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Abstract 

The production of gold standard corpora is time-consuming and costly. We propose an alternative: the ‚silver standard corpus‗ (SSC), 
a corpus that has been generated by the harmonisation of the annotations that have been delivered from a selection of annotation 
systems. The systems have to share the type system for the annotations and the harmonisation solution has use a suitable similarity 
measure for the pair-wise comparison of the annotations. The annotation systems have been evaluated against the harmonised set 
(630.324 sentences, 15,956,841 tokens).  
We can demonstrate that the annotation of proteins and genes shows higher diversity across all used annotation solutions leading to a 
lower agreement against the harmonised set in comparison to the annotations of diseases and species. An analysis of the most frequent 
annotations from all systems shows that a high agreement amongst systems leads to the selection of terms that are suitable to be kept 
in the harmonised set. This is the first large-scale approach to generate an annotated corpus from automated annotation systems. 
Further research is required to understand, how the annotations from different systems have to be combined to produce the best 
annotation result for a harmonised corpus.  

 

1. Introduction 

The evaluation of NLP systems requires benchmark 
corpora to measure their performance. Manually curated 
gold standard corpora have emerged as a special type of 
language resources to serve as ground truth for the 
evaluation of NLP systems‘ quality and to train and test 
such systems that rely on (semi-)supervised machine 
learning approaches (Morgan et al., 2008). Unfortunately, 
the production of gold standard language resources is 
time-consuming and thus costly, since major portions of 
these resources were manually built, up until now. 
In the CALBC project (http://www.calbc.eu), the partners 
involved investigate in an alternative solution which is 
intended to serve as an approximation to a gold standard 
annotated corpus that we will hitherto call a ‘silver 
standard corpus’ (SSC, Rebholz-Schuhmann et al., 2010). 
Our approach should provide a corpus that has a large 
number of annotated entities which are based on large-
scale terminological resources. The key to such a large-
scale and fully automatically annotated corpus is the 
exploitation of different NLP systems that have been 
developed completely independently from each other and 
possibly trained on different language resources available 
in the scientific community.  
We stipulate that by gathering and combining the 
contributions from diverse annotation engines we can 
capitalize on the performance of all involved systems in 
such a way that the overall result exceeds the performance 
of any single system (see BioCreative Meta-Server)

1
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hypothesis will be tested empirically throughout the run-
time of the CALBC project.  

1.1.  The CALBC corpus 

The CALBC project partners (viz. European 
Bioinformatics Institute, Erasmus Medical Center, JULIE 
Lab of FSU Jena, and Linguamatics) have collected a 
corpus of 150,000 Medline abstracts. The selection of 
semantic groups for the annotation of the corpus is 
compliant with the semantic group system described by 
Bodenreider and McCray (2003). The corpus has already 
been made available to the biomedical NLP community. 
In two CALBC challenges, we ask researchers to enhance 
this corpus by their own annotations. We will integrate 
these contributions into the CALBC corpus according to 
well defined harmonization rules and will produce the 
CALBC silver standard corpus.  

2.  Methods 

Altogether the input from four different named enity 
taggers was used as a source for the harmonization efforts. 
The annotations are based on IeXML inline annotation

2
. 

EBI. This system considers the following sets of semantic 
groups: proteins and genes (Rebholz-Schuhmann et al.; 
2007) and disease annotations (Jimeno-Yepes et al., 2008). 
The identification of species uses the content of the NCBI 
taxonomy and matches the terms taking morphological 
variability into consideration. 
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EMC. Annotations are generated by EMC‘s Peregrine 
concept recognizer (Schuemie et al., 2007). The 
annotation groups are the 135 semantic types from UMLS 
grouped according to NLM‘s definition into semantic 
groups. Peregrine uses a dictionary for term identification 
and then associates the concept with that term, including 
homonym disambiguation. Peregrine makes use of UMLS 
and other resources such as SwissProt, MESH, etc. 
FSU Jena. This solution is based on the Jena Component 
Repository (JCoRe; Hahn et al., 2008). For named entity 
annotation, FSU Jena uses its GeNO (Wermter et al., 
2009) which incorporates the JNET tagger (JCoRe, Hahn 
et al., 2008). Furthermore, FSU Jena matches MeSH terms 
using the Lingpipe chunker

