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Abstract 

This paper presents a word sense disambiguation (WSD) approach based on syntactic and logical representations. The objective here is 
to run a number of experiments to compare standard contexts (word windows, sentence windows) with contexts provided by a 
dependency parser (syntactic context) and a logical analyzer (logico-semantic context). The approach presented here relies on a 
dependency grammar for the syntactic representations. We also use a pattern knowledge base over the syntactic dependencies to extract 
flat predicative logical representations. These representations (syntactic and logical) are then used to build context vectors that are 
exploited in the WSD process. Various state-of-the-art algorithms including Simplified Lesk, Banerjee and Pedersen and frequency of 
co-occurrences are tested with these syntactic and logical contexts. Preliminary results show that defining context vectors based on 
these features may improve WSD by comparison with classical word and sentence context windows. However, future experiments are 
needed to provide more evidence over these issues. 

 

1. Introduction 

The task of word sense disambiguation (WSD) can be 

regarded as one of the most important tasks for natural 

language processing applications including semantic 

interpretation of texts, semantic web applications, 

paraphrasing and summarization.  One issue of current 

word sense disambiguation methods is that the most 

successful techniques are supervised, which means that 

annotated corpora should be available to train the systems. 

However, this kind of data is heavy to produce and cannot 

be created for each new domain to be disambiguated. This 

indicates that more efforts should be put on unsupervised 

word sense disambiguation techniques. Furthermore, one 

vital issue that should generally be solved for this kind of 

systems is the choice of an adequate context. Usually, this 

context is defined as a window of words or sentences 

around the word to be disambiguated.  The question raised 

by this paper is whether defining this context using 

syntactic and logical features can be beneficial to WSD.  

This paper briefly presents a natural language processing 

pipeline that outputs logical representations from texts 

and disambiguates the logical representations using 

various WSD algorithms. The paper also presents 

different context definitions that are used for WSD. 

Preliminary results show that logical and syntactic 

features can be of interest to WSD. The main contribution 

of this paper is the use of syntactic and semantic 

information for WSD in an unsupervised manner. 

The paper is organized as follows: First, section 2 

explains the pipeline that creates logical representations 

and presents the various WSD algorithms and the contexts 

used in this study. Section 3 presents experiments that are 

conducted over a small corpus and shows preliminary 

results. It also describes the results of our system on the 

Senseval English lexical Sample Task before drawing a 

conclusion.  

2. State of the Art 

There have been previous works in the WSD and 

Semantic Role Labeling (SRL) communities (Tanaka et 

al., 2007) (Merlo and Musillo, 2008) that try to 

incorporate syntactic and lexical information for WSD 

and SRL. For e.g. (Tanaka et al., 2007) show that 

exploiting rich semantic information improves the 

precision of the results by 2- 3%. Their approach uses a 

machine learning algorithm which is trained over a 

TreeBank, and an HPSG lexicon which describes 

syntactic and semantic features for each lexeme.  Such a 

supervised approach may provide interesting results, but 

it requires resources that are costly to acquire. Our aim is 

to define contexts based on syntactic and logical features, 

but without necessarily resorting to a supervised WSD or 

to linguistic resources. 

3. Prototype Implementation 

The system is built using a modular design and is intended 

to be as generic and reusable as possible. It is composed 

of a syntactic analyzer, the dependency module of the 

Stanford Parser (De Marneffe et al., 2006), a logical 

analyzer based on dependency grammars and finally a 

WSD module.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The prototype pipeline 
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and based on the work of (Zouaq, 2008), we developed a 

Prolog logical analyzer that searches specific patterns in 

the grammatical structure and that transforms them into a 

flat predicative logical representation. This representation 

relies on general and universal categories that are found in 

all the semantic role labelling systems: event, statement, 

entity, named_entity, attribute, time, measure, 

circumstance, etc. With these categories, it is easy to 

express various information contexts and to remain 

independent from a particular domain. An example of a 

logical representation based on these categories is shown 

below (figure 2). The figure also shows a simple pattern: 

nsubj(Verb, Subject). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. A dependency syntactic representation and the 

resulting logical representation 

Although it is possible to create logical representations 

using only lexical items, we believe that these universal 

categories can help WSD and represent a step towards the 

sentence semantics. Starting from these logical 

expressions (Figure 2), the system should then be able to 

create a semantic representation using a specific set of 

roles (for WSD). Since we propose a modular framework, 

independent from a particular role terminology, we chose 

the well-known lexical dictionary WordNet (Fellbaum, 

1998). However, all the resources used here are 

interchangeable and it is possible to use ontologies instead 

of WordNet for example (Zouaq et al., 2010). Moreover, it 

is also possible to use another dependency parser with 

minimal changes in the logical analyzer. 

