
i

Programme

01/06/2008 Workshop on Natural Language Processing resources, algorithms and tools for
authoring aids

9:00 Welcome and Introduction

9:30 Invited Talk: Authoring tools developed at Microsoft: that was then, this is now
Takako Aikawa (Microsoft Research)

10h30 Morning coffee break
Proposal for a Foreign Language Drafting Aid
Elliott Macklovitch, Guy Lapalme

Language-aware Text Editing
Cerstin Mahlow, Michael Piotrowski, Michael Hess

Enhancing the OpenOffice.org Word Processor with Natural Language Processing Capabilities
Thomas Gitzinger, René Witte

A Personalized Recommender System for Writing in the Internet Age
Mari Carmen Puerta Melguizo, Olga Muñoz Ramos, Lou Boves, Toine Bogers, Antal van den
Bosch

Towards Automatic Document Quality Assurance
Neil Newbold, Lee Gillam

13h05 Panel session: Possible future directions for authoring aids

13h30 End of workshop

ii LREC 2008 Workshop on Authoring Aids

Organisers

Robert Dale Macquarie University, Sydney, Australia
Aurélien Max LIMSI-CNRS, Université Paris-Sud 11, Orsay, France
Michael Zock LIF, Marseille, France

Programme Committee

John Bateman Universitat Bremen, Germany

Nadjet Bouayad-Agha Pompeu Fabra University, Barcelona, Spain

Eric Brunelle Druide Informatique, Montréal, Canada

Dan Cristea University of Iasi, Romania

Robert Dale Macquarie University, Sydney, Australia

Marc Dymetman XRCE, Grenoble, France

Patrice Enjalbert GREYC, Université de Caen, France

Nicolas Hernandez LINA, Université de Nantes, France

Graeme Hirst University of Toronto, Canada

Eduard Hovy ISI, University of Southern California, USA

Aurélien Max LIMSI, Université Paris-Sud 11, Orsay, France

Thierry Olive LMDC, Poitiers, France

Marie-Paule Péry-Woodley ERSS, Université de Toulouse 2, France

Gisela Redeker University of Groningen, The Netherlands

Ehud Reiter University of Aberdeen, UK

Michael Zock LIF, Marseille, France

iii

Table of Contents

Oral presentations

Proposal for a Foreign Language Drafting Aid
Elliott Macklovitch, Guy Lapalme . 3

Language-aware Text Editing
Cerstin Mahlow, Michael Piotrowski, Michael Hess . 9

Enhancing the OpenOffice.org Word Processor with Natural Language Processing Capabilities
Thomas Gitzinger, René Witte . 15

A Personalized Recommender System for Writing in the Internet Age
Mari Carmen Puerta Melguizo, Olga Muñoz Ramos, Lou Boves, Toine Bogers, Antal van den Bosch . . . 21

Towards Automatic Document Quality Assurance
Neil Newbold, Lee Gillam . 27

iv

Author Index
Bogers, Toine, 23
Boves, Lou, 23

Gillam, Lee, 29
Gitzinger, Thomas, 17

Hess, Michael, 9

Lapalme, Guy, 3

Macklovitch, Elliott, 3
Mahlow, Cerstin, 9
Muñoz Ramos, Olga, 23

Newbold, Neil, 29

Piotrowski, Michael, 9
Puerta Melguizo, Mari Carmen, 23

van den Bosch, Antal, 23

Witte, René, 17

v

Foreword

The research results contained in the present volume address a number of important issues around the techni-
calities of authoring processes and how and under which conditions authoring aids might be of help to human
writers.

Nowadays, writers and their authoring tools manipulate text at different levels: whereas writers have ideas
and linguistic means to express them, word processors only handle characters and strings. This mismatch can
be a source of frustration on the part of the writer, who might have to repeat apparently simple tasks such as
pluralizing a noun phrase and adapting the governed verb accordingly, without any means to have the system do
it at some later point. Cerstin Mahlow, Michael Piotrowski and Michael Hess describe language-aware editing
functions and their practical implementation within a text editor, and make steps towards a taxonomy of revising
and editing operations. This type of work poses interesting questions regarding how and when such assistance
could be used, and for which types of linguistic units.