3
 that incorporates acronym 

detection results (Schwartz and Hearst, 2003) for 
disambiguation.  
LGM. Linguamatics‘ solution is based on I2E that uses 
fuzzy matching techniques to recognize terms from 
ontologies in text, and disambiguation to remove false 
positives. The following resources contribute to the NER 
tasks of CALBC: MeSH, NCI Thesaurus, UniProt Tissues 
List, SNOMED-CT, ChEBI, MedDRA and Entrez Gene. 
All systems share that they exploit the same 
terminological resources: UniProt for genes/proteins, 
NCBI taxonomy for species, and UMLS for disease 
annotations. The annotation systems still differ in the way 
how the text is processed. The size of this manuscript does 
not allow a more detailed comparison of the different 
systems. 

2.1. Corpus harmonization and evaluation 

Combining the annotations from different named entity 
taggers requires subsequent alignment of the annotations, 
for example pair-wise alignment of all tokens for a certain 
stretch of text. Several methods can be applied, once the 
alignment has been achieved: (1) exact matching of the 
annotation boundaries for entities of the same semantic 
group (―pair-wise exact matching‖), (2) nested matching 
of one annotation inside of the second annotation of the 
same semantic group (―pair-wise nested matching‖), and 
(3) a continuous similarity measure that scores the token 
similarity of the annotations over the stretch of annotated 
text (―cosine similarity matching‖).  
For example, under the condition that the annotator A1 
annotates the phrase Pa = ―T1 T2― and the annotator A2 the 
phrase Pb = ―T1 T2 T3―, there is no exact match between 
the two annotations. Since Pa is nested Pb, this would 
count as a nested match. For the cosine similarity we 
consider the inverse document frequency fx = idf(Tx) of 
each token as a measure of relevance and calculate the 
cosine similarity between the vectors v1 = <f1, f2, 0> and 
v2 = <f1, f2, f3>. A match is accepted, if cos(v1, v2) ≥ 0.98, 
for example ―lung cancer‖ as part of ―rare lung cancer‖.  
In the first step of the harmonization process, the results of 
two annotators are compared to determine the number of 
shared annotated tokens (e.g. c(<T1, T2, T3>) = <2, 2, 1>). 
In the next step the harmonised corpus is compared 
against the next annotator. In the last step, a stretch of text 
is accepted under the condition that at least two annotators 
from all four annotators have jointly annotated the same 
part of a given phrase.  
The harmonised set generated with the 98% cosine 
similarity measure contains 15,956,841 tokens in 630.324 
sentences. 
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2.2. Most frequent shared annotations 

For our analysis of the distribution of annotations, we 
selected the most frequent annotations for all three 
semantic types. Every mention in the corpus was 
annotated with the systems that have identified the given 
mention, i.e. the single token or sequence of tokens in the 
text, based on 98% cosine similarity matching. We then 
gathered all mentions together with the system profile and 
sorted them by their frequency. Finally we selected the 
one hundred most frequent pairs of a mention with its 
system profile and analysed the findings (see result 
section). 

3. Results 

A random selection of 150,000 abstracts (―CALBC 
Corpus‖) was taken from the complete hit set that resulted 
from running the query ―immunology‖ on Medline

4
 (1 

million documents overall). Three semantic groups were 
then annotated by four different systems of the CALBC 
consortium on the CALBC Corpus: proteins and genes 
(PGN), diseases (DIS) and organisms (SPE). Every 
mention of an entity of these groups had to be annotated in 
the documents (named entity recognition task), but it was 
not necessary to identify the correct reference to any data 
entry in a reference data resource (name entity 
normalization task), although all participants contributed 
concept ids for the identified terms.  
This data was then further harmonized. The harmonized 
CALBC Corpus based on pair-wise agreement for nested 
annotations contains in total (a) 780,836 annotations for 
40,913 unique lexical items for diseases, (b) 1,251,374 
annotations for 81,654 unique lexical items for PGNs, and 
(c) 715,043 annotations for 18,964 lexical items of 
species. 

