDp.y.R	ATDp	AT	ARTD
SG/b-class/sent. focus	ATDs.b.SF	ATDSF	AT	ARTF
SG/w-class/sent. focus	ATDs.w.SF	ATDSF	AT	ARTF

- 4 同 ト 4 三 ト 三 三 - ク Q ()

Introduction: Wolof, a Low Resource Language Starting from Scratch: Tagset Design Fast Gold Standard Annotation Experiments with State-of-the-art PoS Taggers

Interleaving Tagset Design and Annotation

PoS categories for Wolof verbs

Problem:

- theoretical work on Wolof establishes 3 verb finiteness categories: VVFIN, VVINF, VVNFN (Zribi-Hertz and Diagne [2002])
- automatic
 PoS-Taggers do not
 learn the distinction

Ten most frequent errors on tagset with 3 verb finiteness categories

(incorr.)	gold	error ratio	tokens
system tag	tag	wrt. gold tag	affected
VVFIN	VVNFN	5.88%	0.83%
VVNFN	VVINF	45.24%	0.72%
NC	VVNFN	4.28%	0.60%
VVNFN	VVFIN	30.43%	0.53%
NC	NP	12.22%	0.42%
VVNFN	VVRP	29.17%	0.26%
VVNFN	NC	2.23%	0.23%
VVINF	VVNFN	1.60%	0.23%

Introduction: Wolof, a Low Resource Language Starting from Scratch: Tagset Design Fast Gold Standard Annotation Experiments with State-of-the-art PoS Taggers

Interleaving Tagset Design and Annotation

PoS categories for Wolof verbs

Solution:

- one tag for overtly non-inflected verbs (VV)
- several fine-grained tags for token-internally inflected verbs (e.g. VN for negated verbs)

Ten most frequent errors made on tagset with 1 verb category

(incorr.)	gold	error ratio	tokens
system tag	tag	wrt. gold tag	affected
VV	NC	3.94%	0.42%
NC	VV	1.95%	0.38%
PREL	PERS	3.07%	0.34%
NP	NC	3.23%	0.34%
PREL	AT	5.59%	0.30%
AV	NC	2.51%	0.26%
NP	VV	1.17%	0.23%
AT	AP	2.37%	0.15%

- 4月 + 4日 + 4日 + 5日 - 990

Capturing Linguistically Interesting Categories

PoS categories for focus markers

- Standard tagset captures different focus types
- It should allow for corpus-based investigations of information structure

Quality of automatic POS based focus identification on 100 sentences

Evaluate focus identification based on automatic tagging

Quality of automatic 1 03-based focus identification of 100 sentences					
Focus Type	Evaluation		Abs.Freq in	Abs. Freq in	
	Precision Recall		Test set	Corpus	
Subject (ISuF)	95.65%	100%	39	1119	
Verb (IVF)	100%	90%	11	759	
Object (ICF)	68.75%	90.90%	11	910	
Sentence (ISF)	100%	87.5%	16	635	
				3423 focus instances (predicted)	

A = b = 4

EL OQO

Creating Gold Standard Data

- Annotated data: ca. 27,000 tokens from the New Testament
- Annotation effort: 1 month for 1 person
- Automatic pre-annotation reduced the effort (by more than 50%)
- Implementation includes:
 - Tokeniser and sentence splitter (based on the GATE environment)
 - Heuristics for stemming and lemmatising

Automatic Pre-Annotation

- generation of a full form lexicon based on ...
 - closed-class lexemes (1700 entries)
 - suffix-guessing for open-class lexemes (25000 entries)
- pre-annotated each token with all options found in the full form lexicon

Suffix guessing on entire corpus

(4) ... gis-leen ! ... look !

"-leen" is an imperative suffix indicates a verbal category add "gis" as a verb to the lexicon

Pre-annotation

(5) man de ab kanaara la fi **gis**. "I can only see a turkey here."

Ļ

くぼと くヨト く

3 1

(6) man_PERS|DWQ de_IJ ab_ARTI kanaara_NC la_PRO|ICF|ARTD fi_AV gis_VVBP Introduction: Wolof, a Low Resource Language Starting from Scratch: Tagset Design Fast Gold Standard Annotation Experiments with State-of-the-art PoS Taggers

Comparing State-of-the-art PoS Taggers

Can our gold standard data be used for training reliable automatic taggers?

