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Introduction

A problem: no standard set of categories (i.e. part-of-speech
tags) for evaluating category induction

I smaller mapped tagsets are often used (Goldwater and
Griffiths 2007; Toutanova and Johnson 2008)

How do we evaluate tagset mappings?

Internal quality whether tagset can be used to tag accurately

External quality whether tagset captures desired linguistic
phenomena

I Generally trying to capture distribution

Goal: understand & evaluate the distributional properties
that mappings encode
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Tagsets & Tagset Mappings

Q1: How do we measure distributional properties in tagsets?

I POS tags encapsulate some combination of
morphological & syntactic (& other?) properties

A1: Use tagset mappings to isolate distribution

I Can factor out morphological properties to examine only
distributional

NB: Work on learner language advocates separate
distributional, morphological, & lexicon tags (D́ıaz-Negrillo
et al. 2010, to appear)
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Frequent frames

Q2: What method can be used to test distribution?

A2: Frequent frames distinguish distributional properties

I Frame = two words around a target word (Mintz 2003)
I e.g., frame you it generally predicts a verbal category

for the target

I Frequent frames can be used for basic distributional
grouping

Advantages of using frequent frames:

I simple to encode

I purely distributional, i.e., test nothing else

I cross linguistic, i.e., can work for different languages
(Chemla et al. 2009; Xiao et al. 2006)
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Lexical evaluation

Q3: What external criteria indicate the (loss in) quality of a
distributional mapping?

Consider:
I conflating base form with non-3rd present tense verb:

I prominent ambiguity for many words, e.g., accept

I conflating 3rd person with non-3rd person present tense
verb:

I different words: accept vs. accepts

A3: Measure how many word types “lose” an ambiguity in a
lexicon by using a given mapping

I Fewer losses are desired, as this means that words are
nearly as ambiguous as they were before
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Initial mappings

Started with existing tagset mappings for Penn Treebank
(Smith and Eisner 2005) & SUSANNE (Brants 1997)

I Used similar mappings for other tagsets

I Mappings used to evaluate category induction (e.g.,
Goldwater and Griffiths 2007)

Use purity (see Manning et al. 2008) of frame to measure
accuracy

I Divide most frequent category instances among all
instances

Full details in the paper ...
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Initial mapping results

Corpus Lost
mapping Frames Tags Purity amb.

PTB 98 45 79.5% 0
PTB-17 98 17 89.7% 2038

Bro. 88 383 66.3% 0
Bro.-17 88 18 84.0% 580

SUS. 102 425 38.1% 0
SUS.-1 102 20 79.1% 652
SUS.-2 102 61 75.4% 589

TIG. 58 155 82.3% 0
TIG.-1 58 14 90.5% 2627

TUT 149 924 63.5% 0
TUT-1 149 16 89.6% 183
TUT-2 149 94 84.2% 64

Table: Original & (coarsely) mapped tag purity
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Defining noun and verb mappings

I Merge nouns and verbs along two dimensions:
I Common syntactic/semantic properties
I Common morphological properties

Merge nouns by:

I noun type: pronoun (PRP), common (NN/NNS), proper
(NNP/NNPS)

I noun form: pronoun (PRP), singular (NN/NNP), plural
(NNS/NNPS)

Merge verbs by:

I finiteness: modal (MD), finite (VBP/VBZ/VBD),
non-finite (VB/VBG/VBN)

I verb form: modal (MD), base (VB/VBP),
-ed (VBD/VBN), -ing(VBG), -s (VBZ)
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Penn Treebank results

Lost
Mapping Tags Purity amb.

PTB-17 17 89.7% 2038

N. form/V. form 41 83.2% 2653
N. type/V. form 41 84.3% 2101
N. form/Finite 39 85.1% 905
N. type/Finite 39 86.3% 352
No mappings 45 79.5% 0

Table: Results for Penn Treebank

I Noun type and verb finiteness results in high purity

I ... while best maintaining distinctions in the lexicon

I Note that purity and lost ambiguity vary dramatically
even though mapped tagsets are nearly the same size
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Brown results

Lost
Mapping Tags Purity amb.

Bro.-17 18 84.0% 580

N. form/V. form 59 72.0% 1685
N. type/V. form 58 79.1% 1611
N. form/Finite 57 73.4% 188
N. type/Finite 56 80.5% 114
No mappings 383 66.3% 0

Table: Results for Brown

I Noun type and verb finiteness again return the highest
purity and the least number of ambiguities lost
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Interlude: Issues in some tagset mappings

Some tagsets are difficult to map because they emphasize
lexical properties over morphological or distributional

I SUSANNE
1. NNc: nouns that can be singular or plural (e.g., sheep)

I Prohibits accurate mappings for singular vs. plural
nouns: NNc does not properly fit into either category

2. No distinction between base form verbs and present
tense verbs (non-3rd person)

I Prohibits accurate mapping for verb finiteness

I Turin University Treebank (TUT)

1. Nouns that can be either singular or plural (i.e. città)
are marked ALLVAL for number

2. Nouns that can be either gender (i.e. Albanese) are
marked ALLVAL for gender
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SUSANNE results

Lost
Mapping Tags Purity amb.

First letter 20 79.1% 652
Two letters 61 75.4% 589

N. form/V. form 279 67.3% 532
N. type/V. form 279 73.9% 533
N. form/Finite 277 68.4% 104
N. type/Finite 277 75.0% 105
No mappings 425 38.1% 0

Table: Results for SUSANNE

I Despite inexact mappings, results still favor noun type
and verb finiteness

I Possible to have a rich tagset (e.g., 277 tags) without
sacrificing accuracy
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TUT results

Lost
Mapping Tags Purity amb.

“syntactic categories” 16 89.6% 183
Chanev mapping 94 84.2% 64

N. form/V. form 284 75.7% 62
N. type/V. form 277 84.5% 71
N. form/Finite 269 77.1% 63
N. type/Finite 262 85.8% 72
No mappings 924 63.5% 0

Table: Results for TUT

I Italian’s more complex morphology makes it difficult to
use mapping by form
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Automatic tag mappings

So far: we have mapped tagsets based on what we suspected
were useful properties

I With large/unfamiliar tagsets, this approach can be
time-consuming

I It might be helpful to have some automatic, bottom-up
help in defining a mapping

Approach:
I Use similarity measure to find & group tags that appear

in the same frame contexts
I e.g., Tags VV0t and VV0v may be mapped if they occur

often as the target of the frame he to
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Using cosine similarity

Lost
Mapping Tags Purity amb.

First letter 20 79.1% 652
Two letters 61 75.4% 589

N. type/Finite 277 75.0% 105
Cosine sim. 326 73.3% 36

No mappings 425 38.1% 0

Table: Cosine similarity results for SUSANNE

Take-home points:

I Cosine similarity provides a bottom-up approach to
group tags based strictly on distributional properties

I Could be a useful first step in tagset design in order to
make a tagset that captures distributional properties

I cf. also clustering methods (Miller et al. 2004)
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Conclusions

1. Using frequent frames, or similar purely distributional
tests, allows one to test how distributional a tagset is

2. When evaluating POS tagging or category induction
methods involving mapping to simpler tagset, one
should report a measurement of external quality

I We propose one which records the number of
ambiguities lost in the lexicon

3. Tagset mappings can integrate both top-down linguistic
knowledge and bottom-up evidence
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