    DIS PGN SPE 

All s01234 11,303 4,924 6,633 

L
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v
e 

o
u

t 
o

n
e 

 -
  
 

s0123 14,156 7,421 7,266 

s0124 12,118 6,421 8,911 

s0134 15,933 7,561 8,734 

s0234 11,717 8,145 13,266 

s1234 13,305 6,198 13,266 
 
Table 1: In the first line the number of unique terms is 
listed, where all systems agreed on the annotation (DIS for 
disease, PGN for gene/protein, SPE for species, s01234 
represents system 0 to system 4)

5
. Unique terms denote a 

unique stretch of text that can have several occurrences in 
the corpus (―mention‖). The part below the first line shows 
the total figures of annotations, where one system did not 
have to agree on the annotation (―Leave out one‖). 
Systems 0 and 1 share the same annotation solution for 
species and have been submitted by the same participant 
(EMC). 
In the next step, the annotations between the different 
systems were harmonized to produce the silver standard 
corpus. After the harmonization, all annotation systems 
involved were assessed against the harmonized corpus to 
determine precision and recall, and to calculate the F-
measure of the systems. All analyses were produced on the 
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5 In the following, system P0, P1 = two submissions from EMC, 

P2=JULIE, P3=EBI, P4=LGM. 
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complete silver standard corpus. Table 1 gives an 
overview on the number of shared annotations for the 
disease (DIS), the gene and protein (PGN), and the species 
annotations (SPE).  
Table 1 shows the overall numbers for the annotation of 
terms. The agreement between all systems is higher for the 
annotations of diseases (11,303) than for the PGNs (4,924) 
or for the species (6,633). We can conclude that the 
terminological resources for diseases are better 
standardised, or the other way around, the term variability 
linked to PGNs is much higher than for diseases.  
If not all systems have to agree, then we gain an additional 
set of annotated entities. For diseases, the agreement is 
highest, if system 2 is left out (additional 4,630 annotat-
ions) and for PGNs, if system 1 is left out.  
 

DISO PGN SPE DISO PGN SPE DISO PGN SPE DISO PGN SPE

p0 1,877 4,550 1,751 72 1,925 357 96 5,598 190 130 2,213 1,375

p1 96 945 756 327 1,291 331 285 820 1,375

p2  302 2,789 583 442 1,501 845

p3   1,313 1,552 352

p4p1 p2 p3

 
 
Table 2: The table shows the cross-comparison between 
two systems for the different semantic groups. The counts 
report on unique terms (i.e. not mentions) that have been 
identified only by the referenced systems (e.g., S1 vs. S0 
on top left). The table shows the agreement between two 
systems, if terms are not considered where additional 
systems provided the same annotation. 
 
According to Table 2, pair-wise agreements for PGNs 
exist (that are different from annotations from other 
partners) between system 0 on the one side and system 1 
or 3 on the other side. For diseases and for species the best 
pair-wise agreement for the outliers is between P0 and P1. 
 

Disease 
EMC 
(s1) 

Jena 
(s2) 

EBI 
(s3) 

LGM 
(s4) 

Pw. nested 430,025 

F-Measure 0.74 0.63 0.76 0.68 

Cosine 420,892 

F-Measure 0.76 0.66 0.80 0.68 

 
Table 3: Results from the different harmonisation solut-
ions measured on the annotations for diseases. The F-
measure refers to the measurement of the participant‘s 
system (see header row) against the harmonised set as the 
reference corpus. The performance for pair-wise nested 
comparison (―Pw. nested‖) has a similar performance in 
comparison to the 98% cosine score (―Cosine‖). The 
reported F-measures are below state of the art solutions 
measured against gold standard corpora. 
 
The harmonization of the corpus uses two different 
methods (see methods section): a pair-wise voting scheme 
of nested annotations between two systems (one could be 
the harmonized set) and the second being a cosine 
similarity comparison of the two annotation systems. 
Table 3 gives on overview on the results: the annotations 
from the participants‘ solutions have been evaluated 
against the harmonized corpus. 
Examples of agreements from this cross-comparison step 
for diseases only are shown in Table 3. The minimum F-
measure for the partners‘ solutions against the harmonised 
corpus has been measured at 0.63 (i.e. is the lowest value 
in this experiment). The best performing system achieves 

an F-measure of 0.80. The two different measures, i.e. 
pair-wise nested matching and 98% cosine similarity 
agreement, show similar performances. In the case of 98% 
cosine similarity, the average performance of all systems 
is higher (73.2% instead of 71.4%) in comparison to the 
alternative case of using pair-wise nested matching.  
 

