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Abstract
ConceptMapper is  an open source tool  we created for classifying mentions in an unstructured text document based on concept 
terminologies and yielding named entities as output. It  is  implemented as a UIMA1  (Unstructured Information Management 
Architecture (IBM, 2004)) annotator, and concepts  come from standardised or proprietary  terminologies. ConceptMapper can be easily 
configured, for instance, to use different  search strategies or syntactic concepts. In this paper we will describe ConceptMapper, its 
configuration parameters and their trade-offs, in terms of precision and recall in identifying concepts in a collection of clinical reports 
written in English. ConceptMapper is available from the Apache UIMA Sandbox, using the Apache Open Source license.

1. Introduction
The proliferation of unstructured textual data in electronic 
format led to the development of many Natural Language 
(NLP) tools aimed at extracting knowledge from such 
documents. A basic task in NLP is named entity 
recognition (NER).  There are three basic types of NER 
systems: machine learning,  rule-based and lookup-based. 
If a lexicon, or vocabulary, can easily be compiled, the 
lookup approach has the advantage that no manually 
annotated corpus or model is needed. Such an approach 
can prove more conducive to the task of mapping terms to 
a controlled and coded vocabulary (terminology) and 
therefore associating semantic meanings and other 
properties to the terms. Machine learning approaches can 
often prove advantageous, in particular when no or only 
partial terminologies are available, but do not facilitate 
mapping into a coded vocabulary.  Like lookup-based 
systems, rule-based approaches do not need manually 
annotated corpora,  but do require expert linguistic 
knowledge and may be difficult to maintain, as the rule 
system is likely to be quite complex. A combined 
approach – first looking up terms in a controlled 
vocabulary, followed by a model driven algorithm can 
lead to identifying the largest number of mentions, though 
potentially sacrificing the precision of this identification.

Here we focus on the problem of identifying named 
entities (NE) specified in a coded terminology from 
unstructured text. We describe a highly parameterised and 
efficient lookup algorithm which can detect disjoint or 
variant multiword phrases. It is to handle these kinds of 
tasks that we created ConceptMapper. Accuracy results 
showing very high precision and recall are presented for 
the medical domain.

2. Related Work
ConceptMapper is being used for finding named entities 
in applications in the medical field, as well as with 

unstructured text documents in a variety of other domains, 
ranging from news to scholarly articles. Formal 
performance evaluations were performed in the medical 
domain. Though ConceptMapper is not limited to use in 
the medical domain, other domains were not evaluated 
due to the lack of an appropriate set of gold standard 
corpora, test corpora and terminologies. 

In the medical domain, MetaMap released by the National 
Library of Medicine is a widely used system.  This tool 
finds concepts specified in the UMLS terminology in 
unstructured text.  Over the years, MetaMap was evaluated 
against multiple corpora (e.g. medical literature, sets of 
sentences and clinical notes) annotated with different 
subsets of the UMLS. Since the annotated clinical corpora 
are not available for comparative analysis—primarily due 
to de-identification requirements—we could not perform a 
head-to-head comparison against MetaMap. We do claim, 
though, that ConceptMapper should perform relatively 
equivalently to MetaMap, with mostly similar 
functionality, but without the limitation of being tied 
solely to UMLS. Furthermore, ConceptMapper is light 
weight, easily customizable both in terms of performance 
and in terminologies, and is released into Open Source.

There are a variety of tools in the literature2  to address 
general named entity recognition. In the general domain, 
the focus is on identifying concepts such as people, 
places, organizations, addresses; in other words concepts 
which are semantically defined and not by a standardized 
and coded terminology.  In the medical domain, the focus 
of evaluations of named entity recognition systems is 
against publicly available corpora, for instance the 
GENIA corpus, focusing on genes, proteins and there 
interactions. Evaluations against proprietary annotated 
clinical corpora can be found for instance in (Schuler, et 
al. 2008) which presented F-scores between 0.56 and 0.76 
for an algorithmic named entity system. Again, direct 
comparisons cannot be executed.

1 http://incubator.apache.org/uima/

2 See http://site.cicling.org/2009/RCS-41/047-058.pdf for a comparison
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3. What ConceptMapper Is
ConceptMapper is a highly configurable, flexible and 
accurate dictionary lookup tool, implemented as an open 
source UIMA component, as part of an NLP system. Only 
a tokenizer is required to have been run prior to 
ConceptMapper, though a sentence detector is also usually 
useful.