Starting from the same hypothesis that integrating language analysis functions can be useful to writers if used
appropriately, Thomas Gitzinger and René Witte propose a service-oriented approach based on open standards
and open source tools whereby NLP services can be integrated as plug-ins into word processors, and thus be
called directly by writers. Interesting perspectives stemming from this work include inferring automatically
when automatic analysis could be done by the system, for example based on the user’s behavior, even when not
executed explicitly by the user. Such behavior from future authoring aids will certainly have a positive impact
on the work of writers, but it is of course crucial to ensure that the user can understand what is being done by the
system and accept it.

If writers do not want to receive help when they believe it is not appropriate, some help might be particularly
welcome if it corresponds to a real need and comes at the right moment. The paper by Mari Carmen Puerta
Melguizo, Olga Muñoz Ramos, Lou Boves, Toine Bogers and Antal van den Bosch describes the integration of a
proactive recommender system into a word processor to assist writers in searching for relevant documents from
the Internet while writing text. They show that using profiles to ensure that the presented information is relevant
to the writer and to the text being written can lead to improvements in text quality.

The way in which documents are written has a direct impact on how readers will be able to read and un-
derstand them. Neil Newbold and Lee Gillam discuss how techniques from corpus linguistics can be used by
writers during document production and revision for document quality assurance, for example in terms of lan-
guage simplicity and consistency. They discuss the limits of readability formulae and consider terminological
complexity and its use to compute the cognitive load in understanding a new text.

Lastly, Guy Lapalme and Elliott Maklovitch consider cases in which a computer can assist a writer in actually
writing text. They first review natural contexts of use when an underlying meaning representation or a source
text in another language exists, and present an interactive tool for translators. Then, they propose a similar
interactive-predictive approach for a drafting assistant which could prove useful for people writing in a foreign
language. Such a tool could help in writing better sentences conforming to language models and in proposing
multi-word completions. Again, the fact that such a system could learn from its interaction with the user is
discussed as an essential element for its acceptance by its intended users.

When we drafted the call for papers, we sought papers on all aspects of the text generation process. There
were a number of areas which we consider important in thinking about the writing process which were not
represented in the submissions: specifically, more conceptually-oriented aspects of the process such as content
determination, outline planning, and lexical access did not feature. We suspect there is little work in these areas
within the community that normally attends LREC, but there are areas outside of natural language processing
where these topics are under debate. Clearly a way to move this part of the field forward is to reach out to these
other communities, and in particular to finding ways of drawing in both professional writers (such as journal-
ists) and psychologists. We look forward to the challenge of growing the debate into a truly interdisciplinary
enterprise.

Robert Dale, Aurélien Max, Michael Zock

Oral presentations

Proposal for a Foreign Language Drafting Aid

Guy Lapalme, Elliott Macklovitch
Laboratoire RALI, Université de Montréal

Montréal, Canada
E-mail: lapalme@iro.umontreal.ca, macklovi@iro.umontreal.ca

Abstract

We examine a range of existing authoring aids (understood in the widest sense), from full-scale NLG to a new type of interactive MT.
All of these depend on an independently available meaning representation, either a language-neutral formal model or a parallel text in
another language. When no such meaning representation is available, however, current authoring aids can offer little more than word
completion, as in augmentative communication systems or SMS. We consider the particular situation of a domain specialist who is
called upon to draft a text in a second or a foreign language, and propose ways in which a new authoring tool might be able to assist
him/her by suggesting multi-word completions, which should be more beneficial.

1. Introduction
The natural language generation (NLG) process is often
separated into two phases: What to say? which
corresponds to the building of a semantic representation,
and How to say it? which chooses the words and
sentences to convey the meaning encoded in that semantic
representation. Although these phases have been defined
primarily for engineering the modules of automatic text
generators, they also have cognitive motivation and,
informally at least, seem to correspond to the way humans
plan and produce their communications.
Automated aids designed for human authors can also
benefit from this division of the writing task. In certain
situations where the intended meaning of a projected text
is independently available, automated aids can be
developed that provide the author with considerable
assistance in generating the desired text. We will consider
two such contexts in some detail. The first is where a
non-linguistic, fully explicit, formal meaning
representation is independently available. In this case,
current NLG techniques allow for the automatic
generation of certain types of texts directly from the data,
and even in multiple languages. The other context is the
case of translation, where the source text – a little like in
painting by numbers – provides the semantic outline of
the desired target text and the tones of the message to be
transmitted. The problem with using a natural language
text as a meaning representation is that it is rarely wholly
unambiguous: not only do most source texts generally
under-determine the meaning required to achieve a
high-quality translation, but they often allow for multiple,
equally acceptable translations. This remains the principal
obstacle to fully automatic, high-quality machine
translation (MT) today, and, despite impressive recent
progress in this field, it is not likely to change for some
time. Hence, where publication quality is a sine qua non,
the only viable alternative is to retain the services of a
human, either as a post-editor of the raw MT output, or as
a translator who will hopefully have access to automated
support tools. The former approach (post-editing) is not
always cost-effective and humans often dislike it; the
latter is generally referred to as machine-aided human
translation (MAHT). In this paper, we will report on a

