
The ConceptMapper Approach to Named Entity Recognition
Michael Tanenblatt, Anni Coden, Igor Sominsky

IBM T.J. Watson Research Center
19 Skyline Dr, Hawthorne, New York, USA

E-mail: mtan@us.ibm.com, anni@us.ibm.com, sominsky@us.ibm.com

Abstract
ConceptMapper is an open source tool we created for classifying mentions in an unstructured text document based on concept
terminologies and yielding named entities as output. It is implemented as a UIMA1 (Unstructured Information Management
Architecture (IBM, 2004)) annotator, and concepts come from standardised or proprietary terminologies. ConceptMapper can be easily
configured, for instance, to use different search strategies or syntactic concepts. In this paper we will describe ConceptMapper, its
configuration parameters and their trade-offs, in terms of precision and recall in identifying concepts in a collection of clinical reports
written in English. ConceptMapper is available from the Apache UIMA Sandbox, using the Apache Open Source license.

1. Introduction
The proliferation of unstructured textual data in electronic
format led to the development of many Natural Language
(NLP) tools aimed at extracting knowledge from such
documents. A basic task in NLP is named entity
recognition (NER). There are three basic types of NER
systems: machine learning, rule-based and lookup-based.
If a lexicon, or vocabulary, can easily be compiled, the
lookup approach has the advantage that no manually
annotated corpus or model is needed. Such an approach
can prove more conducive to the task of mapping terms to
a controlled and coded vocabulary (terminology) and
therefore associating semantic meanings and other
properties to the terms. Machine learning approaches can
often prove advantageous, in particular when no or only
partial terminologies are available, but do not facilitate
mapping into a coded vocabulary. Like lookup-based
systems, rule-based approaches do not need manually
annotated corpora, but do require expert linguistic
knowledge and may be difficult to maintain, as the rule
system is likely to be quite complex. A combined
approach – first looking up terms in a controlled
vocabulary, followed by a model driven algorithm can
lead to identifying the largest number of mentions, though
potentially sacrificing the precision of this identification.

Here we focus on the problem of identifying named
entities (NE) specified in a coded terminology from
unstructured text. We describe a highly parameterised and
efficient lookup algorithm which can detect disjoint or
variant multiword phrases. It is to handle these kinds of
tasks that we created ConceptMapper. Accuracy results
showing very high precision and recall are presented for
the medical domain.

2. Related Work
ConceptMapper is being used for finding named entities
in applications in the medical field, as well as with

unstructured text documents in a variety of other domains,
ranging from news to scholarly articles. Formal
performance evaluations were performed in the medical
domain. Though ConceptMapper is not limited to use in
the medical domain, other domains were not evaluated
due to the lack of an appropriate set of gold standard
corpora, test corpora and terminologies.

In the medical domain, MetaMap released by the National
Library of Medicine is a widely used system. This tool
finds concepts specified in the UMLS terminology in
unstructured text. Over the years, MetaMap was evaluated
against multiple corpora (e.g. medical literature, sets of
sentences and clinical notes) annotated with different
subsets of the UMLS. Since the annotated clinical corpora
are not available for comparative analysis—primarily due
to de-identification requirements—we could not perform a
head-to-head comparison against MetaMap. We do claim,
though, that ConceptMapper should perform relatively
equivalently to MetaMap, with mostly similar
functionality, but without the limitation of being tied
solely to UMLS. Furthermore, ConceptMapper is light
weight, easily customizable both in terms of performance
and in terminologies, and is released into Open Source.

There are a variety of tools in the literature2 to address
general named entity recognition. In the general domain,
the focus is on identifying concepts such as people,
places, organizations, addresses; in other words concepts
which are semantically defined and not by a standardized
and coded terminology. In the medical domain, the focus
of evaluations of named entity recognition systems is
against publicly available corpora, for instance the
GENIA corpus, focusing on genes, proteins and there
interactions. Evaluations against proprietary annotated
clinical corpora can be found for instance in (Schuler, et
al. 2008) which presented F-scores between 0.56 and 0.76
for an algorithmic named entity system. Again, direct
comparisons cannot be executed.