ConceptMapper was designed as a flexible tool to provide 
accurate mappings of unstructured text into named 
entities, as specified by controlled vocabularies in the 
form of dictionaries. Any properties associated with items 
mapped from the controlled vocabulary may also be 
associated with the NE’s. Individual entries in a dictionary 
could consist of multiple tokens, and multi-token entries 
could potentially be matched against noncontiguous text, 
optionally in an order differing from way the tokens 
appear in the dictionary. ConceptMapper performs fast, 
and has been easily able to provide real-time results with 
multimillion entry dictionaries.

Lookups are token-based, and are limited to a specific 
context, usually a sentence, but can be configured for any 
context needed, such as a noun phrase or other NLP-based 
concepts.

All aspects of ConceptMapper’s functionality can be 
configured:

1. The mappings from dictionary entries to resultant 
annotations: what type of annotations are created and 
what features are associated with those annotations.

2. The way input document tokens are processed
3. The choice of lookup strategy

Additionally, there are a set of post-processing filters, as 
well as an interface to create new filters. This allows for 
over-generating results during the lookup phase 
(explained below),  then reducing the result set according 
to particular rules.

3.1 Dictionaries
The ConceptMapper dictionary is an implementation of 
the targeted terminology. The requirements on the design 
of the ConceptMapper dictionary were that it be easily 
extensible and that arbitrary attributes could be associated 
with all variants of an entry, but be overridden for any 
individual variant or even be unique to a variant. 
Additionally, the set of attributes could not be fixed, but 
customizable for any particular application.

The structure of a ConceptMapper dictionary is quite 
flexible and is expressed using XML (see figure 1). 
Specifically, it consists of a set of entries, specified by the 
token XML tag, each containing one or more variants 
(synonyms), the text of which is specified using by the 
base attribute of the variant XML tag.  Entries can have 
any number of additional associated attributes, as needed. 
Individual variants inherit all attributes specified by their 
parent token (i.e., the canonical form), but can override 

any or all of them, or add additional attributes.

In the following sample dictionary entry, there are 6 
variants, and according to the rules described earlier, each 
inherits the all attributes from the canonical form 
(canonical,  CodeType, CodeValue, SemanticClass and 
POS), though the variants “colonic” and “colic” override 
the value of the POS (part of speech) attribute: 

<token canonical="colon, nos"
       CodeType="ICDO" CodeValue="C18.9"
       SemanticClass="Site" POS="NN">
  <variant base=”colon, nos”/>
  <variant base=”colon”/>
  <variant base="colonic" POS="JJ" />
  <variant base="colic" POS="JJ" />
  <variant base="large intestine" />
  <variant base="large bowel" />
</token>

Figure 1. Sample Dictionary Entry

Since the results of running ConceptMapper are UIMA 
annotations, a method is provided to specify the mappings 
of attributes from the dictionary entries to the features of 
the resultant UIMA annotations.

The entire dictionary is loaded into memory, which, in 
conjunction with an efficient data structure, provides very 
fast lookups. Dictionaries with millions of entries have 
been used without any performance issues. The obvious 
drawback to storing the dictionary in memory is that large 
dictionaries require large amounts of memory; this is 
partially mitigated by the fact that the dictionary is 
implemented as a UIMA shared resource. This means that 
multiple annotators, such as multiple instances of 
ConceptMapper that are set up using different parameters, 
can all access the same instance of the dictionary, 
therefore loading it only once.

3.2 Tokenization
Since ConceptMapper matches tokens in text against 
tokens in dictionaries, it was designed specifically to 
allow the use of the same tokenizer for both the dictionary 
and for subsequent text processing,  preventing missed 
matches due to different tokenization. Any tokenizer 
implemented as a UIMA annotator can be used. As an 
example of why this is important, consider the text:

poorly-differentiated/undifferentiated

which could be tokenized as 1, 3, or 5 tokens, as shown in 
figure 2:

Figure 2: Tokenizations

Using the same tokenizer for dictionary entries and input 
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documents prevents situations where a particular 
dictionary entry is not found, though it exists, because it 
was tokenized differently than the text being processed.

3.3 Input Document Token Processing
Input documents are processed on a token-by-token basis, 
one span (e.g., sentence or noun phrase) at a time. Hence 
it is always assumed that a tokenization module and the 
user-defined span creation module were applied prior to 
running ConceptMapper.

Some ways input token processing can be customized are:

1. Case sensitive or insensitive matching
2. Token text modifications: stemming,  abbreviation 

expansions, spelling variants.
3. Use another feature of the token annotation entirely. 