novel form of MAHT that proposes multi-word
completions of the target text, which the translator may
accept or reject in whole or in part.
However, where no meaning representation (linguistic or
otherwise) is independently available – and this
corresponds to the vast majority of text drafting situations
today – current authoring aids can offer little more than
simple word completion. The central question we want to
raise in this paper is whether it would be possible to
improve on this, and if so how.

2. Text Generation
Canadian weather bulletins provide an interesting
example of the case where a fully specified, non-linguistic
knowledge base is available, and this for a number of
reasons. First, the text of these simple bulletins, which is
derived from the numerical content of huge
meteorological databases, is highly stereotypical in form.
For many years, these short texts were manually drafted
by expert meteorologists and then translated into English
or French by human translators. Beginning in 1977, the
MÉTÉO system (Chandioux & Guéraud, 1981)
succeeded in largely removing the human translators from
the loop,1 thereby providing MT with one of its first major
success stories; but the meteorologists were still required
to draft the source texts that were automatically translated
by MÉTÉO. More recently, however, NLG techniques
have been developed that allow for the parallel generation,
directly from the numerical databases, of a large subset of
these weather bulletins in both English and French,
thereby dispensing with the need for the manual drafting
of the text in one language and its machine translation into
the other. Originally developed over a decade ago (c.f.
Goldberg et al., 1994), this technology has only recently
come into full daily use at Environment Canada, and still
not for all types of public weather forecasts.
It turns out, however, that the particular constellation of
factors that make weather bulletins such an ideal
application for both MT and NLG – the rigid and highly
restricted sublanguage in which they are drafted; the large
volume and steady rate at which they are published; and

1 Some translators were still required to revise the system’s
output.

3

the independent existence of a formal database from
which they are derived – is relatively rare, or at least in
this combination. In most other cases where an underlying
knowledge base exists independently of the text
generation process, the type of texts required are rarely as
entirely predictable as weather bulletins are. Hence, even
in such sophisticated NLG systems as MDA (Lapalme et
al., 2003), the interactive composition of a text describing
a pharmaceutical product involves a fair amount of word
(or concept) selection from menus that list permissible
completions or extensions, according to a grammar and a
pre-established semantic hierarchy. However, once the
author’s intentions have been fully specified, ideally in a
language-independent manner, the system may then be
able to generate parallel versions of the desired text in
multiple languages. But the situation here is quite
different from that of weather bulletins, if only because
there isn’t a constantly evolving demand for this kind of
pharmaceutical documentation.2
Hartley & Paris (1997) argue that in certain high-tech
industries where large volumes of multilingual
documentation are required, a trend has begun to emerge
which eschews machine translation in favour of
multilingual NLG. They also point to a concomitant
blurring of the distinction between a translator and a
technical writer, whereby a major part of what they call
the authoring task now involves “the specification of the
conceptual model (or message) underlying task-oriented
instructions from which the documentation itself can be
written.” (p.115) Hartley & Paris convincingly
demonstrate the advantages that this approach offers over
sequential translation from a source text, although they
admit that these advantages crucially hinge on the
availability of an underlying knowledge base. “If such a
knowledge base already exists or can be constructed
automatically, then multilingual generation is a viable
option for producing multilingual documents.” (p.117)
And indeed, there has been much exciting work in NLG
over the last decade that is devoted to precisely this
problem, i.e. finding ways to assist domain experts who
do not have the skills or the time to master formal
knowledge representation systems; see in particular the
various implementations of the what you see is what you
mean approach, e.g. (Power & Scott, 1998). To call this
kind of work authoring, however, seems somewhat
abusive, or at least at variance with the most widespread
definition of this verb, which (according to Encarta’s
online dictionary) means, “to write or be responsible for
the final form of a book, report, or other text” (our
emphasis). Be that as it may, in the great majority of text
drafting situations, a fully specified knowledge base is not
available and the construction of one is simply not a
viable option; hence, full-scale NLG is just not applicable
in these situations.

