
Can Syntactic and Logical Graphs help Word Sense Disambiguation?

Amal Zouaq, Michel Gagnon, Benoit Ozell
Ecole Polytechnique de Montréal, C.P. 6079, succ. Centre-ville, Montréal (Québec) H3C 3A7

E-mail: {amal.zouaq, michel.gagnon, benoit.ozell}@polymtl.ca

Abstract

This paper presents a word sense disambiguation (WSD) approach based on syntactic and logical representations. The objective here is
to run a number of experiments to compare standard contexts (word windows, sentence windows) with contexts provided by a
dependency parser (syntactic context) and a logical analyzer (logico-semantic context). The approach presented here relies on a
dependency grammar for the syntactic representations. We also use a pattern knowledge base over the syntactic dependencies to extract
flat predicative logical representations. These representations (syntactic and logical) are then used to build context vectors that are
exploited in the WSD process. Various state-of-the-art algorithms including Simplified Lesk, Banerjee and Pedersen and frequency of
co-occurrences are tested with these syntactic and logical contexts. Preliminary results show that defining context vectors based on
these features may improve WSD by comparison with classical word and sentence context windows. However, future experiments are
needed to provide more evidence over these issues.

1. Introduction

The task of word sense disambiguation (WSD) can be

regarded as one of the most important tasks for natural

language processing applications including semantic

interpretation of texts, semantic web applications,

paraphrasing and summarization. One issue of current

word sense disambiguation methods is that the most

successful techniques are supervised, which means that

annotated corpora should be available to train the systems.

However, this kind of data is heavy to produce and cannot

be created for each new domain to be disambiguated. This

indicates that more efforts should be put on unsupervised

word sense disambiguation techniques. Furthermore, one

vital issue that should generally be solved for this kind of

systems is the choice of an adequate context. Usually, this

context is defined as a window of words or sentences

around the word to be disambiguated. The question raised

by this paper is whether defining this context using

syntactic and logical features can be beneficial to WSD.

This paper briefly presents a natural language processing

pipeline that outputs logical representations from texts

and disambiguates the logical representations using

various WSD algorithms. The paper also presents

different context definitions that are used for WSD.

Preliminary results show that logical and syntactic

features can be of interest to WSD. The main contribution

of this paper is the use of syntactic and semantic

information for WSD in an unsupervised manner.

The paper is organized as follows: First, section 2

explains the pipeline that creates logical representations

and presents the various WSD algorithms and the contexts

used in this study. Section 3 presents experiments that are

conducted over a small corpus and shows preliminary

results. It also describes the results of our system on the

Senseval English lexical Sample Task before drawing a

conclusion.

2. State of the Art

There have been previous works in the WSD and

Semantic Role Labeling (SRL) communities (Tanaka et

al., 2007) (Merlo and Musillo, 2008) that try to

incorporate syntactic and lexical information for WSD

and SRL. For e.g. (Tanaka et al., 2007) show that

exploiting rich semantic information improves the

precision of the results by 2- 3%. Their approach uses a

machine learning algorithm which is trained over a

TreeBank, and an HPSG lexicon which describes

syntactic and semantic features for each lexeme. Such a

supervised approach may provide interesting results, but

it requires resources that are costly to acquire. Our aim is

to define contexts based on syntactic and logical features,

but without necessarily resorting to a supervised WSD or

to linguistic resources.

3. Prototype Implementation

The system is built using a modular design and is intended

to be as generic and reusable as possible. It is composed

of a syntactic analyzer, the dependency module of the

Stanford Parser (De Marneffe et al., 2006), a logical

analyzer based on dependency grammars and finally a

WSD module.