PGNs 
EMC 
(s1) 

Jena 
(s2) 

EBI 
(s3) 

LGM 
(s4) 

Pw. nested 488,466 

F-Measure 0.52 0.58 0.60 0.62 

Cosine 482,935 

F-Measure 0.52 0.58 0.60 0.62 

 
Table 4: Results from the different harmonisation 
solutions measured on the annotations for genes and 
proteins (PGNs). For details concerning the labels in the 
table, please refer to table 3. The performance of the 
different systems on PGN annotations is lower than for 
disease annotations (see table 3). 
 
When comparing the annotations for PGNs of all systems 
against the harmonised corpus (see table 4), it becomes 
obvious that the performance is lower. This signifies that 
the harmonised set shows high diversity of annotated 
entities for PGNs. The F-measure ranges from 0.52 to 0.62 
independent from the method used for the harmonisation 
of the annotations, but the average F-measure is slightly 
higher for 98% cosine similarity over pair-wise nested 
voting (57.4% in comparison to 57.0%).  
 

Specie 
EMC  
(s1) 

Jena  
(s2) 

EBI  
(s3) 

LGM  
(s4) 

Pw. nested 483,853 

F-Measure 0.65 0.65 0.63 0.80 

Cosine 469,347 

F-Measure 0.67 0.70 0.66 0.81 

 
Table 5: Results from the different harmonisation 
solutions measured on the annotations for species (see 
table 3 for details on the labels). The performance of the 
different systems on specie annotations is similar to the 
one for disease annotations (see table 3). 
 
Comparing the annotators for species against the 
harmonised sets, we find performances that are similar to 
the annotation of diseases against the harmonised set (see 
table 5). The average performance against the harmonised 
set based on pair-wise nested voting reaches 69.9% and 
for 98% cosine similarity it reaches 72.1% on average. 
This annotation set contains is larger than the one for 
disease entities.  

3.1. Most frequent shared annotations 

We analysed the distribution of annotations across the 
different annotators to better understand, how the different 
annotators contribute to the harmonised set (see method 
section). In our statistical analysis (see table 6), we 
identified the 100 most frequent mentions together with 
their annotation profile composed of the systems that 
attributed the same semantic type to the mention. This 
analysis gives an overview on the distribution of the 
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annotations across the most frequent mentions in the 
corpus. 
 

# Syst. # Mention # Syst. # Mention # Syst. # Mention

Total 5 268,305 5 352,808 4 351,983

Maxim. 4 21,807 1 17,842 2 43,946

Minim. 5 1,062 2 1,287 3 864

# Terms # Occurr. # Terms # Occurr. # Terms # Occurr.

5 agree 20 2,173 4 2,905

4 agree 14 3,636 9 2,979 16 3,187

3 agree 9 2,995 9 3,477 24 2,962

2 agree 11 2,962 25 2,581 41 4,653

1 agrees 46 2,487 53 4,124 18 2,174

14 2,851 9 3,213 21 3,244Median/ 

Average

Disease PGNs Species

 
 
Table 6: The overview summarizes the findings across all 
annotations from all systems that have been gathered for 
the corpus. A single term in a given location (a ―mention‖) 
can be annotated by one system or by the full number of 
systems (e.g. 5, see ―# Syst.‖). For each type we have 
gathered the 100 most frequent combinations of a term 
mention together with the set of systems that have 
annotated this mention (see Method section). The table 
indicates that the annotations for diseases are more 
homogeneous, i.e. the systems agree better than for the 
other two types. The most frequent species mention (―as‖) 
has been excluded to show less distorted statistical figures, 
since this annotation is an outlier and a faulty annotation. 
 

