
Corpora for Automatically Learning to Map Natural Language Questions into
SQL Queries

Alessandra Giordani, Alessandro Moschitti

Department of Computer Science and Information Engineering
University of Trento
Via Sommarive 14

38100 - POVO (TN) - Italy
agiordani, moschitti@disi.unitn.it

Abstract
Automatically translating natural language into machine-readable instructions is one of major interesting and challenging tasks in Natural
Language (NL) Processing. This problem can be addressed by using machine learning algorithms to generate a function that find
mappings between natural language and programming language semantics. For this purpose suitable annotated and structured data are
required. In this paper, we describe our method to construct and semi-automatically annotate these kinds of data, consisting of pairs
of NL questions and SQL queries. Additionally, we describe two different datasets obtained by applying our annotation method to two
well-known corpora, GEOQUERIES and RESTQUERIES . Since we believe that syntactic levels are important, we also generate and make
available relational pairs represented by means of their syntactic trees whose lexical content has been generalized. We validate the quality
of our corpora by experimenting with them and our machine learning models to derive automatic NL/SQL translators. Our promising
results suggest that our corpora can be effectively used to carry out research in the field of natural language interface to database.

1. Introduction

In this research, we present the design, construction and use
of two datasets each consisting of pairs of NL questions and
SQL queries. We represent these pairs by means of their
syntactic trees and we use kernel functions and machine
learning algorithms to derive the mapping between the two
languages.

In particular, starting from a given set of correct pairs of
questions and the related SQL queries, we produce incor-
rect pairs and additional correct pairs, i.e. negative and pos-
itive examples, respectively. Then we model a representa-
tion of the above question/query pairs in terms of syntactic
structures, i.e. we build pairs of syntactic parse trees auto-
matically derived by off-the-shelf natural language parsers
and an ad-hoc SQL parser.

The resulting dataset is then used to learn the mapping be-
tween the two languages. First we train a classifier on the
above pairs for selecting the correct queries for a ques-
tion. Then, for a new question and a given set of available
queries, we produce the set of pairs containing such ques-
tion and then we use the classifier to rank pairs in terms of
correctness. We select the top scored pair to find the query
that answers the given question.

We ran experiments starting from the available datasets
GEOQUERIES and RESTQUERIES (Tang and Mooney,
2001), creating two new corpora. Results show that the
approach is viable since we obtain a fairly high accuracy
and that indeed the corpora we generated and evaluated are
valid language resources.

In the remainder, Section 2 shows the methodology to con-
struct and annotate the corpora, Section 3 discusses the ex-
perimental setup and results and finally, Section 4 draws
conclusions.

2. Dataset Construction and Annotation
The goal of this research is to map NL questions into
SQL queries based on a machine learning approach; conse-
quently, we need to have training data, i.e. a set of positive
and negative examples. In practical cases, we can assume to
have a set of positive examples consisting of correct ques-
tion/query pairs, i.e. such that the execution of the query
retrieves a correct answer for the question. Assuming the
availability of negative examples is a more strong assump-
tion since providing the correct query for an user informa-
tion need is a more natural task than providing the incorrect
solution.
Therefore, we need techniques to generate negative exam-
ples from an initial set of correct pairs. Unfortunately, this
is not a trivial task since when mixing a question and a
query belonging to different pairs we cannot assume to only
generate incorrect pairs, e.g. when swapping two different
queries x with y in the two pairs:
〈What are some good restaurants in San Francisco?, x〉
〈What is a good place in San Francisco?, y〉
we obtain other two correct pairs. To generate a gold stan-
dard dataset we would need to manually check this aspect
thus we design an algorithm to limit the human supervision.
It consists of the following steps:

• Generalizing concept instances: substitute the in-
volved concepts in questions and their related field
values in the SQL queries, e.g. WHERE condition,
by means of variables expressing the category of such
values (e.g. San Francisco becomes VarCity).

• Clustering generalized pairs: each cluster represents
the information need about a target semantic concept,
e.g. “good restaurants in VarCity”, common to ques-
tions and queries. The clustering can be perfomed

2336



semi-automatically exploiting the semantic equiva-
lency between the pairs’ members and its transitivity
closure (requires a limited human supervision for val-
idation).