3.1. Logic-based Word Sense Disambiguation 

Using the kind of pipeline proposed in figure 1, we can 

define the task of WSD as a three-phase process, requiring 

the syntactic parsing, the identification of the sentence 

logical structure (predicates, arguments) and finally the 

categorization of the obtained structure, which represents 

the actual WSD of the sentence constituents.  

An example of a WordNet-based disambiguation for the 

logical representation presented above is shown below.  

outside(e1, id3), of(id3, id4), entity(id4, WN: 

city%1:15:00::), resolve(id4), entity(id3, WN: 

wall%1:06:01::), resolve(id3), in(e1, id2), entity(id2, WN: 

wind%1:04:01::), resolve(id2), event(e1, WN: 

flap%2:38:00::, id1), entity(id1, WN: banner%1:06:00::). 

This represents the core of the paper. How can we obtain 

the most reliable logical representations using WSD? 

 

3.2. Context Definitions 
At this point, context definition represents an essential 

step for effective results. Basically, a number of 

similarity-based methods use word windows and sentence 

windows (Ide and Veronis, 1998) to provide a vector 

space that defines the context of a word to be 

disambiguated. Here, we propose the use of the syntactic 

and the logical representations in order to define the 

context vector of the word (called syntactic context in the 

former and logical-semantic context in the latter) and we 

judge the performance of various WSD using these 

contexts by comparison with traditional window-based 

context and sentence-based contexts. The following 

“traditional” contexts were used:   

• All previous sentences: starting from the current 

sentence, all the previous sentences are taken into 

account to build the context vector.  

• 0 to 6 sentences: the context may be composed from 

0 to 6 sentences around the sentence containing the 

word to disambiguate. 0 sentence means that you take 

into account only the current sentence. 1 sentence 

context means that you take the previous and the next 

sentence around the sentence to disambiguate, and so 

on. 

• 0 to 6 words around the word to disambiguate means 

that you take only the current word (context with 0 

word), 1 word before and 1 word after the word to 

disambiguate (context with 1 word), and so on. 

We also defined graph-based contexts, which can be 

divided into local contexts and global contexts. A local 

context comprises only the direct relationships of the 

ambiguous word with the other words in the current 

sentence whereas a global context is built incrementally 

from all the previously defined contexts and updated with 

the disambiguated entities and events labels. Graph-based 

contexts are built using the results of dependency parsing 

as well as logical representations: 

• A local syntactic graph context around a given 

word to disambiguate (here an entity or an event) is 

composed of all the direct dependency relationships 

from or to the word. A syntactic context for the word 

“flap” in the previous example is composed of the 

following words: [banner, in, outside] (see figure 2).  

• A local logical-semantic graph context of an entity 

or an event is also composed of the elements which 

are in direct predicative relationships with the word 

to disambiguate. For instance, a logical-semantic 

context for the word flap is defined as follows: 

[banner, wind, walls] (we can see in Figure 2 that 

they denote entities that are related to the same event 

e1).  

A global context for a sentence i contains all the previous 
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contexts from sentence 1 to i. As soon as some entity or 

event is disambiguated, its sense is added to the context. 

For instance, given the current sentences: 

Banners flap in the wind outside the walls of the city. 

The gates seem getting closer. 

The first global syntactic context for the word “gates” in 

the second sentence will contain all the words of the 

current sentence together with all the words of the 

previous sentence and the disambiguated entities and 

events: 

[Banners, flap, in, the, wind, outside, the, walls, of, the, 

city, streamer, gates, seem, getting, closer]. 

Note that the disambiguated entities are in bold, and that 

the entities whose label is the same as the original word 

are not repeated. For example, wind is tagged with the 

sense Wind but is not repeated in the context vector. 

The global logical graph for the word “gates” will contain 

only the identified entities and events plus the 

disambiguated entities and events: [banners, flap, wind, 

walls, city, streamer, gates, seem, getting, closer].  