This is useful for cases where spelling or case 
correction results need to be accessed instead of the 
token’s original text.

One additional input control mechanism is the ability to 
skip tokens during lookups based on feature values of a 
particular feature or if the token’s text is appears in a 
configurable stop-word list. Hence it is easy to skip, for 
example, all tokens with particular part of speech tag, or 
with some previously computed semantic class. For 
example, sometimes terms are interspersed within some 
multi-term dictionary phrase. For example:

infiltrating mammary carcinoma

In this case the dictionary specified “infiltrating 
carcinoma” as a diagnosis and “mammary” as an 
anatomical site, and each has an attribute reflecting that 
( i . e . ,  “d i agnos i s” and “ s i t e” , r e spec t ive ly ) . 
ConceptMapper can be configured to skip tokens by 
specifying the attribute/value set pair to skip in the 
“excludeList” parameter, (e.g. semantic class = “site”), so 
that if one pass over the text marked all the sites,  a second 
pass could be configured to skip over all those with the 
site label. 

Similarly,  there is another configuration parameter that 
can be used instead to specify a set of feature values to 
use for inclusion. If supplied, both inclusion and exclusion 
sets are used to compute the tokens to include for lookup. 
The algorithm for selecting tokens to include during 
lookup is as follows:

if there is an includeList but no excludeList
 include annotation if feature value in includeList

else if there is an excludeList
 exclude annotation if feature value in excludeList

else
 include annotation

This provides a simple way to restrict the selection of pre-
classified tokens, whether that pre-classification is done 
via previous instances of ConceptMapper or some 
altogether different annotator.  For example, consider the 
sentence below, with the relevant feature’s value in 

brackets following each token:

Oscar[n] Wilde[n] :[p] “[p] The[q] truth[q] is[q] rarely[q] 
pure[q] and[q] never[q] simple[q] .[p] ”[p]

In this case,  if the includeList contained a feature with the 
value “q”, then the only tokens that would be considered 
during lookup would be:

The[q] truth[q] is[q] rarely[q] pure[q] and[q] never[q] 
simple[q]

The same tokens would be selected if there were no 
includeList, but the excludeList contained both “n” and 
“p”, essentially excluding previously labeled punctuation 
and proper names.

3.4 Dictionary Lookup Strategies
The actual dictionary lookup algorithm is controlled by 
three user settable parameters.  One specifies token-order 
independent lookup: for example, a dictionary entry that 
contained the variant:

<variant base='carcinoma, infiltrating'/>

would match against any permutation of its tokens. In this 
case, assuming that punctuation was ignored, it would 
match against both “infiltrating carcinoma” and 
“carcinoma infiltrating”. Clearly, this particular setting 
must be used with care to prevent incorrect matches, but it 
does enable the use of a more compact dictionary,  as all 
permutations of a particular entry do not need to be 
enumerated.

Another parameter that controls the dictionary lookup 
algorithm toggles between finding only the longest match 
vs. finding all possible matches. For the text:

… carcinoma, infiltrating ...

if there was a dictionary entry for “carcinoma” as well as 
the entry for “carcinoma, infiltrating”, this parameter 
would control whether only the latter was annotated as a 
result or both would be annotated. Using the setting that 
indicates all possible matches should be found is useful 
when subsequent disambiguation is required.

The final parameter that controls the dictionary lookup 
algorithm specifies the search strategy, of which there are 
three. The default search strategy only considers 
contiguous tokens—not including tokens from the stop 
word list or otherwise skipped tokens (including 
punctuation),  as described in the previous section—and 
then begins the subsequent search after the longest match. 
The second strategy allows for ignoring non-matching 
tokens, allowing for disjoint matches, so that a dictionary 
entry of:
 

A C
 
would match against the text:

A B C
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This can be used as alternative method for finding 
“infiltrating carcinoma” over the text “infiltrating 
mammary carcinoma”, as opposed to the method 
described above, wherein the token “mammary” had to 
have been somehow pre-marked with a feature and that 
feature listed as indicating the token should be skipped. 
On the other hand, this approach is less precise, 
potentially finding completely disjoint and unrelated 
tokens as a dictionary match. As with the default search 
strategy, the subsequent search begins after the longest 
match.