• Pairing questions and queries of distinct clusters, i.e.
the Cartesian product between the set of questions and
the set of queries belonging to the pairs of a target
cluster. This allows to find new positive examples that
were not present in the initial corpus.

• Final dataset annotation: consider all possible pairs,
i.e. Cartesian product between all the questions and
queries of the dataset, and annotate them as negatives
if they have not been annotated as positives in the pre-
vious steps.

An example of the entire process is shown in Figure 1 and 2,
which reports questions and queries of a restaurant domain.
More in detail, in Figure 1 there is a set of four pairs con-
taining four distinct questions and their three related queries
(connected by lines) whereas in Figure 2 four generalized
pairs are shown.
In the question and query pair 〈n1, s1〉, since in s1 Berkeley
is associated with the column city, its occurrences in n1 and
s1 are generalized with the concept/variable VARcity. We
note that, after substituting instances with variables, both
n1 and n3 are generalized into n′

1, which can then be paired
with two distinct SQL queries, i.e. s′

1 and s′
2. This is cor-

rect since there can be more SQL queries that correctly re-
trieve an answer to an NL question. We define them to be
semantically equivalent, i.e. s′

1 ≡ s′
2. Conversely, there

can be many NL questions that map to the same query, e.g.
n2 ≡ n3.

Figure 1: Example of the initial corpus

Figure 2: Generalized corpus, divided in two clusters (iden-
tified by the two brackets).

Once the pairs have been generalized, we cluster them ac-
cording to their semantic equivalence so that we can auto-
matically derive new positive examples by swapping their
members. For example, in Figure 2 s′

1 and s′
2 retrieve the

same results so we manually verify that they are semanti-
cally equivalent queries and we assign them to the same
cluster (CL1), i.e. information need about good restau-
rants in a city (with a rating larger than 2.5 stars). Al-
ternatively, we can also consider that n′

1 and n′
2 are both

paired with s′
2 to derive that they are equivalent, avoiding

the human intervention. Concerning s′
3, it retrieves a re-

sult set different form the previous one so we can automat-
ically assign it to a different cluster (CL2), i.e. involving
questions about restaurants in a region. Note that, once
n′

2 is shown to be semantically equivalent to n′
1, we can

pair them with s′
1 to create the new pair (indicated by the

dashed line) 〈n′
2,s′

1〉. Indeed the negative example set is
〈n′

3, s
′
1〉, 〈n′

3, s
′
2〉, 〈n′

1, s
′
3〉, 〈n′

2, s
′
3〉.

Human intervention is required when there are two clusters
whose queries retrieve the same result set but are not ap-
parently related to equivalent questions. In such cases the
semantic equivalence of questions should be checked by an
human, that indeed doesn’t need to be an SQL expert. Sup-
pose that we have two clusters, one regarding infomation
need about best restaurant in a city and one about Italian
restaurant in a city. It could be the case that for a certain city
the best restaurant is also Italian, so both queries retrieves
the same result. In general these two concepts are differ-
ent but if this information is not present in the database,
the algorithm can’t decide if the new pair is a positive or a
negative example after its members are swapped.
It is worth noting that with the generalization process, we
introduce redundancy that we eliminate by removing du-
plicated questions and queries. Thus, the output dataset is
usually smaller than the initial one. However the number
of training examples will be larger, not only because of the
introduction of negatives but also due to the automatic dis-
covering of new positives.
Next section illustrates the experiments on two datasets we
generated using the above algorithm. In particular, since
we want to carry out mapping at syntactic level, we repre-
sent pairs by means of their syntactic trees. For deriving
question parse tree we use the Charniak’s syntactic parser
(Charniak, 2000) while for queries we implemented an ad-
hoc SQL parser (Giordani and Moschitti, 2009a). The tree
representation of pair 〈n′

1, s
′
1〉 is shown in Figures 3 and 4.

Figure 3: Syntactic parse tree of generalized question n′
1.

2337



Figure 4: Syntactic parse tree of generalized query s′
1.