1 http://incubator.apache.org/uima/

2 See http://site.cicling.org/2009/RCS-41/047-058.pdf for a comparison

546

http://incubator.apache.org/uima/
http://incubator.apache.org/uima/
http://site.cicling.org/2009/RCS-41/047-058.pdf
http://site.cicling.org/2009/RCS-41/047-058.pdf

3. What ConceptMapper Is
ConceptMapper is a highly configurable, flexible and
accurate dictionary lookup tool, implemented as an open
source UIMA component, as part of an NLP system. Only
a tokenizer is required to have been run prior to
ConceptMapper, though a sentence detector is also usually
useful.

ConceptMapper was designed as a flexible tool to provide
accurate mappings of unstructured text into named
entities, as specified by controlled vocabularies in the
form of dictionaries. Any properties associated with items
mapped from the controlled vocabulary may also be
associated with the NE’s. Individual entries in a dictionary
could consist of multiple tokens, and multi-token entries
could potentially be matched against noncontiguous text,
optionally in an order differing from way the tokens
appear in the dictionary. ConceptMapper performs fast,
and has been easily able to provide real-time results with
multimillion entry dictionaries.

Lookups are token-based, and are limited to a specific
context, usually a sentence, but can be configured for any
context needed, such as a noun phrase or other NLP-based
concepts.

All aspects of ConceptMapper’s functionality can be
configured:

1. The mappings from dictionary entries to resultant
annotations: what type of annotations are created and
what features are associated with those annotations.

2. The way input document tokens are processed
3. The choice of lookup strategy

Additionally, there are a set of post-processing filters, as
well as an interface to create new filters. This allows for
over-generating results during the lookup phase
(explained below), then reducing the result set according
to particular rules.

3.1 Dictionaries
The ConceptMapper dictionary is an implementation of
the targeted terminology. The requirements on the design
of the ConceptMapper dictionary were that it be easily
extensible and that arbitrary attributes could be associated
with all variants of an entry, but be overridden for any
individual variant or even be unique to a variant.
Additionally, the set of attributes could not be fixed, but
customizable for any particular application.

The structure of a ConceptMapper dictionary is quite
flexible and is expressed using XML (see figure 1).
Specifically, it consists of a set of entries, specified by the
token XML tag, each containing one or more variants
(synonyms), the text of which is specified using by the
base attribute of the variant XML tag. Entries can have
any number of additional associated attributes, as needed.
Individual variants inherit all attributes specified by their
parent token (i.e., the canonical form), but can override

any or all of them, or add additional attributes.

In the following sample dictionary entry, there are 6
variants, and according to the rules described earlier, each
inherits the all attributes from the canonical form
(canonical, CodeType, CodeValue, SemanticClass and
POS), though the variants “colonic” and “colic” override
the value of the POS (part of speech) attribute:

<token canonical="colon, nos"
 CodeType="ICDO" CodeValue="C18.9"
 SemanticClass="Site" POS="NN">
 <variant base=”colon, nos”/>
 <variant base=”colon”/>
 <variant base="colonic" POS="JJ" />
 <variant base="colic" POS="JJ" />
 <variant base="large intestine" />
 <variant base="large bowel" />
</token>

Figure 1. Sample Dictionary Entry

Since the results of running ConceptMapper are UIMA
annotations, a method is provided to specify the mappings
of attributes from the dictionary entries to the features of
the resultant UIMA annotations.

The entire dictionary is loaded into memory, which, in
conjunction with an efficient data structure, provides very
fast lookups. Dictionaries with millions of entries have
been used without any performance issues. The obvious
drawback to storing the dictionary in memory is that large
dictionaries require large amounts of memory; this is
partially mitigated by the fact that the dictionary is
implemented as a UIMA shared resource. This means that
multiple annotators, such as multiple instances of
ConceptMapper that are set up using different parameters,
can all access the same instance of the dictionary,
therefore loading it only once.

3.2 Tokenization
Since ConceptMapper matches tokens in text against
tokens in dictionaries, it was designed specifically to
allow the use of the same tokenizer for both the dictionary
and for subsequent text processing, preventing missed
matches due to different tokenization. Any tokenizer
implemented as a UIMA annotator can be used. As an
example of why this is important, consider the text:

poorly-differentiated/undifferentiated

which could be tokenized as 1, 3, or 5 tokens, as shown in
figure 2:

Figure 2: Tokenizations

Using the same tokenizer for dictionary entries and input

547

documents prevents situations where a particular
dictionary entry is not found, though it exists, because it
was tokenized differently than the text being processed.