Figure 1. The prototype pipeline

Using the dependencies (the grammatical structure)

created by the Stanford parser (De Marneffe et al., 2006),

Texts

Logical

representation

Dependency

syntactic tree

Syntactic Analysis

Logical Analysis

WSD

Knowledge

Model

WordNet

3230

and based on the work of (Zouaq, 2008), we developed a

Prolog logical analyzer that searches specific patterns in

the grammatical structure and that transforms them into a

flat predicative logical representation. This representation

relies on general and universal categories that are found in

all the semantic role labelling systems: event, statement,

entity, named_entity, attribute, time, measure,

circumstance, etc. With these categories, it is easy to

express various information contexts and to remain

independent from a particular domain. An example of a

logical representation based on these categories is shown

below (figure 2). The figure also shows a simple pattern:

nsubj(Verb, Subject).

Figure 2. A dependency syntactic representation and the

resulting logical representation

Although it is possible to create logical representations

using only lexical items, we believe that these universal

categories can help WSD and represent a step towards the

sentence semantics. Starting from these logical

expressions (Figure 2), the system should then be able to

create a semantic representation using a specific set of

roles (for WSD). Since we propose a modular framework,

independent from a particular role terminology, we chose

the well-known lexical dictionary WordNet (Fellbaum,

1998). However, all the resources used here are

interchangeable and it is possible to use ontologies instead

of WordNet for example (Zouaq et al., 2010). Moreover, it

is also possible to use another dependency parser with

minimal changes in the logical analyzer.

3.1. Logic-based Word Sense Disambiguation

Using the kind of pipeline proposed in figure 1, we can

define the task of WSD as a three-phase process, requiring

the syntactic parsing, the identification of the sentence

logical structure (predicates, arguments) and finally the

categorization of the obtained structure, which represents

the actual WSD of the sentence constituents.

An example of a WordNet-based disambiguation for the

logical representation presented above is shown below.

outside(e1, id3), of(id3, id4), entity(id4, WN:

city%1:15:00::), resolve(id4), entity(id3, WN:

wall%1:06:01::), resolve(id3), in(e1, id2), entity(id2, WN:

wind%1:04:01::), resolve(id2), event(e1, WN:

flap%2:38:00::, id1), entity(id1, WN: banner%1:06:00::).

This represents the core of the paper. How can we obtain

the most reliable logical representations using WSD?

3.2. Context Definitions
At this point, context definition represents an essential

step for effective results. Basically, a number of

similarity-based methods use word windows and sentence

windows (Ide and Veronis, 1998) to provide a vector

space that defines the context of a word to be

disambiguated. Here, we propose the use of the syntactic

and the logical representations in order to define the

context vector of the word (called syntactic context in the

former and logical-semantic context in the latter) and we

judge the performance of various WSD using these

contexts by comparison with traditional window-based

context and sentence-based contexts. The following

“traditional” contexts were used:

• All previous sentences: starting from the current

sentence, all the previous sentences are taken into

account to build the context vector.

• 0 to 6 sentences: the context may be composed from

0 to 6 sentences around the sentence containing the

word to disambiguate. 0 sentence means that you take

into account only the current sentence. 1 sentence

context means that you take the previous and the next

sentence around the sentence to disambiguate, and so

on.

• 0 to 6 words around the word to disambiguate means

that you take only the current word (context with 0

word), 1 word before and 1 word after the word to

disambiguate (context with 1 word), and so on.

We also defined graph-based contexts, which can be

divided into local contexts and global contexts. A local

context comprises only the direct relationships of the

ambiguous word with the other words in the current

sentence whereas a global context is built incrementally

from all the previously defined contexts and updated with

the disambiguated entities and events labels. Graph-based

contexts are built using the results of dependency parsing

as well as logical representations:

• A local syntactic graph context around a given

word to disambiguate (here an entity or an event) is

composed of all the direct dependency relationships

from or to the word. A syntactic context for the word

“flap” in the previous example is composed of the

following words: [banner, in, outside] (see figure 2).

• A local logical-semantic graph context of an entity

or an event is also composed of the elements which

are in direct predicative relationships with the word

to disambiguate. For instance, a logical-semantic

context for the word flap is defined as follows:

[banner, wind, walls] (we can see in Figure 2 that

they denote entities that are related to the same event

e1).