3. The Experiments
In order to derive an automatic translator of natural lan-
guage (NL) questions into their associated SQL queries we
start from a corpus of pairs annotated as correct when the
SQL query answers to the question and incorrect other-
wise. Then we train SVMs, encoding the structural repre-
sentation of the pairs by means of different types of kernels
(i.e. linear, polynomial and tree kernels and their combina-
tions) to automatically exploit the associative patterns be-
tween NL and SQL syntax. Finally to map new questions
in the dataset of the available queries, we rank the latter
by means of the question classifier score and select the top
one. One can argue that the set of all possible queries is
infinite and that this approach is practically useless. Actu-
ally the queries usually asked towards a database are a finite
subset of meaningful queries that can be generated starting
from database metadata, e.g. MySQL INFORMATION-
SCHEMA, and applying SQL grammar rules.
For a formal definition of our learning approach we remind
the reader to the work described in (Giordani and Moschitti,
2009b; Giordani and Moschitti, 2009a).
To generate the datasets we applied our algorithm to GEO-
QUERIES250 and RESTQUERIES corpora. Questions in
both corpora were originally collected from a web-based
interface and manually translated into logical formulas in
Prolog by Mooney’s group (Tang and Mooney, 2001).
Popescu et al. (Popescu et al., 2003) manually converted
them into SQL. Thanks to our clustering algorithm we dis-
covered and fixed many errors and inconsistencies in SQL
queries. The first corpora is about geography questions.
After the generalization process the initial 250 pairs were
reduced to 155 pairs containing 154 NL questions and 79
SQL queries. We found 76 clusters, from which we gener-
ated 165 positive and 12.001 negative examples. The sec-
ond dataset regards questions about restaurants. The initial
250 pairs were generalized by 197 pairs involving 126 NL
questions and 77 SQL queries. We clustered these pairs in
only 26 groups which led to 852 positive and 9.702 negative
examples.
We experimemted with both extended corpora using 10-
fold cross validation. For each corpus, every fold contains a
different subset of generalized questions (10%) paired with
all available generalized queries. So, in the first corpora, ev-
ery fold consists of approximately 15 questions each paired
with 79 SQL, among which almost only one retrieves the
correct answer. In the second one, every fold contains an

Table 1: Kernel combination accuracies (± Std. Dev)
Corpus BOW2 TK2 Advanced Best Kernel
GEO 70.7±12.0 75.6±13.1 75.9±9.6
REST 37.1±16.2 74.5±14.0 84.7±11.5

average of 12 questions each paired with 77 SQL where
almost four of them are correct pairs.
We tested several models for ranking questions based on
different kernel combinations (the interested reader can find
their definition in (Giordani and Moschitti, 2009b; Gior-
dani and Moschitti, 2009a)). Here, in Table 1, we just re-
port mapping accuracy of using the set of word pairs as
features from Questions and Queries: BOW2, and the ac-
curacy when tree kernels, i.e. pairs of tree fragments, are
used as feature spaces, i.e.TK2. In addition we list the best
accuracy obtained with our advanced kernel combinations.
The accuracy shown in the table is the rate of the number
of times that the top ranked pair is the correct one1. This is
fairly high considering that due to the heavily skewed class
distribution of test sets the probability of randomly choos-
ing the correct one among all the pairing is very low for
the first corpus (1.4%) and a bit higher for the second one
(5.6%).
The achieved accuracy is near the one of the best sys-
tems, 77.5% (GEOQUERIES) and 95.5%(RESTQUERIES),
achieved by Krisp (Kate and Mooney, 2006). Note that
such state-of-the-art system use, instead of an off-the-shelf
parser (like our system), semantic trees manually designed
(encoding the minimum representation semantics). More-
over, while also in evaluating Krisp, Kate and Mooney use
10-fold cross validation, our test sets are less trivial. In-
deed original corpora were redundant in that both ques-
tions and queries were instantiated many times with sim-
ilar values. Consider for example questions n1 and n3 in
Figure 1. When evaluationg Krisp it may have happened
that one of those similar questions was used for training the
parser and the other to test it. As opposite using our ex-
tended corpora, since questions are generalized, it is never
the case that the same question appear both in the training
set and in the test set. There exist other state-of-the-art sys-
tems (Zettlemoyer and Collins, 2005; Wong and Mooney,
2006; Tang and Mooney, 2001; Ge and Mooney, 2005) that
were tested on an extension of GEOQUERIES but with dif-
ferent experimental-setup, so results are not directly com-
parable. However we perform similarly to Krisp, that com-
pares favourably with them.
This demonstrates that our corpora are valid and accurate
language resources for learning question-queries relation-
ships.