Below is an example that shows clearly the differences 

between syntactic and logical graphs. Given the sentence: 

“The peasant came, holding the rabbit by the ears”, the 

following syntactic parse is generated: 

root came/v 

  nsubj peasant/n 

    det the/d 

  advmod back/rb 

  xcomp holding/v 

    dobj rabbit/n 

      det the/d 

    prep by/prep 

      pobj ears/n 

        det the/d 

The corresponding logical form is:  

entity(id1, peasant), entity(id2, rabbit),  entity(id3, ears), 

by(e1, id3),  event(e1, holding, id1, id2), event(e2, came, 

id1). 

From this logical form, it is clear for example that there is 

a direct link between the event “holding” and the entity 

“peasant”, which will be used in the disambiguation of the 

event. However, the syntactic context does not contain 

such a direct link. 

Finally, another important measure for WSD is the 

similarity metric. The metric used in this work is the 

number of overlapping terms between the context of the 

word and the context of the word senses. 

 

3.3. WSD Algorithms 
Knowledge-based algorithms were implemented and 

were used to test various combinations between the 

algorithms and the contexts described above (word-based, 

sentence-based and graph-based). These algorithms are 

mainly similarity-based algorithms and include the 

Simplified Lesk algorithm (Kilgarrif and Rosenzweig, 

2000) which rely on word sense glosses and Banerjee and 

Pedersen algorithm (Banerjee and Pedersen, 2003) 

which takes into account the sense gloss, its related words 

as well as all its direct lexical and semantic relationships 

(hypernyms, hyponyms, etc.). We also implemented the 

most frequent sense algorithm as a baseline. These 

algorithms always back-off to the most frequent sense in 

case they fail to disambiguate the word. We also 

developed another type of algorithm (minimally 

supervised) relying on co-occurrence frequency vectors 

extracted from an annotated corpus (SEMCOR and 

Senseval English lexical training data) hereafter 

designated as Frequency of co-occurrences vectors. 

These vectors contain the most frequent co-occurring 

words for a given term and help to determine the number 

of overlapping terms between these co-occurring terms 

and the context of the term to disambiguate. We also 

enriched the context definition of Banerjee and Pedersen 

with these co-occurrence frequencies (the algorithm is 

designated as Banerjee/Pedersen + Frequency of 

co-occurrences), thus extending the vector space and 

increasing the chance of finding overlaps between the 

context of the word and the instance to be disambiguated. 

4. Experiments 

The experiments were conducted on a small corpus 

composed of children stories such as Alice in Wonderland 

comprising 185 sentences. This corpus (Corpus 1), 

composed of Text A, Text B and Text C, was manually 

annotated in order to build a gold standard. Corpus 1 was 

characterized by simple to complex syntactic grammatical 

constructs ranging from a simple “Birds are flying” to a 

complex sentence such as “Alice had read several nice 

little histories about children who had got eaten up by 

wild beasts and other unpleasant things, all because they 

WOULD not remember the simple rules their friends had 

taught them: such as, that a red-hot poker will burn you if 

you hold it too long.”. 

4.1. Various WSD Algorithms and Contexts 

The results of the experiments on corpus 1 are presented 

in the various following tables. Table 1, 2 and 3 show the 

best results among all WSD algorithms and contexts. 

Table 2 and Table 3 list the algorithms and contexts used 

to obtain the results in Table 1, respectively. Since the 

disambiguation in Corpus 1 was performed on entities and 

events, the results are displayed in terms of precision and 

recall over these elements. The first column displays the 

precision of entity disambiguation, column 2 the recall of 

the entity disambiguation, and so on.  

Precision and recall are calculated based on the following 

formulas: 

Precision = items the system got correct / total number of 

items the system generated 

Recall = items the system got correct / total number of 

relevant items (which the system should have produced) 

 

% Entity 
Precision 

Entity 
Recall  

Event 
Precision  

Event 
Recall 

Text A 91.96 67.32 86.36 68.67 
Text B 93.83 93.83 87.30 87.30 
Text C 77.99 64.68 57 50 
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Mean 87.93 75.28 76.89 68.66 

Table 1. Best results obtained during WSD by taking all 

algorithms and contexts into account 

 

Algorithms Entity Event 

Text A Banerjee/Pedersen + 
Frequency of 

co-occurrences 

Frequency of 
co-occurrences 

Text B Banerjee and Pedersen Simplified 
Lesk  

Text C Frequency of 
co-occurrences or 

Banerjee and Pedersen 

Frequency of 
co-occurrences  

Table 2. Algorithms used to obtain the results in Table 1. 