3. Predictive Text Technology
But even when a full semantic model is not available, it
may still be possible to help a person draft a text by
guessing what she intends to write based on what she has

2 For any given region in Canada, a new public weather bulletin
is published four times a day, every day of the year.
Documentation on a pharmaceutical product will normally be
published once and will last for the life of the product.

already keyed in. The idea of automatically extending, or
completing the tokens (if not the full text) that a user is
typing has a long history that goes back to the earliest
UNIX systems, which included both command-name and
file-name completion. The success of the operation here
clearly depends on there being a relatively small number
of items for the completion program to select among,
exploiting a very simple heuristic: use the list of available
command names when typing at the start of the line and
the list of available filenames otherwise. This principle
also applies to interactive development environments (e.g.
Eclipse and Visual Studio) or XML editors (e.g. oXygen
and XML Spy), which suggest correct completions given
the context of the piece of text the user is drafting. The
semantic model in this case is more complex because it
involves the parsing of both the program text the user is
writing, as well as previous program parts. This is
possible because both the text and its environment are
defined in the context of artificial languages which have a
rigid grammar and a well-defined semantics.
The widespread popularity of SMS (short message
services) on mobile phones constitutes another, extremely
successful application of predictive text technology.
Owing to the telephone’s limited keypad, every sequence
of key presses that is meant to convey a word is
necessarily ambiguous; and here, the great leap forward
came with the addition of a monolingual dictionary and
statistical language models, which together allow many of
the words in the message to be automatically
disambiguated. In fact, today’s SMS systems can often
complete a word before the user has finished typing it, and
they will reorder the completions in the suggestion box
with each new key the user enters. Some systems now
propose multiple word expressions and others can even
acquire the user’s preferred vocabulary from past
messages or files.
Predictive text technology is also used to assist people
with various types of learning disabilities or those who,
for whatever reason, feel intimidated or lack the requisite
language skills to compose a written text (even in their
native tongue). For example, the Canadian company
Quillsoft has developed the WordQ program, a plug-in
that inserts a small pop-up in a word processing or text
editing window in which completions are suggested for
the current word; and after each word, or at the end of the
sentence, the software uses speech synthesis to read the
completed unit back to the user. For children with
impaired writing skills whose spoken vocabulary far
exceeds their written vocabulary, this kind of automated
word completion followed by synthesized read-back
helps to reinforce links between the two forms of
language. At the other end of the disability spectrum,
there are augmentative communication systems designed
for people with severe motor handicaps, for whom every
keystroke demands considerable physical effort. For
example, the Sibylle system (Wandmacher et al., 2007)
offers two types of assistance to its users: an on-screen
keyboard, which is dynamically reconfigured so as
minimize the effort required to select the next letter of a
word; and another completion window in which
predictions of the following word are proposed on the
basis of those that have preceded. Because spelling and
other input errors are common in this particular context,
Sibylle’s word completion system is not based on a
standard frequential dictionary, like the other word

4 LREC 2008 Workshop on Authoring Aids

completion systems discussed so far, but rather on an
n-gram model that operates on the level of characters; and
a similar model is used on the sentence level to calculate
the word predictions.