A global context for a sentence i contains all the previous

3231

contexts from sentence 1 to i. As soon as some entity or

event is disambiguated, its sense is added to the context.

For instance, given the current sentences:

Banners flap in the wind outside the walls of the city.

The gates seem getting closer.

The first global syntactic context for the word “gates” in

the second sentence will contain all the words of the

current sentence together with all the words of the

previous sentence and the disambiguated entities and

events:

[Banners, flap, in, the, wind, outside, the, walls, of, the,

city, streamer, gates, seem, getting, closer].

Note that the disambiguated entities are in bold, and that

the entities whose label is the same as the original word

are not repeated. For example, wind is tagged with the

sense Wind but is not repeated in the context vector.

The global logical graph for the word “gates” will contain

only the identified entities and events plus the

disambiguated entities and events: [banners, flap, wind,

walls, city, streamer, gates, seem, getting, closer].

Below is an example that shows clearly the differences

between syntactic and logical graphs. Given the sentence:

“The peasant came, holding the rabbit by the ears”, the

following syntactic parse is generated:

root came/v

 nsubj peasant/n

 det the/d

 advmod back/rb

 xcomp holding/v

 dobj rabbit/n

 det the/d

 prep by/prep

 pobj ears/n

 det the/d

The corresponding logical form is:

entity(id1, peasant), entity(id2, rabbit), entity(id3, ears),

by(e1, id3), event(e1, holding, id1, id2), event(e2, came,

id1).

From this logical form, it is clear for example that there is

a direct link between the event “holding” and the entity

“peasant”, which will be used in the disambiguation of the

event. However, the syntactic context does not contain

such a direct link.

Finally, another important measure for WSD is the

similarity metric. The metric used in this work is the

number of overlapping terms between the context of the

word and the context of the word senses.

3.3. WSD Algorithms
Knowledge-based algorithms were implemented and

were used to test various combinations between the

algorithms and the contexts described above (word-based,

sentence-based and graph-based). These algorithms are

mainly similarity-based algorithms and include the

Simplified Lesk algorithm (Kilgarrif and Rosenzweig,

2000) which rely on word sense glosses and Banerjee and

Pedersen algorithm (Banerjee and Pedersen, 2003)

which takes into account the sense gloss, its related words

as well as all its direct lexical and semantic relationships

(hypernyms, hyponyms, etc.). We also implemented the

most frequent sense algorithm as a baseline. These

algorithms always back-off to the most frequent sense in

case they fail to disambiguate the word. We also

developed another type of algorithm (minimally

supervised) relying on co-occurrence frequency vectors

extracted from an annotated corpus (SEMCOR and

Senseval English lexical training data) hereafter

designated as Frequency of co-occurrences vectors.

These vectors contain the most frequent co-occurring

words for a given term and help to determine the number

of overlapping terms between these co-occurring terms

and the context of the term to disambiguate. We also

enriched the context definition of Banerjee and Pedersen

with these co-occurrence frequencies (the algorithm is

designated as Banerjee/Pedersen + Frequency of

co-occurrences), thus extending the vector space and

increasing the chance of finding overlaps between the

context of the word and the instance to be disambiguated.

4. Experiments

The experiments were conducted on a small corpus

composed of children stories such as Alice in Wonderland

comprising 185 sentences. This corpus (Corpus 1),

composed of Text A, Text B and Text C, was manually

annotated in order to build a gold standard. Corpus 1 was

characterized by simple to complex syntactic grammatical

constructs ranging from a simple “Birds are flying” to a

complex sentence such as “Alice had read several nice

little histories about children who had got eaten up by

wild beasts and other unpleasant things, all because they

WOULD not remember the simple rules their friends had

taught them: such as, that a red-hot poker will burn you if

you hold it too long.”.