- InT tagger: Brants [2000] trigram Hidden Markov model 96.7% accuracy on NEGRA
- TreeTagger: Schmid [1994] decision tree model 96.06% on NEGRA
- SVMTool: Giménez and Màrquez [2004] support vector machine classifier (very rich, lexical feature model) 97.1% on the Wall Street Journal

< ロ > < 同 > < 三 > < 三 > < 三 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Comparing State-of-the-art PoS Taggers

- Results from ten-fold cross-validation
- 26,846 training tokens
- 2650 test tokens
- average number of ambiguities: 5.173 per word (on fine-grained tagset)

	Accuracy			
Tagset size	200	44	15	80
Baseline	85.7%	88.4%	89.5%	87.6%
TnT	92.7%	94.2%	94.8%	94.5%
TreeTagger	90.7%	93.6%	94.5%	93.8%
SVM Tool	93.1%	95.3%	96.2%	95.2%

(4日) (日本) (日本) (日本) (日本)

Comparing State-of-the-art PoS Taggers

- Results are comparable to state-of-the art (given the size of the training data)
- Standard tagset seems to be appropriate for automatic tagging
- Even the fine-grained tagset allows for quite accurate automatic analysis
- Open question: do these results scale to other text types?

	Accuracy			
Tagset size	200	44	15	80
Baseline	85.7%	88.4%	89.5%	87.6%
TnT	92.7%	94.2%	94.8%	94.5%
TreeTagger	90.7%	93.6%	94.5%	93.8%
SVM Tool	93.1%	95.3%	96.2%	95.2%

- 4 同 ト 4 三 ト 三 三 - ク Q ()

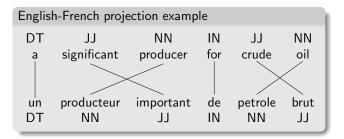
Conclusion

- Issues:
 - How to deal with under-studied, theoretically controversial phenomena?
 - How to satisfy theoretical and computational requirements on tagset design?
 - How to establish appropriate granularity of the tagset?
- Experience:
 - Even simple word lists are very useful for fast pre-annotation
 - Interleaving tagset design and annotation experiments
 - Automatic testing on different granularity levels

- 4 同 1 4 三 1 4 三 1 三 1 4 9 4 0

Towards Systematic Bootstrapping

- There is a lot of NLP research on bootstrapping resources for low resource languages (mostly "simulated")
- Classic: annotation projection paradigm, Yarowsky and Ngai [2001]
- Is it useful in a realistic scenario?

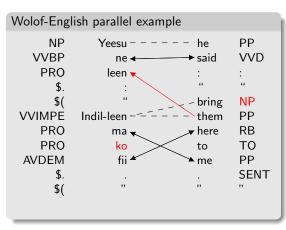


◆□ ◆ □ ◆ □ ◆ □ ● ◆ □ ◆ ○ ◆ □ ◆

Crosslingual Projection Experiments

Added information from parallel corpus?

- Data seems very noisy for direction PoS projection
- English tagset cannot be directly adopted for Wolof, some manual annotation is required anyway
- "Light projection" scenario: use parallel PoS information as additional features in the training process



ヨトィヨト

EL OQO

Comparing Taggers with and without Parallel Information

- Results from HMM-Tagging, ten-fold cross-validation
- Parallel info based on GIZA word alignments
- English and French PoS annotation produced with TreeTagger

	Training data size (tokens)		
	418	1249	4968
no parallel information	59.7%	68.3%	82.7%
information from English	62.6%	70.2%	84.0%
information from English and French	63.6%	70.6%	84.1%

• Improvement only significant on smallest training set

- Thorsten Brants. TnT a statistical part-of-speech tagger. In *Proceedings of the Sixth Applied Natural Language Processing (ANLP-2000)*, Seattle, WA, 2000.
 Jesús Giménez and Lluís Màrquez. SVMTool: A general pos tagger generator based on support vector machines. In *Proceedings of the 4th LREC*, 2004.
 Geoffrey Leech and Andrew Wilson. EAGLES. Recommendations for the Morphocyntactic Appendix of Corpora. Technical report. Expert Advisory.
- Morphosyntactic Annotation of Corpora. Technical report, Expert Advisory Group on Language Engineering Standards, 1996. EAGLES Document EAG-TCWG-MAC/R.
- Helmut Schmid. Probabilistic part-of-speech tagging using decision trees. In *Proceedings of International Conference on New Methods in Language Processing*, 1994.
- David Yarowsky and Grace Ngai. Inducing multilingual pos taggers and np bracketers via robust projection across aligned corpora. In NAACL '01: Second meeting of the North American Chapter of the Association for Computational Linguistics on Language technologies 2001, pages 1–8, Morristown, NJ, USA, 2001. Association for Computational Linguistics.
- Anne Zribi-Hertz and Lamine Diagne. Clitic placement after syntax: Evidence from Wolof person and locative markers. *Natural Language and Linguistic Theory*, 20(4):823–884, 2002.