3.3 Input Document Token Processing
Input documents are processed on a token-by-token basis,
one span (e.g., sentence or noun phrase) at a time. Hence
it is always assumed that a tokenization module and the
user-defined span creation module were applied prior to
running ConceptMapper.

Some ways input token processing can be customized are:

1. Case sensitive or insensitive matching
2. Token text modifications: stemming, abbreviation

expansions, spelling variants.
3. Use another feature of the token annotation entirely.

This is useful for cases where spelling or case
correction results need to be accessed instead of the
token’s original text.

One additional input control mechanism is the ability to
skip tokens during lookups based on feature values of a
particular feature or if the token’s text is appears in a
configurable stop-word list. Hence it is easy to skip, for
example, all tokens with particular part of speech tag, or
with some previously computed semantic class. For
example, sometimes terms are interspersed within some
multi-term dictionary phrase. For example:

infiltrating mammary carcinoma

In this case the dictionary specified “infiltrating
carcinoma” as a diagnosis and “mammary” as an
anatomical site, and each has an attribute reflecting that
(i . e . , “d i agnos i s” and “ s i t e” , r e spec t ive ly) .
ConceptMapper can be configured to skip tokens by
specifying the attribute/value set pair to skip in the
“excludeList” parameter, (e.g. semantic class = “site”), so
that if one pass over the text marked all the sites, a second
pass could be configured to skip over all those with the
site label.

Similarly, there is another configuration parameter that
can be used instead to specify a set of feature values to
use for inclusion. If supplied, both inclusion and exclusion
sets are used to compute the tokens to include for lookup.
The algorithm for selecting tokens to include during
lookup is as follows:

if there is an includeList but no excludeList
 include annotation if feature value in includeList

else if there is an excludeList
 exclude annotation if feature value in excludeList

else
 include annotation

This provides a simple way to restrict the selection of pre-
classified tokens, whether that pre-classification is done
via previous instances of ConceptMapper or some
altogether different annotator. For example, consider the
sentence below, with the relevant feature’s value in

brackets following each token:

Oscar[n] Wilde[n] :[p] “[p] The[q] truth[q] is[q] rarely[q]
pure[q] and[q] never[q] simple[q] .[p] ”[p]

In this case, if the includeList contained a feature with the
value “q”, then the only tokens that would be considered
during lookup would be:

The[q] truth[q] is[q] rarely[q] pure[q] and[q] never[q]
simple[q]

The same tokens would be selected if there were no
includeList, but the excludeList contained both “n” and
“p”, essentially excluding previously labeled punctuation
and proper names.

3.4 Dictionary Lookup Strategies
The actual dictionary lookup algorithm is controlled by
three user settable parameters. One specifies token-order
independent lookup: for example, a dictionary entry that
contained the variant:

<variant base='carcinoma, infiltrating'/>

would match against any permutation of its tokens. In this
case, assuming that punctuation was ignored, it would
match against both “infiltrating carcinoma” and
“carcinoma infiltrating”. Clearly, this particular setting
must be used with care to prevent incorrect matches, but it
does enable the use of a more compact dictionary, as all
permutations of a particular entry do not need to be
enumerated.

Another parameter that controls the dictionary lookup
algorithm toggles between finding only the longest match
vs. finding all possible matches. For the text:

… carcinoma, infiltrating ...

if there was a dictionary entry for “carcinoma” as well as
the entry for “carcinoma, infiltrating”, this parameter
would control whether only the latter was annotated as a
result or both would be annotated. Using the setting that
indicates all possible matches should be found is useful
when subsequent disambiguation is required.

The final parameter that controls the dictionary lookup
algorithm specifies the search strategy, of which there are
three. The default search strategy only considers
contiguous tokens—not including tokens from the stop
word list or otherwise skipped tokens (including
punctuation), as described in the previous section—and
then begins the subsequent search after the longest match.
The second strategy allows for ignoring non-matching
tokens, allowing for disjoint matches, so that a dictionary
entry of:

A C

would match against the text:

A B C

548

This can be used as alternative method for finding
“infiltrating carcinoma” over the text “infiltrating
mammary carcinoma”, as opposed to the method
described above, wherein the token “mammary” had to
have been somehow pre-marked with a feature and that
feature listed as indicating the token should be skipped.
On the other hand, this approach is less precise,
potentially finding completely disjoint and unrelated
tokens as a dictionary match. As with the default search
strategy, the subsequent search begins after the longest
match.