4. Machine translation
What distinguishes the process of translation from other
acts of writing is that the translator works simultaneously
with not one but two texts: a source text in one language
and a target text that he is drafting in a second language. A
central part of the translator’s job is to ensure the semantic
equivalence of these two texts. However, the availability
of the source text makes it possible to envisage novel
kinds of authoring aids that are not possible in other,
monolingual contexts.
As we previously noted, fully automatic machine
translation is still not capable of systematically producing
publication-quality translations. In fact, until recently, MT
output was not generally considered revisable by most
translators, but only suited for gisting purposes.
Machine-aided human translation (MAHT) eliminates the
MT component, leaving the translation to the human
translator, while attempting to provide her with reliable
tools that will hopefully increase productivity. However,
surprisingly few types of aids have been proposed for
MAHT thus far: basically, tools for terminology
management and repetitions processors (more commonly
known as translation memories). The problem with the
former is that its impact on productivity is minimal; the
problem with the latter is that the great majority of texts
do not contain a sufficient level of full-sentence repetition
to make them cost-efficient.
For some years now, the RALI laboratory has been
developing the TransType system (Foster et al., 1997;
Langlais et al., 2004), a novel approach to translation
automation that aims to strike a compromise between
MAHT and fully automatic MT. In contrast to MAHT, it
retains an MT component; it thus has a greater potential to
increase translator productivity than current MAHT tools.
Unlike fully automatic MT, however, it doesn’t allow the
system to operate with complete autonomy, but instead
seeks to conjugate the power of the machine with the
discernment of the human translator, in a way that allows
the two to productively collaborate in the text drafting
process.
TransType represents a new kind of interactive MT in
which the focus of the interaction is on the target text,
unlike classic interactive systems, where the aim of the
human intervention is to disambiguate the source text; c.f.
(Kay, 1973). In TransType, a statistical MT system is
embedded within an interactive editing environment. The
MT system’s contributions to the target text take the form
of predicted extensions to the current linguistic unit,
based upon its automatic translation of the source text and
a target language model. (See Figure 1 at the end of this
paper for a snapshot of a TransType session.) TransType is
intended to be used by a professional translator whose
contribution to this joint undertaking is to serve as
guarantor of the quality of the target text being drafted; as
such, she must evaluate the system’s proposed extensions
and either accept or reject them, in whole or in part. To
reject a proposed completion, the translator simply
continues typing the target text she has in mind. However,
TransType can immediately take advantage of this

additional, reliable information on the desired target in
order to propose an alternative (and hopefully better)
completion, which the user may again accept or reject;
and so on, until a fully acceptable translation has been
composed. Obviously, the more accurate the system’s
predicted completions, the less the user will have to
intervene, which in principle should translate into
increased productivity gains. For more on the results of
extensive user trials with TransType, see (Macklovitch,
2006).
A major advantage of this interactive-predictive approach
is that it actively involves the human translator in the text
generation process, doing that for which she is most
qualified, i.e. translating, as opposed to performing
linguistic analyses, or post-editing (i.e. correcting) raw
MT output. TransType thus avoids one of the principal
objections that translators have long harboured against
MT, to wit, that it places them in a role of subservience to
a machine whose comprehension of natural language is
considerably less than theirs.

5. Drafting in a Foreign Language
Let us now return to the situation where no meaning
representation is available and where, as we have seen,
current authoring aids can offer little more than simple
word completion. Needless to say, for people with serious
learning disabilities or physical handicaps, there is
absolutely nothing wrong with word completion; on the
contrary, it can appreciably facilitate text entry for them.
However, in the absence of such obstacles, word
completion can be rather frustrating for an “ordinary”
person who is attempting to draft a text. Simply put, the
time and effort required to evaluate the list of proposed
completions usually outweigh the benefit of not having to
type a few characters. This at least is the case for most
moderately literate monolinguals.3
But what about people who are called upon to draft texts
in a second or a foreign language? In the domain of
scientific research, for example, English has become the
lingua franca for international conferences and scientific
publications and, as a consequence, many researchers
whose mother tongue is not English are obliged to write
technical articles in that language. It is our contention that
authors in this situation might be more tolerant of word
completion than native English speakers. At the very least,
it could help them avoid certain errors of spelling and
grammar during the text drafting process.
What sorts of errors do authors in this situation typically
commit? (And again, we’re focusing here on people who
may have considerable competence in the foreign
language, although this will tend to be more passive than
active competence, i.e. it derives principally from reading
texts in their domain of technical specialization.) An
Anglophone drafting in French, for example, will often
make errors of gender agreement, either selecting the
incorrect article for a masculine or feminine noun, or

3 Contrary to what is suggested in the CFP for this workshop,
ordinary text composition does not strike us as an undertaking
that is generally fraught with peril. Writing is certainly a
complex task, but educated adults are not often overwhelmed by
these complexities, and when they do lose their orientation, they
usually manage to recover it. Which is not to say that the texts
they author are always stellar or models of clarity.

