Evaluation of textual knowledge acquisition tools: a Challenging Task

Haïfa Zargayouna, Adeline Nazarenko Yue Ma

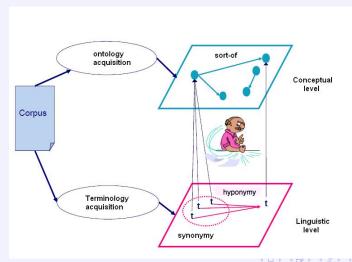
LIPN, Université Paris 13 firstname.lastname@lipn.univ-paris13.fr http://www.lipn.univ-paris13.fr/~lastname/

LREC 2010

Overview of the talk

- Context and related work
- 2 Difficulties
- Propositions: similar methodology for evaluating term extraction and ontology acquisition tools
 - Task decomposition
 - Specific measures
- Meta-evaluation

(Terminologies – Ontologies) acquisition



Evaluation Challenges

Terminology acquisition

• CESART [El Hadi et al., 2006], CoRRect, NTCIR-TEMREC

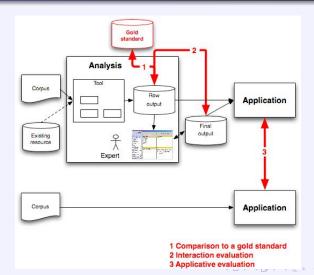
Ontology acquisition

- EON (Evaluation of Ontologies for the Web): 2002, 2006
- -> Unclear subtask definition, limited number of participants
- -> No standard available benchmark, no stable quality criteria

Why are KA tools difficult to evaluate?

- The resulting artefacts are complex
 e.g. term extraction v.s. ontology acquistion
- Methods and goals are heterogeneous
 e.g. term numbers? biword terms or complex terms? size of classes? the depth of class hierary?
- Binary measures of relevance are inadequate
 e.g. a term candidate can be different but close to a standard term
- There exist a large variety of gold standards
- Acquisition tools are often designed to be used interactively

Diversity of protocols



Functional breakdown

Acquisition tasks must be decomposed into well-defined sub-tasks

- Go beyond a black-box evaluation
- Enable the comparison of heterogeneous tools
- Improve tool modularity and standardization

These sub-tasks must be evaluated independently of each other

Simple independent functionalities

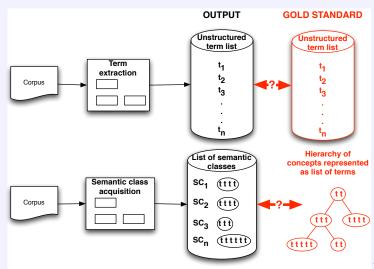
Terminological tools

- Term extraction
- Terminological variation calculus
- Terminology structuring
- ...

Ontology acquisition tools

- Semantic class acquisition
- Ontology structuring
- Role extraction
- ...

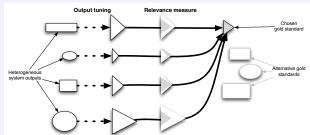
Evaluation of term extraction and semantic class acquisition



Specific precision and recall

• precision =
$$\frac{\sum\limits_{i \in T(O)} rel_i(T(O),GS)}{|T(O)|}$$
• recall =
$$\frac{\sum\limits_{i \in T(O)} rel_i(T(O),GS)}{|GS|}$$

T(O): Tuned output w.r.t. the chosen gold standard GS



Specific precision and recall

•
$$precision = \frac{\sum\limits_{i \in T(O)} rel_i(T(O),GS)}{|T(O)|}$$

• $recall = \frac{\sum\limits_{i \in T(O)} rel_i(T(O),GS)}{|GS|}$

 $rel_i(T(O), GS)$: gradual relavance between tuned output and gold standard

Limits of classic measures:

$$precision = \frac{|O \cap GS|}{|O|}$$
 $recall = \frac{|O \cap GS|}{|GS|}$

These measures rely on a binary judgement, but the outputs of the systems can be close to the gold standard although not exactly alike

•
$$precision = \frac{\sum\limits_{i \in T(O)} rel_i(T(O),GS)}{|T(O)|}$$

• $precision = \frac{\sum\limits_{i \in T(O)} rel_i(T(O),GS)}{|GS|}$

Specificity:

- Matching elements
- Output tuning
- Gradual relevance

Matching elements

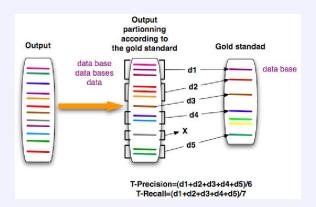
Term matching

- Terminological distance (d_t) : the mean of string and complex term distances [Nazarenko & Zargayouna, 2009]
 - Simple terms : d_s (base, bases)=1/5=0.2
 - Complex terms : d_c (relational data base, data base)=0.33
- $ullet egin{aligned} ullet egin{aligned} ext{match}(e_o,e_{cgs}) & ext{iff } e_{cgs} = rg \min_{e_{gs} \in \mathit{GS}} d_t(e_o,e_{gs}) \ ext{and} \ d_t(e_o,e_{gs}) < au \end{aligned}$