The final search strategy is identical to the previous, 
except that subsequent searches begin one token after the 
beginning of the previous match, instead of after the 
previous match. This enables overlapped matching. As 
with the setting that finds all matches instead of the 
longest match, using this setting is useful when 
subsequent disambiguation is required. As an example of 
overlapped matching, consider the medical text:

adenocarcinoma in polypoid tubulovillous adenoma

and a dictionary that contains both:

adenocarcinoma in polypoid adenoma

and:

adenocarcinoma in tubulovillous adenoma

the use of overlapped matching could be used to find both 
dictionaries over the given span of text.

3.5 Output Control
Given the fact that dictionary entries can have multiple 
variants, and that matches could contain non-contiguous 
sets of tokens,  it can be useful to be able to know exactly 
what was matched. There are two parameters that can be 
used to provide this information. One allows the 
specification of a feature in the output annotation that will 
be set to the string containing the matched text. The other 
can be used to indicate a feature to be filled with the list of 
token annotations that were matched. Going back to the 
example in figure 2, where the token “mammary” was 
skipped, the matched string would be set to “infiltrating 
carcinoma” and the matched tokens would be set to the 
list of tokens “infiltrating” and “carcinoma”.

Another output control parameter can be used to specify a 
feature of the resultant annotation to be set to contain the 
span annotation enclosing the matched token. Assuming, 
for example, that the spans being processed are sentences, 
this provides a convenient way to link the resultant 
annotation back to its enclosing sentence.

It is also possible to indicate dictionary attributes to store 
back into each of the original matched tokens. This 
provides the ability for the tokens themselves to be 
marked with information regarding what it was matched 

against. Going back to the example in figure 2, one way 
that the SemanticClass  feature  of the token “mammary” 
could have been labeled with the value “Site” was using 
this technique: a previous invocation of ConceptMapper 
had “mammary” as a dictionary entry, that entry had the 
SemanticClass feature with the value “Site”, and 
SemanticClass was listed as an attribute to write back to 
the token as a feature. If, instead of “mammary” the match 
was against a multi-token entry, then each of the multiple 
tokens would have that feature set.

4. Parameter Configuration Comparison: A 
Case Study

We applied ConceptMapper to a named entity (NE) 
recognition task in the pathology domain, determining the 
trade-offs in performance for various combinations of 
parameter settings. The NE’s we targeted were 
histological diagnoses (HD’s) and anatomical sites (AS’s), 
mapping them (respectively) to the morphology and 
topography entries of the ICD-O-3 (Fritz, et al, 2000).  We 
varied parameters such as the search span, search strategy, 
and the use of stemming, running the tests against 
multiple dictionaries.

4.1 Dictionaries
We created separate dictionaries for HD’s and AS’s. While 
the dictionaries used ICD-O-3 as a starting point, we 
added additional synonyms according to a few rules: 
common abbreviations, adjectival forms, and commonly 
used shorthand expressions were added. In addition, we 
created alternative augmented versions, using synonyms 
from the SPECIALIST Lexicon3  from the National 
Library of Medicine of the U.S. National Institutes of 
Health.

4.2 The Test
Precision, recall and F-measure for each of the 3 sets were 
computed over the test set of documents. The test corpus 
consisted of a “gold standard” set of 302 manually 
annotated (Coden, et al, 2009) colon cancer related 
English language pathology reports from Mayo Clinic. 
There were 976 HD’s in the corpus, and 2316 AS’s.  We 
divided the corpus into 3 sets of 101, 101, and 100 
documents. Sets 1 and 2 were used for development,  and 
set 3 for evaluation of our algorithms. In the tests, we 
varied the following parameters:

• Stemming: on/off. The stemmer used was the Snowball 
stemmer4

• Dictionary with and without SPECIALIST Lexicon 
augmentation

• Matching limited to noun phrase or entire sentence
• Dictionary search strategy settings used:
• Order-independent matching (no negative effect for this 

domain)
• Find all matches: matching was not limited to longest 

match in dictionary.
• Allow for disjoint matches

3 http://lexsrv3.nlm.nih.gov/SPECIALIST/Projects/lexicon/current/index.html

4 http://snowball.tartarus.org/
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These settings made post-processing necessary, but this 
was unavoidable due to the nature of the task: tokens 
could be referenced by multiple resultant terms. For 
example, the text:

Colon, rectum

was manually annotated with three annotations, one 
covering “Colon”, one covering “rectum” and another 
“Colon, rectum”. This interpretation is domain specific, 
reflecting the intended meaning of pathologists when 
writing these reports.

Tokenization and sentence boundary detection were 
performed using the IBM LanguageWare platform5. Noun 
phrases were identified using a proprietary shallow parser 
(Boguraev, 2000).