4.1. Various WSD Algorithms and Contexts

The results of the experiments on corpus 1 are presented

in the various following tables. Table 1, 2 and 3 show the

best results among all WSD algorithms and contexts.

Table 2 and Table 3 list the algorithms and contexts used

to obtain the results in Table 1, respectively. Since the

disambiguation in Corpus 1 was performed on entities and

events, the results are displayed in terms of precision and

recall over these elements. The first column displays the

precision of entity disambiguation, column 2 the recall of

the entity disambiguation, and so on.

Precision and recall are calculated based on the following

formulas:

Precision = items the system got correct / total number of

items the system generated

Recall = items the system got correct / total number of

relevant items (which the system should have produced)

% Entity
Precision

Entity
Recall

Event
Precision

Event
Recall

Text A 91.96 67.32 86.36 68.67
Text B 93.83 93.83 87.30 87.30
Text C 77.99 64.68 57 50

3232

Mean 87.93 75.28 76.89 68.66

Table 1. Best results obtained during WSD by taking all

algorithms and contexts into account

Algorithms Entity Event

Text A Banerjee/Pedersen +
Frequency of

co-occurrences

Frequency of
co-occurrences

Text B Banerjee and Pedersen Simplified
Lesk

Text C Frequency of
co-occurrences or

Banerjee and Pedersen

Frequency of
co-occurrences

Table 2. Algorithms used to obtain the results in Table 1.

Algorithms Entity Event

Text A Previous Sentences
Context

Global syntactic
Graph Context

Text B Previous Sentences
Context

Local logical
Graph Context

Text C Word window 6 or
Previous Sentences

Context

Previous
Sentences
Context

Table 3. Contexts used to obtain the results in Table 1.

Overall, we can observe that the various WSD algorithms
perform better (about 2-3% better) than the most frequent
sense (Table 4) on these three texts.

% Entity
Precision

Entity
Recall

Event
Precision

Event
Recall

Text A 89.28 65.36 86.36 68.67

Text B 91.36 91.36 84.13 84.13

Text C 76.08 63.09 49 42.98

Mean 85.57 73.27 73.16 65.26

Table 4. Most frequent sense results.

Regarding entities, we can observe, in Table 2, that Text B
is better disambiguated using unsupervised WSD
(Banerjee and Pedersen, 2003) while C obtains the same
results either with the unsupervised WSD (Banerjee and
Pedersen, 2003) or with the frequency of co-occurrences
built based on SEMCOR. The other disambiguation tasks,
especially for events, are better handled by taking into
account frequencies of co-occurrences (2 cases) and
Simplified Lesk (1 case).
It is obvious that the WSD approach has an impact on the
results but context definition is also a major aspect. Table
5 presents the best results of our experiments using the
syntactic and logical contexts with various WSD
algorithms, and Table 6 and 7 show the contexts and the
algorithms that enabled these results.

%
Entity
Precision

Entity
Recall

Event
Precision

Event
Recall

Text A 91.07 66.67 86.36 68.67

Text B 93.17 92.59 87.30 87.30

Text C 76.55 63.49 52.43 47.37

Mean 86.93 74.25 75.36 67.78

Table 5. Best results obtained during WSD (various

algorithms) with logical and syntactic graph contexts.

Context Entity Event

Text A Global logical graph
context

Global syntactic
graph context

Text B Global syntactic
graph context

Local Logical
graph context

Text C Global logical graph
context

Global syntactic
graph context

Table 6. Contexts used to obtain the results in Table 5.

Algorithm Entity Event

Text A Banerjee and
Pedersen +

Frequency of
co-occurrences

Frequency of
co-occurrences

Text B Banerjee and
Pedersen

Simplified
Lesk

Text C Banerjee and
Pedersen +

Frequency of
co-occurrences

Frequency of
co-occurrences

Table 7. Algorithms used to obtain the results in Table 5

Two remarks can be made based on the results in tables 5,

6 and 7. First, the overall performance of the WSD is not

very far from the performance of the best results

presented in Table 1. This may indicate that using

syntactic and logical graph contexts may be of interest to

WSD. Global contexts (5 cases out of 6) seem to perform

better than local ones (1 case out of 6), at least when

coupled with the frequency of co-occurrences algorithm.