Algorithms Entity Event 

Text A Previous Sentences 
Context 

Global syntactic 
Graph Context 

Text B Previous Sentences 
Context 

Local logical 
Graph Context 

Text C Word window 6 or 
Previous Sentences 

Context 

Previous 
Sentences 
Context 

Table 3. Contexts used to obtain the results in Table 1. 

Overall, we can observe that the various WSD algorithms 
perform better (about 2-3% better) than the most frequent 
sense (Table 4) on these three texts.  

 

% Entity 
Precision 

Entity 
Recall  

Event 
Precision  

Event 
Recall 

Text A 89.28 65.36 86.36 68.67 

Text B 91.36 91.36 84.13 84.13 

Text C 76.08 63.09 49 42.98 

Mean 85.57 73.27 73.16 65.26 

Table 4. Most frequent sense results. 

Regarding entities, we can observe, in Table 2, that Text B 
is better disambiguated using unsupervised WSD 
(Banerjee and Pedersen, 2003) while C obtains the same 
results either with the unsupervised WSD (Banerjee and 
Pedersen, 2003) or with the frequency of co-occurrences 
built based on SEMCOR. The other disambiguation tasks, 
especially for events, are better handled by taking into 
account frequencies of co-occurrences (2 cases) and 
Simplified Lesk (1 case).  
It is obvious that the WSD approach has an impact on the 
results but context definition is also a major aspect. Table 
5 presents the best results of our experiments using the 
syntactic and logical contexts with various WSD 
algorithms, and Table 6 and 7 show the contexts and the 
algorithms that enabled these results. 
 
 

% 
Entity 
Precision 

Entity 
Recall  

Event 
Precision  

Event 
Recall 

Text A 91.07 66.67 86.36 68.67 

Text B 93.17 92.59 87.30 87.30 

Text C 76.55 63.49 52.43 47.37 

Mean 86.93 74.25 75.36 67.78 

Table 5. Best results obtained during WSD (various 

algorithms) with logical and syntactic graph contexts. 

 

Context Entity Event 

Text A Global logical graph 
context 

Global syntactic 
graph context 

Text B Global syntactic 
graph context 

Local Logical 
graph context 

Text C Global logical graph 
context 

Global syntactic 
graph context 

Table 6. Contexts used to obtain the results in Table 5. 

 

Algorithm Entity Event 

Text A Banerjee and 
Pedersen + 

Frequency of 
co-occurrences 

Frequency of 
co-occurrences 

Text B Banerjee and 
Pedersen 

Simplified 
Lesk 

Text C Banerjee and 
Pedersen + 

Frequency of 
co-occurrences 

Frequency of 
co-occurrences 

Table 7. Algorithms used to obtain the results in Table 5 

 

Two remarks can be made based on the results in tables 5, 

6 and 7. First, the overall performance of the WSD is not 

very far from the performance of the best results 

presented in Table 1. This may indicate that using 

syntactic and logical graph contexts may be of interest to 

WSD. Global contexts (5 cases out of 6) seem to perform 

better than local ones (1 case out of 6), at least when 

coupled with the frequency of co-occurrences algorithm. 

Syntactic contexts (3 cases out of 6) appear the same 

number of times as logical ones. It is then difficult to draw 

a sound conclusion based solely on these experiments.  

4.2. Experiments with Banerjee and Pedersen 

Algorithm 

In order to provide better evidence on the interest of 

syntactic and logical graph contexts for WSD, we decided 

to run (Banerjee and Pedersen, 2003) algorithm on 

Corpus 1 and to identify the contexts used to obtain the 

best disambiguated results. Table 7 and 8 show these 

experiments.  

 

3233



% Entity 
Precision 

Entity 
Recall  

Event 
Precision  

Event 
Recall 

Text A 90.18 66.01 86.36 68.67 

Text B 93.83 93.83 79.36 79.36 

Text C 77.99 64.68 44 38.6 

Mean 87.33 74.84 69.91 62.21 

Table 7. Best results obtained using (Banerjee and 

Pedersen, 2003) 

 

% Entity Precision Event Precision  

Text A Local Logical 
Graph Context 

Local Logical 
Graph Context 

Text B Previous Sentence 
Context 

Word Window 
6 

Text C Previous Sentence 
Context 

Local Logical 
Graph Context 

Table 8. Contexts used to obtain the results in Table 7. 