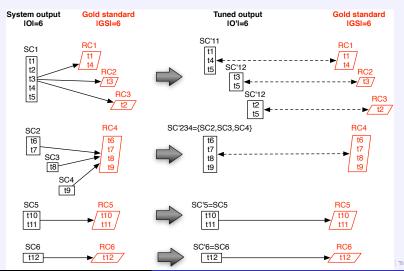
Class-Concept matching

- Every class matches every concept
- Relevance : F-measure between extracted classes and GS concepts
 - SC={bicycle, bike}; C={ordinary bicycle, bike, safety bicycle}
 - precision = 1/2, recall= 1/3, f-mesure = 0.39

Output tuning: term extraction



Output tuning: semantic class acquisition



Gradual relevance

$$|O \cap GS| \leq \sum_{i \in T(O)} rel_i(T(O), GS) \leq min(|O|, |GS|)$$

For term extraction

• $rel_i(T(O))$: the maximal value of the distances of elements of the partition

For semantic class acquisition (depends on the transformation step):

- the mean relevance of merged classes
- a weighted semantic similarity measure in case of splitting

Meta-evaluation

Verification

- Verify the behavior of proposed measures comparing to specifications
- Robustness of proposed measures and protocols

1st experiment (Term extraction)

- English corpus (Genomics, 405,000 words)
- Outputs of three term extractors
- Gold standard (GS) of 514 terms

	P	R	FM	AP	AR	FM
	1.0					
O_1	0.71	0.42	0.52	0.95	0.48	0.63
O_2	0.77	0.68	0.72	0.94	0.70	0.80
<i>O</i> ₃	0.76	0.28	0.40	0.95	0.34	0.50

Results of the output of three term extractors, $\tau = 0.4$ for terminological measures (TP, TR)

2nd experiment (Class acquisition)

- English corpus (volleyball, 5,078 words)
- 3 ontologies built from this corpus by master students
- Gold standard (GS) of 64 concepts

	Р	R	FM	AP	AR	FM
	1.0					
O_1	0.4 0.46	0.4	0.4	0.83	0.47	0.60
O ₂	0.46	0.45	0.45	0.84	0.47	0.60
<i>O</i> ₃	0.34	0.36	0.34	0.81	0.37	0.51

Results of the evaluation of three ontologies

A common approach

- Evaluation of elementary functionalities
- Specific measures based on gradual relevance and output tuning

Measures closer to human intuition

- Same ranking than with classical Precision and Recall
- Higher values

Perspectives

- Challenges within the Quaero program
- Evaluation protocols for other acquisition tasks

Distance between terms

$$d_t = (d_s + d_c)/2$$

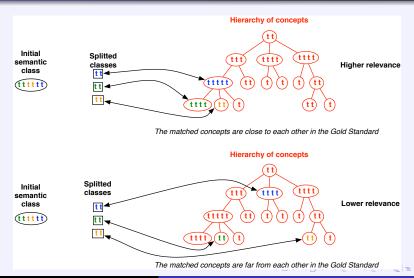
Simple terms : d_s (base, bases)=1/5=0.2

- String distance based on character comparison
- Edition distance between strings (character insertion & deletion)
- Normalisation on string length (# characters)

Complex (multi-word) terms : d_c (relational data base, data base)=0.33

- Best matching between the words of the terms
- String term distance between the matching pairs
- Edition distance between complex terms (word insertion & deletion, taking into account the string distance of the matching pairs)
- Normalisation on term length (# words)

Splitting (1)



Splitting (2)

- Selection of the central concept (p)
 - $p = \underset{c \in GS}{\text{arg max } fm(e_o, c)}$ where e_o is the element of the initial output from which e'_o is derived by splitting.
- Similarity measure [Wu & Palmer, 1994] between two concepts where C is the closest common ancestor of p and e_{gs} , depth(X) et $depth_Y(X)$ are resp. the distance from X to the root of the ontology and the distance from X to the root by way of Y
- Relevance of a splitted class (e'_o) wrt. GS $rel_{GS}(e'_o) = fm(e'_o, e_{gs}) * Sim(p, e_{gs})$

References I

- Adeline Nazarenko and Haïfa Zargayouna Evaluating term extraction RANLP, 2009
- Zhibiao Wu and Martha Palmer Verb Semantics and Lexical Selection ACL, 1994