Syntactic contexts (3 cases out of 6) appear the same

number of times as logical ones. It is then difficult to draw

a sound conclusion based solely on these experiments.

4.2. Experiments with Banerjee and Pedersen

Algorithm

In order to provide better evidence on the interest of

syntactic and logical graph contexts for WSD, we decided

to run (Banerjee and Pedersen, 2003) algorithm on

Corpus 1 and to identify the contexts used to obtain the

best disambiguated results. Table 7 and 8 show these

experiments.

3233

% Entity
Precision

Entity
Recall

Event
Precision

Event
Recall

Text A 90.18 66.01 86.36 68.67

Text B 93.83 93.83 79.36 79.36

Text C 77.99 64.68 44 38.6

Mean 87.33 74.84 69.91 62.21

Table 7. Best results obtained using (Banerjee and

Pedersen, 2003)

% Entity Precision Event Precision

Text A Local Logical
Graph Context

Local Logical
Graph Context

Text B Previous Sentence
Context

Word Window
6

Text C Previous Sentence
Context

Local Logical
Graph Context

Table 8. Contexts used to obtain the results in Table 7.

As can be seen in Table 7, the results of the Banerjee and

Pedersen algorithm on event disambiguation are much

lower than the ones obtained in Table 1. In Table 8, we can

notice that global graph and syntactic graph contexts have

disappeared and that local graph contexts appear 3 times

out of six.

A third experiment was to run (Banerjee and Pedersen,

2003) using only local logical graphs and local syntactic

graphs and to compare the results with the best

performance displayed in Table 7. The objective was to

provide a comparison between syntactic and logical

graphs as well as between graph-based contexts and more

traditional contexts. The following tables (Table 9, 10 and

11) provide these results.

% Entity
Precision

Entity
Recall

Event
Precision

Event
Recall

Text A 90.17 66.01 81.82 65.06

Text B 92.59 92.59 77.78 77.78

Text C 75.6 62.7 44 38.6

Mean 86.12 73.77 67.87 60.48

Table 9. Best results obtained using local logical graph

contexts and (Banerjee and Perdersen, 2003) algorithm

% Entity
Precision

Entity
Recall

Event
Precision

Event
Recall

Text A 87.5 64.05 74.24 59.03

Text B 87.04 87.04 76.19 76.19

Text C 75.6 62.7 44 38.6

Mean 83.38 71.26 64.81 57.94

Table 10. Best results obtained using local syntactic graph

contexts and (Banerjee and Perdersen, 2003) algorithm

As shown in Tables 9 and 10, with (Banerjee and

Pedersen, 2003) algorithm, entities and events are best

disambiguated using local logical graphs. Other contexts

(a 6 word window, current sentence and global syntactic

and logical contexts) do not perform as well as local

logical context (Table 11) except for the global syntactic

graph which outperforms slightly the local logical context

for entities.

% Entity
Precision

Entity
Recall

Event
Precision

Event
Recall

SCW0 84.73 72.69 63.87 57.24

WW6 83.83 72.04 67.06 59.84

Global
Logical
Graph

84.41 72.4 58.77 52.97

Global
Syntactic
Graph

86.51 74.15 59.04 53.08

Table 11. Mean results obtained using various contexts

and (Banerjee and Perdersen, 2003) algorithm.

Although we made a number of experiments taking into

account various algorithms and contexts, in reality, only

one algorithm and context must be chosen. It is then

important to synthesize the results of these experiments.