The final search strategy is identical to the previous,
except that subsequent searches begin one token after the
beginning of the previous match, instead of after the
previous match. This enables overlapped matching. As
with the setting that finds all matches instead of the
longest match, using this setting is useful when
subsequent disambiguation is required. As an example of
overlapped matching, consider the medical text:

adenocarcinoma in polypoid tubulovillous adenoma

and a dictionary that contains both:

adenocarcinoma in polypoid adenoma

and:

adenocarcinoma in tubulovillous adenoma

the use of overlapped matching could be used to find both
dictionaries over the given span of text.

3.5 Output Control
Given the fact that dictionary entries can have multiple
variants, and that matches could contain non-contiguous
sets of tokens, it can be useful to be able to know exactly
what was matched. There are two parameters that can be
used to provide this information. One allows the
specification of a feature in the output annotation that will
be set to the string containing the matched text. The other
can be used to indicate a feature to be filled with the list of
token annotations that were matched. Going back to the
example in figure 2, where the token “mammary” was
skipped, the matched string would be set to “infiltrating
carcinoma” and the matched tokens would be set to the
list of tokens “infiltrating” and “carcinoma”.

Another output control parameter can be used to specify a
feature of the resultant annotation to be set to contain the
span annotation enclosing the matched token. Assuming,
for example, that the spans being processed are sentences,
this provides a convenient way to link the resultant
annotation back to its enclosing sentence.

It is also possible to indicate dictionary attributes to store
back into each of the original matched tokens. This
provides the ability for the tokens themselves to be
marked with information regarding what it was matched

against. Going back to the example in figure 2, one way
that the SemanticClass feature of the token “mammary”
could have been labeled with the value “Site” was using
this technique: a previous invocation of ConceptMapper
had “mammary” as a dictionary entry, that entry had the
SemanticClass feature with the value “Site”, and
SemanticClass was listed as an attribute to write back to
the token as a feature. If, instead of “mammary” the match
was against a multi-token entry, then each of the multiple
tokens would have that feature set.

4. Parameter Configuration Comparison: A
Case Study

We applied ConceptMapper to a named entity (NE)
recognition task in the pathology domain, determining the
trade-offs in performance for various combinations of
parameter settings. The NE’s we targeted were
histological diagnoses (HD’s) and anatomical sites (AS’s),
mapping them (respectively) to the morphology and
topography entries of the ICD-O-3 (Fritz, et al, 2000). We
varied parameters such as the search span, search strategy,
and the use of stemming, running the tests against
multiple dictionaries.

4.1 Dictionaries
We created separate dictionaries for HD’s and AS’s. While
the dictionaries used ICD-O-3 as a starting point, we
added additional synonyms according to a few rules:
common abbreviations, adjectival forms, and commonly
used shorthand expressions were added. In addition, we
created alternative augmented versions, using synonyms
from the SPECIALIST Lexicon3 from the National
Library of Medicine of the U.S. National Institutes of
Health.

4.2 The Test
Precision, recall and F-measure for each of the 3 sets were
computed over the test set of documents. The test corpus
consisted of a “gold standard” set of 302 manually
annotated (Coden, et al, 2009) colon cancer related
English language pathology reports from Mayo Clinic.
There were 976 HD’s in the corpus, and 2316 AS’s. We
divided the corpus into 3 sets of 101, 101, and 100
documents. Sets 1 and 2 were used for development, and
set 3 for evaluation of our algorithms. In the tests, we
varied the following parameters:

• Stemming: on/off. The stemmer used was the Snowball
stemmer4

• Dictionary with and without SPECIALIST Lexicon
augmentation

• Matching limited to noun phrase or entire sentence
• Dictionary search strategy settings used:
• Order-independent matching (no negative effect for this

domain)
• Find all matches: matching was not limited to longest

match in dictionary.
• Allow for disjoint matches

3 http://lexsrv3.nlm.nih.gov/SPECIALIST/Projects/lexicon/current/index.html

4 http://snowball.tartarus.org/

549

http://lexsrv3.nlm.nih.gov/SPECIALIST/Projects/lexicon/current/index.html
http://lexsrv3.nlm.nih.gov/SPECIALIST/Projects/lexicon/current/index.html
http://snowball.tartarus.org
http://snowball.tartarus.org

These settings made post-processing necessary, but this
was unavoidable due to the nature of the task: tokens
could be referenced by multiple resultant terms. For
example, the text:

Colon, rectum

was manually annotated with three annotations, one
covering “Colon”, one covering “rectum” and another
“Colon, rectum”. This interpretation is domain specific,
reflecting the intended meaning of pathologists when
writing these reports.

Tokenization and sentence boundary detection were
performed using the IBM LanguageWare platform5. Noun
phrases were identified using a proprietary shallow parser
(Boguraev, 2000).

4.3 Results
The results of the tests are shown below in Table 1. The
best results for the anatomical sites (AS) and histological
diagnosis (HD) are shown in bold. As can be seen, both
the base dictionary and the dictionary augmented using
the SPECIALIST lexicon were tested. Table 2 describes
how to interpret which settings were used in the tests.

ASASAS HDHDHD

Test# Prec’n Recall F-
score Prec’n Recall F-

score

Aug’d

00 0.941 0.953 0.947 0.958 0.985 0.971

Aug’d 01 0.902 0.838 0.869 0.855 0.910 0.882Aug’d 10 0.889 0.914 0.902 0.958 0.985 0.971Aug’d

11 0.871 0.816 0.843 0.855 0.911 0.882

Base

00 0.957 0.952 0.954 0.857 0.865 0.861

Base 01 0.918 0.837 0.876 0.779 0.815 0.797Base 10 0.911 0.911 0.911 0.858 0.871 0.864Base

11 0.890 0.815 0.851 0.781 0.822 0.801
Table 1: Test Results

Test # Stemmer SpanFeatureStructure
00 Off SentenceAnnotation

01 Off NPAnnotation

10 On SentenceAnnotation

11 On NPAnnotation

Table 2: Settings

where precision, recall, and F-score were computed by the
standard definition, as follows:

Entity in Gold
Standard

Entity not in Gold
Standard

Entity found by
ConceptMapper True Positive False Positive

Entity not found by
ConceptMapper False Negative True Negative

Table 3: Entity Labeling

Precision = numberOfTruePositives ÷
 (numberOfTruePositives + numberOfFalsePositives)

Recall = numberOfTruePositives ÷
 (numberOfTruePositive + numberOfFalseNegatives)

F-Score = 2 × Precision × Recall ÷ (Precision + Recall)

This compares quite well to the inter-annotator agreement
of 95.7% (AS) and 97.8% (HD) over this corpus (Coden,
et al 2009), as well as the state-of-the-art over a news
article corpus from the MUC-7 competition6.

It is clear that limiting lookups to noun phrases, as
opposed to sentences, is undesirable. Examining the data,
we could see that the main reason is that these target
named entities often spanned beyond individual noun
phrases. Limiting the lookup to noun phrases would make
it impossible to identify the two diagnosis “intraductal
carcinoma” and “invasive carcinoma” from the snippet
“intraductal and invasive mammary carcinoma”. In
addition, syntactic parsing is not 100% precise in
ungrammatical and partial sentence style text as is
common in the medical domain, increasing the error rate
in the lookup due to non-identified noun-phrases.

A more surprising result was the impact of stemming. For
histologies, the effect was negligible or nonexistent. This
is easily explained by the fact that the dictionaries
generally contained both plural and singular forms. For
sites, the difference is pronounced. This is because the
dictionaries are quite complete, so the use of stemming
produces an increase in false positive matches.

Comparing the base vs. augmented dictionaries, a slight
degradation in performance across the board appeared for
anatomical sites. This is probably attributable to the
breadth of coverage of the SPECIALIST lexicon, which
introduced some spurious terms into the mix. On the
whole, coverage was quite good, so those additional terms
outweighed any potential gain. For histological diagnoses,
on the other hand, the augmentation by the SPECIALIST
lexicon had a profound positive effect. This can be
explained by missing adjectival forms in the base
dictionary which are provided by the SPECIALIST
lexicon.