4.3 Results
The results of the tests are shown below in Table 1. The 
best results for the anatomical sites (AS) and histological 
diagnosis (HD) are shown in bold.  As can be seen, both 
the base dictionary and the dictionary augmented using 
the SPECIALIST lexicon were tested. Table 2 describes 
how to interpret which settings were used in the tests.

ASASAS HDHDHD

Test# Prec’n Recall F-
score Prec’n Recall F-

score

Aug’d

00 0.941 0.953 0.947 0.958 0.985 0.971

Aug’d 01 0.902 0.838 0.869 0.855 0.910 0.882Aug’d 10 0.889 0.914 0.902 0.958 0.985 0.971Aug’d

11 0.871 0.816 0.843 0.855 0.911 0.882

Base

00 0.957 0.952 0.954 0.857 0.865 0.861

Base 01 0.918 0.837 0.876 0.779 0.815 0.797Base 10 0.911 0.911 0.911 0.858 0.871 0.864Base

11 0.890 0.815 0.851 0.781 0.822 0.801
Table 1: Test Results

Test # Stemmer SpanFeatureStructure
00 Off SentenceAnnotation

01 Off NPAnnotation

10 On SentenceAnnotation

11 On NPAnnotation

Table 2: Settings

where precision, recall, and F-score were computed by the 
standard definition, as follows:

Entity in Gold 
Standard

Entity not in Gold 
Standard

Entity found by 
ConceptMapper True Positive False Positive

Entity not found by 
ConceptMapper False Negative True Negative

Table 3: Entity Labeling

Precision = numberOfTruePositives ÷
 (numberOfTruePositives + numberOfFalsePositives)

Recall = numberOfTruePositives ÷
 (numberOfTruePositive + numberOfFalseNegatives)

F-Score = 2 × Precision × Recall ÷ (Precision + Recall)

This compares quite well to the inter-annotator agreement 
of 95.7% (AS) and 97.8% (HD) over this corpus (Coden, 
et al 2009), as well as the state-of-the-art over a news 
article corpus from the MUC-7 competition6.

It is clear that limiting lookups to noun phrases, as 
opposed to sentences, is undesirable. Examining the data, 
we could see that the main reason is that these target 
named entities often spanned beyond individual noun 
phrases. Limiting the lookup to noun phrases would make 
it impossible to identify the two diagnosis “intraductal 
carcinoma” and “invasive carcinoma” from the snippet 
“intraductal and invasive mammary carcinoma”. In 
addition, syntactic parsing is not 100% precise in 
ungrammatical and partial sentence style text as is 
common in the medical domain,  increasing the error rate 
in the lookup due to non-identified noun-phrases.

A more surprising result was the impact of stemming. For 
histologies, the effect was negligible or nonexistent. This 
is easily explained by the fact that the dictionaries 
generally contained both plural and singular forms. For 
sites, the difference is pronounced. This is because the 
dictionaries are quite complete, so the use of stemming 
produces an increase in false positive matches.

Comparing the base vs. augmented dictionaries, a slight 
degradation in performance across the board appeared for 
anatomical sites. This is probably attributable to the 
breadth of coverage of the SPECIALIST lexicon, which 
introduced some spurious terms into the mix. On the 
whole, coverage was quite good, so those additional terms 
outweighed any potential gain.  For histological diagnoses, 
on the other hand, the augmentation by the SPECIALIST 
lexicon had a profound positive effect. This can be 
explained by missing adjectival forms in the base 
dictionary which are provided by the SPECIALIST 
lexicon.

5 http://www.ibm.com/software/globalization/topics/languageware/index.jsp

6 http://www-nlpir.nist.gov/related_projects/muc/proceedings/muc_7_proceedings/marsh_slides.pdf
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5. Conclusions
We have introduced ConceptMapper, our open source 
UIMA-based NLP tool for mapping entries from a 
dictionary onto text documents. ConceptMapper is highly 
configurable,  in terms of the way it processes input text, 
the way it performs search for the mapping, and the way it 
ultimately presents results. 

Subsequently, we described a study wherein we compared 
varying a selected group of ConceptMapper’s parameters 
over a corpus of colon cancer pathology reports for two 
different types of named entities: anatomical sites and 
histological diagnoses. The results show that very high 
precision and recall can be achieved using the 
ConceptMapper approach in this domain, enabling the 
direct mapping into a controlled vocabulary.
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