In general, based on a comparison with contexts

containing all previous sentences, 0 to 6 sentences and 0

to 6 words around the word to disambiguate, and by

taking into account all the WSD algorithms, it is possible

to make the following comments:

• Using global graphs does not improve the results of

event WSD with (Banerjee and Pedersen, 2003)

algorithm;

• Global syntactic graphs give the best result for

entities, close to the best possible results using

(Banerjee and Pedersen, 2003) and outperform only

slightly the local logical graphs. In general, these

local logical graphs comprise attribute labels and

related event labels;

• Local logical graphs seem to be the best combination

for event disambiguation using (Banerjee and

Pedersen, 2003) (Table 9). This may indicate that

using just direct logical relationships may be enough

to disambiguate a particular event, and that using

more words in context may not be required for event

disambiguation. Disambiguation results using a 6

word window come just after the local logical graphs,

outperforming syntactic contexts.

Despite the small size of the corpus, graph-based contexts

seem to be a possible way to obtain interesting results.

This is at least the case with local logical graph and global

syntactic graph contexts coupled with (Banerjee and

Pedersen, 2003) for the disambiguation of entities and

local logical graphs for the disambiguation of events.

We believe that these results may be further improved

3234

given that our logical analyzer in its current development

state may not cover enough English syntactic patterns to

be competitive with the syntactic graphs, which are

produced by a state-of-the-art dependency parser (De

Marneffe et al., 2006). Based on this hypothesis, our

assumption is that a more complete logical analyzer

should exceed even better the results of a syntactic graph.

We run another experiment on the Senseval English

Lexical Sample Data (Mihalcea et al., 2004) and we

adapted our algorithms to tackle nouns, verbs and

adjectives as this is required in Senseval. Senseval

provides a set of texts with particular words to be

disambiguated. In the following paragraph, the word

tagged “head” should be disambiguated. You can notice,

various problems in the punctuation as well as in some

non-connected sentences (Sealing...).

<instance id="activate.v.bnc.00061340" docsrc="BNC">

<context>

So , to provide ample warning , fit smoke alarms . Ideally , site

one in the hall and another on the landing . Avoid fitting one in

the kitchen , as fumes from cooking are often enough to

<head>activate</head> the alarm . The one illustrated is by

First Alert : like most types it can be simply screwed into a

ceiling . SEALING GLAZING BARS

</context>

</instance>

We ran a number of tests using the WSD algorithms and

the traditional contexts described above (sentence

windows, word windows, and all previous sentences).

The best results (64.1% (fine-grained) and 69%

(coarse-grained)) were obtained using Banerjee and

Perdersen algorithm coupled with the frequencies of

co-occurrence (extracted from Senseval Training Data).

The best context with this WSD algorithm used a

2-sentence window and a cosine similarity to measure the

similarity between the context vector and each word sense

vector. We also run experiments using various WSD

algorithms and the local graph contexts (syntactic and

logical). Global contexts were not applicable to Senseval

data as the disambiguation task was targeted to various

unrelated paragraphs and not entire texts. Unfortunately,

using graph-based contexts worsened the results of the

best performing algorithm Banerjee and Pedersen coupled

with frequencies of co-occurrences (Best value = 64.1 %,

Local syntactic graph = 43.2% and local logical graph=

48%). However, the results were improved for the

algorithm (Banerjee and Pedersen, 2003) alone (Table

12).

 2-senten

ce

window

Local

syntactic

graph

Local

logical

graph

Fine-grained

results

46.5 % 52.4% 50.2%

Coarse-grained

results

54.9% 58.5% 57.4%

Table 12. Results obtained using (Banerjee and Pedersen,
2003) on Senseval Data

Local syntactic graphs perform better than logical graphs

in Table 12. However, when we run other experiments

using Frequency of co-occurrences, local logical graphs

gave superior performance in comparison with other

contexts (Sentence context window, syntactic graphs).