s4 s3 s0 s1 s2 Sum

Count Term                 Total => 82 48 46 42 33

7,245 tumor 4 3 0 1 2 5

3,597 disease 4 3 0 1 2 5

3,164 asthma 4 3 0 1 2 5

2,636 rheumatoid arthritis 4 3 0 1 2 5

2,314 tuberculosis 4 3 0 1 2 5

2,222 lupus erythematosus 4 3 0 1 2 5

2,121 arthritis 4 3 0 1 2 5

2,064 lymphoma 4 3 0 1 2 5

21,807 infection 4 3 0 1 4

4,375 tumors 3 0 1 2 4

4,255 infections 4 3 0 1 4

3,208 diseases 4 0 1 2 4

2,528 SLE 4 0 1 2 4

2,405 AIDS 4 0 1 2 4

14,290 disease 4 0 1 3

2,395 syndrome 4 0 1 3

2,351 cancer 4 3 2 3

6,830 LPS 0 1 2

5,397 absence 0 1 2

5,358 tumor 3 2 2

2,876 immunodeficiency 4 3 2

2,744 HBV 0 1 2

2,180 PHA 0 1 2

2,149 RA 4 2 2

9,322 strains 4 1

6,856 strain 4 1

5,522 infected 4 1

5,229 membrane 4 1

4,843 apoptosis 4 1

4,629 adhesion 3 1

4,510 HIV-1 4 1

3,486 disease 4 1

3,477 exposure 4 1

2,916 neurons 4 1

2,875 mucosal 4 1

2,824 secondary 4 1

2,549 phagocytosis 4 1  
Table 7: The 100 most frequent term mentions together 
with the annotations from the 4 contributing partners have 
been analysed. The table shows to the left the number of 
mentions of the given term in combination with the profile 
of annotators that have marked this term (systems 0 to 4). 

Terms occur twice in the list (e.g., tumor) if they have 
been annotated by a different set of annotators in different 
locations. This result happens if an annotator uses 
contextual information to select or deselect a term, or 
chooses to annotate as part of a larger more specific 
concept. Only mentions with at least 2,000 counts are 
show, except for the list of single annotations which has 
been truncated. 
 
It becomes obvious that disease mentions have been 
identified with a higher agreement amongst the annotators 
in comparison to the other entity types: all five systems 
can agree on a significant portion of the mentions (20% of 
the mentions in the top 100 selected mentions). For 
Species and PGNs, only a smaller number of agreements 
can be found amongst the most frequent annotated 
mentions.  
 

s0 s3 s4 s2 s1 Sum

Count Term                 Total => 70 31 30 27 23

4,410 IL-6 0 3 4 2 1 5

3,156 CD4 0 3 4 2 1 5

2,597 TNF-alpha 0 3 4 2 1 5

7,081 IL-2 0 3 4 2 4

6,841 IFN 0 3 4 2 4

3,163 IL-10 3 4 2 1 4

2,350 CD4 0 3 4 2 4

5,971 CD4 0 3 2 3

5,123 genes 0 4 1 3

5,094 gene 0 4 1 3

4,459 IL-4 3 4 2 3

4,071 IFN 0 3 2 3

8,801 IgE 0 4 2

5,258 receptor 0 1 2

3,900 sequence 0 1 2

3,831 features 0 1 2

3,812 receptors 0 1 2

3,464 protein 0 3 2

3,395 domain 0 1 2

2,920 CD4 3 2 2

2,515 sequences 0 1 2

2,415 glycoprotein 0 3 2

2,307 suppressor 0 1 2

2,083 homologous 0 1 2

17,842 IgG 0 1

13,309 protein 0 1

13,267 sera 4 1

9,571 proteins 0 1

8,994 monoclonal antibodies 0 1

8,516 peptide 0 1

8,404 IgM 0 1

7,721 monoclonal antibody 0 1

7,447 cytokines 0 1

6,489 IgA 0 1

6,162 peptides 0 1

6,046 CTL 3 1

5,859 cytokine 0 1

5,722 per 0 1

5,025 II 4 1

4,951 complement 0 1

4,763 autoantibodies 0 1

4,715 PCR 3 1

3,909 components 0 1

3,724 antiserum 0 1

3,652 antisera 2 0 1

3,471 Th1 3 1

3,103 HBV 3 1

3,102 component 0 1  
 
Table 8: The most frequent mentions of PGNs have been 
analysed to identify systematic errors between the 
annotation systems. The table has been generated 
according to the same selection procedure as table 7. The 
term mentions show the high variability of the mentions of 
PGNs. The 5 different annotators agree only on a small set 
of PGN mentions. 
We have further analysed the most frequent mentions 
together with their annotations from the different 
annotators. Table 7 shows the high agreement of all five 
annotators for the first eight mentions of terms. ―absence‖ 
is the only term with at least two agreements that 
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represents a faulty entry. The presence of the two separate 
entries for ―tumor‖ (all five agree over only three agree) 
indicates that some annotators take context-sensitive 
decisions that are not followed by others. The lower part 
of the list shows the annotations that are only supported by 
system 4 (strains, strain, membrane, adhesion, exposure, 
secondary) and that could be considered to be of little 
relevance to the disease named entities. 
 