5 http://www.ibm.com/software/globalization/topics/languageware/index.jsp

6 http://www-nlpir.nist.gov/related_projects/muc/proceedings/muc_7_proceedings/marsh_slides.pdf

550

http://www.ibm.com/software/globalization/topics/languageware/index.jsp
http://www.ibm.com/software/globalization/topics/languageware/index.jsp
http://www.itl.nist.gov/iaui/894.02/related_projects/muc/proceedings/muc_7_proceedings/marsh_slides.pdf
http://www.itl.nist.gov/iaui/894.02/related_projects/muc/proceedings/muc_7_proceedings/marsh_slides.pdf

5. Conclusions
We have introduced ConceptMapper, our open source
UIMA-based NLP tool for mapping entries from a
dictionary onto text documents. ConceptMapper is highly
configurable, in terms of the way it processes input text,
the way it performs search for the mapping, and the way it
ultimately presents results.

Subsequently, we described a study wherein we compared
varying a selected group of ConceptMapper’s parameters
over a corpus of colon cancer pathology reports for two
different types of named entities: anatomical sites and
histological diagnoses. The results show that very high
precision and recall can be achieved using the
ConceptMapper approach in this domain, enabling the
direct mapping into a controlled vocabulary.

6. Acknowledgements
Our deepest thanks are extended to Dr. Eric W. Brown of
IBM T. J. Watson Research Center for his work on the
previous incarnation of this work, as well as our numerous
colleagues at Mayo Clinic.

7. References
Ananiadou S, McNaught J, editors (2006). Text Mining

for Biology and Biomedicine, Artech House
Boguraev, Branimir K. (2000). Towards finite-state

analysis of lexical cohesion, Proceedings of the 3rd
International Conference on Finite-State Methods for
NLP, INTEX-3, Liege, Belgium.

Coden A., Pakhamov S.V., Ando R.K., Duffy P., Chute
C.G., (2005). Domain-specific language models and
lexicons for tagging, Journal of Biomedical
Informatics, 12.

Coden, A.R., Savova, G.K., Buntrock, J.D., Sominsky,
I.L., Ogren, P.V., Chute, C.G., de Groen, P.C., (2007).
Text Analysis Integration into a Medical Information
Retrieval System: Challenges Related to Word Sense
Disambiguation, MedInfo, Brisbane, Australia.

Coden, A., Savova, G., Sominsky, I., Tanenblatt, M.,
Masanz, J., Schuler, K., Cooper, J., Guan, W., de Groen,
P.C. (2009). Automatically extracting cancer disease
characteristics from pathology reports into a Disease
Knowledge Representation Model, Journal of
Biomedical Informatics, 42, pp. 937-949

Friedman C, Johnson S.B., Starren J. (1995). Architectural
requirements for multipurpose natural language
processor in the clinical environment. Proceedings of
the Annual Symposium on Computer Applications in
Medical Care, pp. 347-51.

Fritz A., C. Percy, Jack, A., Shanmugaratnam, K., Sobin,
L., Parkin, D.M., Whelan, S., Editors (2000).
International Classification of Diseases for Oncology,
Third Edition. World Health Organization

IBM (2004). Unstructured Information Management, IBM
Systems Journal Vol 43, No. 3

Jimeno, A., Jimenez-Ruiz, E., Lee, V., Gaudan, S.,
Berlanga, Rebholz-Schuhmann, R.,D., Assessment of
disease named entity recognition on a corpus of
annotated sentences, MBC Bioinformatics, 9

Meystre S.M., Savova G.K., Kipper-Schuler K.C., Hurdle
J.F. (2008). Extracting Information from Textual
Documents in the Electronic Health Record: A Review
of Recent Research, IMIA Yearbook of Medical
Informatics

Poesio, M., Vieira, R., (1998). A corpus-based
investigation of definite description use. Computational
linguistics, 24(2), pp. 183-216

Schuler, K., Kaggal, V., Masanz, J., Ogren, P.V., Savova,
G. (2008). System Evaluation on a Named Entity
Corpus from Clinical Notes, Proceedings of the Sixth
International Language Resources and Evaluation.

551