We noted two issues in the Senseval experiment. On one

side, the syntactic parsing was very noisy, due to improper

punctuation (see the example above) and syntactic errors

in the dependency parsing. The syntactic links between

the words had many erroneous or high-level

underspecified dependencies. On the other side, we

obtained very incomplete logical representations using

our logical analyzer on this set of data. As previously said,

this might indicate that the analyzer may not cover

enough syntactic structures, but we also noticed that noisy

syntactic relationships had a big impact over our analyzer,

which looks for specific well-defined syntactic structures.

Despite these two issues, local syntactic and logical

graphs contexts raised the performance of some WSD

algorithms. Improving the syntactic and logical analysis

might have an impact over the accuracy of WSD.

This also raises the question of the kind of corpora that

should be made available to the research community

which is committed to full parsing for WSD. Obtaining

better quality texts is probably one of the requirements of

such approaches. Further work will tackle the

enhancement of the logical analyzer, but also the manual

definition of logical contexts in order to avoid any impact

of bad syntactic and logical analyses on the WSD and to

test our logical contexts on clean and non-noisy data.

5. Conclusion

This work presented a WSD approach based on syntactic

dependencies and predicative logical representations. One

interest of these logical representations is their natural

identification of the role arguments. This paper presented

an experiment on a small corpus and on Senseval data that

shows that interesting preliminary results might be

obtained using dependency and logical features. Based on

these preliminary results and based on previous research

works (Tanaka et al., 2007), our assumption is that logical

contexts should help WSD, at least with some particular

algorithms such as the ones presented in the experiments.

We also believe that a semantic analysis involving

anaphora and co-reference resolution might also help

WSD, by providing links to previous information in the

context definition. Further work should provide a more

thorough evaluation of WSD using syntactic and logical

features. The impact of the accuracy of logical form

extraction on WSD should also be measured.

6. Acknowledgements

The authors would like to thank Prompt Quebec and

3235

UnimaSoft Inc. for their financial support.

7. References

Banerjee, S. and Pedersen, T.: Extended gloss overlaps as

a measure of semantic relatedness. In Proc. of the

Eighteenth International Joint Conference on Artificial

Intelligence, Acapulco, Mexico, pp. 805-810 (2003)

De Marneffe, M-C, MacCartney, B. and Manning. C.D.:

Generating Typed Dependency Parses from Phrase

Structure Parses. In Proc. of LREC, pp. 449-454 (2006)

Fellbaum, C.: WordNet: An Electronic Lexical Database.

MIT Press (1998)

Ide, N. and Véronis, J.: Introduction to the special issue on

word sense disambiguation: the state of the art. Comput.

Linguist. 24(1) :2-40 (1998).

Kilgarriff, A. and Rosenzweig, R.: Framework and results

for English SENSEVAL. Computers and the

Humanities 34:15–48, (2000).

Merlo, P. and Musillo, G. : Semantic parsing for

high-precision semantic role labelling. In Proceedings

of the Twelfth Conference on Computational Natural

Language Learning, pp. 1-8, ACL. (2008).

Mihalcea, R., Chklovski, T. And Kilgarriff, A.: The

Senseval-3 English Lexical Sample Task Export, in

Proc. of Senseval-3, pp. 25--28, Spain, (2004).

Tanaka, T., Bond, F., Baldwin, T., Fujita, S. and

Hashimoto, C. : Word Sense Disambiguation

Incorporating Lexical and Structural Semantic

Information. Proceedings of the 2007 Joint Conference

on Empirical Methods in Natural Language Processing

and Computational Natural Language Learning

(EMNLP-CoNLL), pp. 477-485, ACL (2007).

Zouaq, A., Gagnon, M. and Ozell, B. (2010): Semantic

Analysis using Dependency-based Grammars and

Upper-Level Ontologies, In Proceedings of the 11th

International Conference on Intelligent Text Processing

and Computational Linguistics, (2010) (To appear).

Zouaq, A.: Une approche d’ingénierie ontologique

pour l’acquisition et l’exploitation des connaissances

à partir de documents textuels, Ph.D. Dissertation,

University of Montreal (2008).

3236