 

As can be seen in Table 7, the results of the Banerjee and 

Pedersen algorithm on event disambiguation are much 

lower than the ones obtained in Table 1. In Table 8, we can 

notice that global graph and syntactic graph contexts have 

disappeared and that local graph contexts appear 3 times 

out of six. 

A third experiment was to run (Banerjee and Pedersen, 

2003) using only local logical graphs and local syntactic 

graphs and to compare the results with the best 

performance displayed in Table 7.  The objective was to 

provide a comparison between syntactic and logical 

graphs as well as between graph-based contexts and more 

traditional contexts. The following tables (Table 9, 10 and 

11) provide these results. 

 

% Entity 
Precision 

Entity 
Recall  

Event 
Precision  

Event 
Recall 

Text A    90.17 66.01 81.82 65.06 

Text B 92.59 92.59 77.78 77.78 

Text C 75.6 62.7 44 38.6 

Mean 86.12 73.77 67.87 60.48 

Table 9. Best results obtained using local logical graph 

contexts and (Banerjee and Perdersen, 2003) algorithm 

 

% Entity 
Precision 

Entity 
Recall  

Event 
Precision  

Event 
Recall 

Text A 87.5 64.05 74.24 59.03 

Text B 87.04 87.04 76.19 76.19 

Text C 75.6 62.7 44 38.6 

Mean 83.38 71.26 64.81 57.94 

Table 10. Best results obtained using local syntactic graph 

contexts and (Banerjee and Perdersen, 2003) algorithm 

As shown in Tables 9 and 10, with (Banerjee and 

Pedersen, 2003) algorithm, entities and events are best 

disambiguated using local logical graphs. Other contexts 

(a 6 word window, current sentence and global syntactic 

and logical contexts) do not perform as well as local 

logical context (Table 11) except for the global syntactic 

graph which outperforms slightly the local logical context 

for entities. 

 

% Entity 
Precision 

Entity 
Recall  

Event 
Precision  

Event 
Recall 

SCW0 84.73 72.69 63.87 57.24 

WW6 83.83 72.04 67.06 59.84 

Global 
Logical 
Graph 

84.41 72.4 58.77 52.97 

Global 
Syntactic 
Graph 

86.51 74.15 59.04 53.08 

Table 11. Mean results obtained using various contexts 

and (Banerjee and Perdersen, 2003) algorithm. 

 

Although we made a number of experiments taking into 

account various algorithms and contexts, in reality, only 

one algorithm and context must be chosen. It is then 

important to synthesize the results of these experiments. 

In general, based on a comparison with contexts 

containing all previous sentences, 0 to 6 sentences and 0 

to 6 words around the word to disambiguate, and by 

taking into account all the WSD algorithms, it is possible 

to make the following comments: 

• Using global graphs does not improve the results of 

event WSD with (Banerjee and Pedersen, 2003) 

algorithm; 

• Global syntactic graphs give the best result for 

entities, close to the best possible results using 

(Banerjee and Pedersen, 2003) and outperform only 

slightly the local logical graphs. In general, these 

local logical graphs comprise attribute labels and 

related event labels; 

• Local logical graphs seem to be the best combination 

for event disambiguation using (Banerjee and 

Pedersen, 2003) (Table 9). This may indicate that 

using just direct logical relationships may be enough 

to disambiguate a particular event, and that using 

more words in context may not be required for event 

disambiguation. Disambiguation results using a 6 

word window come just after the local logical graphs, 

outperforming syntactic contexts. 

 

Despite the small size of the corpus, graph-based contexts 

seem to be a possible way to obtain interesting results. 

This is at least the case with local logical graph and global 

syntactic graph contexts coupled with (Banerjee and 

Pedersen, 2003) for the disambiguation of entities and 

local logical graphs for the disambiguation of events.  

We believe that these results may be further improved 
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given that our logical analyzer in its current development 

state may not cover enough English syntactic patterns to 

be competitive with the syntactic graphs, which are 

produced by a state-of-the-art dependency parser (De 

Marneffe et al., 2006). Based on this hypothesis, our 

assumption is that a more complete logical analyzer 

should exceed even better the results of a syntactic graph.  