s0 s1 s3 s2 Sum

Count Term       Total => 70 66 45 52

10,504 rats 0 1 3 2 4

7,783 rat 0 1 3 2 4

5,181 HIV-1 0 1 3 2 4

4,995 HIV 0 1 3 2 4

3,499 bacteria 0 1 3 2 4

3,251 humans 0 1 3 2 4

2,765 viruses 0 1 3 2 4

2,303 Escherichia coli 0 1 3 2 4

2,095 pigs 0 1 3 2 4

13,681 virus 0 1 2 3

10,212 animals 0 1 2 3

8,812 murine 0 1 3 3

3,452 sheep 0 1 3 3

3,386 rabbits 0 3 2 3

3,350 bovine 0 1 3 3

3,337 thymus 0 1 3 3

2,921 HIV 1 3 2 3

2,794 parasite 0 1 2 3

2,400 cattle 0 1 3 3

2,035 E. coli 0 1 3 3

89,044 as 0 1 2

43,946 mice 3 2 2

40,465 human 0 1 2

8,970 strains 0 1 2

8,596 strain 0 1 2

6,993 individuals 0 1 2

6,458 recombinant 0 1 2

5,466 host 0 1 2

4,888 rabbit 0 3 2

4,843 recipients 0 1 2

3,762 bearing 0 1 2

3,739 BALB/c 0 1 2

3,647 HCV 3 2 2

3,465 individual 0 1 2

3,297 As 0 1 2

2,924 areas 0 1 2

2,875 area 0 1 2

2,451 Human 0 1 2

2,359 dogs 3 2 2

2,305 rat 3 2 2

12,271 mouse 3 1

3,066 EBV 2 1

2,355 human 0 1  
 
Table 9: The table shows the distribution of specie 
mentions in the annotated sets. The table has been 
generated according to the same selection procedure as for 
table 7 and 8. Although there seems to be a high 
agreement amongst the systems, it is the case that system 
0 and system 1 introduce general terms since they are not 
independent from each and produce similar results 
(strain(s), area(s), as/As, others). 
 
The diversity of annotations for PGNs is high (see table 
8). Only a few mentions are shared amongst all 5 systems 
and even a lower agreement amongst the annotators does 
not lead to a significant increase in mentions that are 
selected. Again, a few annotations are annotated according 
to contextual information (see CD4, IFN). A number of 
terms are too unspecific (gene, genes, components) to be 
shared over all annotators, other terms could be considered 
to be specific or unspecific (IgE, CD4) and finally, a 

number of terms form clearly mistakes (features, 
homologous, per, II, antiserum, component).  
In the case of the annotation of species mentions, it is 
remarkable that the set of annotations shared amongst at 
least 3 annotators seems to contain only a few mistakes 
(thymus, parasite). A few terms can be considered to be 
unspecific (virus, animals). System 0 and 1 introduce 
unspecific terms since they use similar resources (strain(s), 
host, recipients, individual). A few annotated terms should 
be removed (as, area(s), recombinant, bearing). For the 
harmonised set, only system 1 has been considered 
thereafter which resolved systematic errors. 

4. Conclusions 

We have generated the first corpus that contains a very 
large number of annotations, that contains the annotations 
from several annotation systems and that has been 
generated fully automatically. We expect high benefits 
from the corpus for systems that train a NER solution 
against the corpus and then identify a large number of 
semantic groups from similar types of text. Participants 
from the general public can contribute different types of 
annotations (more specific ones or more general ones), can 
receive an assessment against the SSC with automatic text 
mining means from the EBI‘s Web site and can contribute 
to the next SSC. 
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