4. Conclusions
In this paper, we describe the methodology to generate an-
notated data that we use to derive a mapping between nat-
ural language and programming language by automatically
learning a model based the syntactic representation of the

1Although the Std. Dev. associated with the model accuracy
is high, the one associated with the distribution of difference be-
tween the model accuracy is much lower, i.e. 5%

2338



training examples. In our experiments we consider pairs
of NL questions and SQL queries as training examples.
These are annotated by means of our algorithm starting
from a given initial annotation. In particular we experi-
mented with the annotation available in GEOQUERIES and
RESTQUERIES corpora. We generated new datasets adding
new positive pairs2, creating negatives example set and also
fixing some errors. Experimental results show that the eval-
uated corpora are valid and accurate language resources.

5. Acknowledgements
We would like to thank Rohit Kate for his help in obtaining
the GeoQueries and RestQueries datasets. Special thanks
go to Periklis Andrisos for providing the initial problem
and discussing possible solutions. This research has been
partially supported by the EC project “Trustworthy Eter-
nal Systems via Evolving Software, Data and Knowledge”
(EternalS, project number FP7 247758).

6. References
E. Charniak. 2000. A maximum-entropy-inspired parser.

In Proceedings of NAACL’00.
Ruifang Ge and Raymond Mooney. 2005. A statistical se-

mantic parser that integrates syntax and semantics. In
Proceedings of the Ninth Conference on Computational
Natural Language Learning (CoNLL-2005), pages 9–16,
Ann Arbor, Michigan, June. Association for Computa-
tional Linguistics.

Alessandra Giordani and Alessandro Moschitti. 2009a. Se-
mantic mapping between natural language questions and
sql queries via syntactic pairing. In Proceedings of the
14th International Conference on Applications of Natu-
ral Language to Information Systems. Springer-Verlag.

Alessandra Giordani and Alessandro Moschitti. 2009b.
Syntactic structural kernels for natural language inter-
faces to databases. In Proceedings of the European Con-
ference on Machine Learning and Knowledge Discovery
in Databases: Part I, pages 391 – 406. Springer-Verlag.

Rohit J. Kate and Raymond J. Mooney. 2006. Using string-
kernels for learning semantic parsers. In Proceedings
of the 21st ICCL and 44th Annual Meeting of the ACL,
pages 913–920, Sydney, Australia, July. Association for
Computational Linguistics.

Ana-Maria Popescu, Oren A Etzioni, and Henry A Kautz.
2003. Towards a theory of natural language interfaces
to databases. In Proceedings of the 2003 International
Conference on Intelligent User Interfaces, pages 149–
157, Miami. Association for Computational Linguistics.

L. R. Tang and Raymond J. Mooney. 2001. Using multi-
ple clause constructors in inductive logic programming
for semantic parsing. In Proceedings of the 12th Euro-
pean Conference on Machine Learning, pages 466–477,
Freiburg, Germany.

Yuk Wah Wong and Raymond Mooney. 2006. Learning for
semantic parsing with statistical machine translation. In
Proceedings of the Human Language Technology Con-
ference of the NAACL, Main Conference, pages 439–446,

2The datasets will be publicly available at http://disi.
unitn.it/˜iKernels/corpora.htm

New York City, USA, June. Association for Computa-
tional Linguistics.

Luke S. Zettlemoyer and Michael Collins. 2005. Learn-
ing to map sentences to logical form: Structured classi-
fication with probabilistic categorial grammars. In UAI,
pages 658–666.

2339