 

We run another experiment on the Senseval English 

Lexical Sample Data (Mihalcea et al., 2004) and we 

adapted our algorithms to tackle nouns, verbs and 

adjectives as this is required in Senseval. Senseval 

provides a set of texts with particular words to be 

disambiguated. In the following paragraph, the word 

tagged “head” should be disambiguated. You can notice, 

various problems in the punctuation as well as in some 

non-connected sentences (Sealing...). 

 

<instance id="activate.v.bnc.00061340" docsrc="BNC"> 

<context> 

So ,  to provide ample warning ,  fit smoke alarms .  Ideally ,  site 

one in the hall and another on the landing .  Avoid fitting one in 

the kitchen , as fumes from cooking are often enough to 

<head>activate</head> the alarm . The one illustrated is by 

First Alert :  like most types it can be simply screwed into a 

ceiling .  SEALING GLAZING BARS  

</context> 

</instance> 

 

We ran a number of tests using the WSD algorithms and 

the traditional contexts described above (sentence 

windows, word windows, and all previous sentences). 

The best results (64.1% (fine-grained) and 69% 

(coarse-grained)) were obtained using Banerjee and 

Perdersen algorithm coupled with the frequencies of 

co-occurrence (extracted from Senseval Training Data). 

The best context with this WSD algorithm used a 

2-sentence window and a cosine similarity to measure the 

similarity between the context vector and each word sense 

vector. We also run experiments using various WSD 

algorithms and the local graph contexts (syntactic and 

logical). Global contexts were not applicable to Senseval 

data as the disambiguation task was targeted to various 

unrelated paragraphs and not entire texts. Unfortunately, 

using graph-based contexts worsened the results of the 

best performing algorithm Banerjee and Pedersen coupled 

with frequencies of co-occurrences (Best value = 64.1 %, 

Local syntactic graph = 43.2% and local logical graph= 

48%). However, the results were improved for the 

algorithm (Banerjee and Pedersen, 2003) alone (Table 

12). 

 

 2-senten

ce 

window 

Local 

syntactic 

graph 

Local 

logical 

graph 

Fine-grained 

results 

46.5 % 52.4% 50.2% 

Coarse-grained 

results 

54.9% 58.5% 57.4% 

Table 12. Results obtained using (Banerjee and Pedersen, 
2003) on Senseval Data 
 

Local syntactic graphs perform better than logical graphs 

in Table 12.  However, when we run other experiments 

using Frequency of co-occurrences, local logical graphs 

gave superior performance in comparison with other 

contexts (Sentence context window, syntactic graphs). 

We noted two issues in the Senseval experiment. On one 

side, the syntactic parsing was very noisy, due to improper 

punctuation (see the example above) and syntactic errors 

in the dependency parsing. The syntactic links between 

the words had many erroneous or high-level 

underspecified dependencies. On the other side, we 

obtained very incomplete logical representations using 

our logical analyzer on this set of data.  As previously said, 

this might indicate that the analyzer may not cover 

enough syntactic structures, but we also noticed that noisy 

syntactic relationships had a big impact over our analyzer, 

which looks for specific well-defined syntactic structures. 

Despite these two issues, local syntactic and logical 

graphs contexts raised the performance of some WSD 

algorithms. Improving the syntactic and logical analysis 

might have an impact over the accuracy of WSD. 

This also raises the question of the kind of corpora that 

should be made available to the research community 

which is committed to full parsing for WSD. Obtaining 

better quality texts is probably one of the requirements of 

such approaches. Further work will tackle the 

enhancement of the logical analyzer, but also the manual 

definition of logical contexts in order to avoid any impact 

of bad syntactic and logical analyses on the WSD and to 

test our logical contexts on clean and non-noisy data. 

5. Conclusion 

This work presented a WSD approach based on syntactic 

dependencies and predicative logical representations. One 

interest of these logical representations is their natural 

identification of the role arguments. This paper presented 

an experiment on a small corpus and on Senseval data that 

shows that interesting preliminary results might be 

obtained using dependency and logical features. Based on 

these preliminary results and based on previous research 

works (Tanaka et al., 2007), our assumption is that logical 

contexts should help WSD, at least with some particular 

algorithms such as the ones presented in the experiments. 

We also believe that a semantic analysis involving 

anaphora and co-reference resolution might also help 

WSD, by providing links to previous information in the 

context definition. Further work should provide a more 

thorough evaluation of WSD using syntactic and logical 

features. The impact of the accuracy of logical form 

extraction on WSD should also be measured. 
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