E. Macklovitch, G. Lapalme 5

failing to properly inflect a noun modifier. Such errors
arise, of course, because nouns are not marked for gender
in English. Another major difference between the two
languages is the high degree of inflection in the French
verbal system; this too will result in Anglophones
committing not just more errors in their French texts, but
also different types of errors than those found in the texts
of Francophones. On the other hand, a Francophone
drafting in English will frequently have trouble with the
null article, which English uses to denote generic
reference (among other things). Since French does not
generally allow nouns with no article, Francophones will
tend to insert one where no English speaker ever would,
e.g. ‘she loves the classical music’. Both Anglophones
and Francophones will often err in their selection of
governed prepositions, since these can be wholly
unpredictable and do not directly translate from one
language to the other. So, for example, no Anglophone
would ever use the preposition ‘of’ to introduce the
complement of the verb ‘depend’, although one could
well find this in a text drafted by a Francophone; and
conversely, no self-respecting Francophone would ever
write ‘dépendre sur’ (unless under the pernicious
influence of an English calque). Note that some of these
errors might be detected a posteriori by a sophisticated
monolingual grammar checker.4 What we’re suggesting
here, however, is that it might be more convenient for
people drafting in a foreign language to have a specialized
foreign language drafting tool that would hopefully avoid
the generation of such errors in the first place.
Such a system would naturally be more helpful if it were
able to go beyond simple word completion and propose
multi-word or even full-sentence completions, as the
TransType system does. In fact, a series of extended user
trials with TransType led us to fundamentally modify our
approach to text completion. Instead of systematically
predicting a fixed amount of text after each character the
user types, later versions of the system attempted to make
predictions that would maximize the expected benefit to
the user in each context; c.f. (Foster et al., 2002). This
expected benefit was estimated from two components: a
statistical translation model which calculated the
probability that a predicted completion would be correct
or incorrect, and a user model which factored in (among
other things) the time required to read a more or less
lengthy prediction. In addition, later versions of
TransType allowed the user to adjust its predictions to her
preferences and taste, e.g. by setting a confidence
threshold, or fixing a minimal length for a completion, or
a maximum number of alternate completions. Moreover,
if on a given text the system’s predictions were wholly
unsatisfactory (for whatever reason), the user could
always turn off the prediction engine and type the
translation on her own. We suggest that this same kind of
flexibility should be retained for monolingual authoring
aids that attempt to suggest completions that extend
beyond the current word.
Of course, the crucial question that remains is this: In the
absence of an underlying meaning representation or a
parallel text in another language, what would be the

4 Both Antidote and the grammar checker in Word, for example,
are quite good at detecting errors of agreement in French,
although their performance is less impressive on governed
prepositions.

source of such multi-word completions? How likely is it
that general-purpose language models trained on large,
publicly available corpora (of journalese or parliamentary
debates, for example) will be able to propose extended
completions that match an author’s intentions? Not very
likely, in our view. Our experience with TransType
suggests that the predictions would be too diffuse and
would require too many interactions before they manage
to zero in on the sentence the author has in mind. However,
the situation that we evoked above, i.e. of a person
drafting a specialized text in a foreign language, is slightly
different and would not require that the predictor rely
exclusively on general-purpose texts for its training
material. Here, ideally, we would prefer to train the
system’s language model on a corpus composed of native
speakers’ texts taken from the same specialized domain
that the author is drafting in. Moreover, our foreign
language drafting tool could perhaps take a cue from
some of the simpler word completion systems described
above and allow the user to explicitly select certain
multi-word expressions in this corpus so that they are
added to the system’s dictionary. In the domain of
computational linguistics, for example, a non-English
speaking user might flag such multi-word terms as
‘cross-language information retrieval’ or ‘statistical
machine translation’, thereby allowing the system to
propose their completion after only a few characters.
Another potential advantage of this interactive-predictive
approach is that it could learn from its interactions with
the user, i.e. from the completions the user has accepted
and those that have been rejected, in order to improve its
underlying model. Most word completion systems adapt
their predictions to new input from the user, to ensure
their compatibility with the input prefix. However, what
we’re proposing here is not simply adapting the
predictions of a fixed model, but rather updating the
parameters of that model on the fly so that it would
actually improve with use. We have done some initial
experiments in this vein (Nepveu, 2004) using a cached
language model with the TransType system, and the gains,
though modest, were encouraging.
In short, this kind of interactive text prediction would
seem to offer interesting ways of harnessing the power of
language models for the purposes of foreign language
drafting. Would the additional restrictions that come with
this application – i.e. highly targeted training material and
a more tolerant author drafting in a second language –
suffice to make an interactive-predictive text completion
system beneficial for such a user? In particular, would the
specialized language models allow for accurate
multi-word or phrasal predictions? It is difficult to say
without actually implementing the system and then
carrying out tests. However, we find the idea sufficiently
intriguing to want to undertake the development of such a
system. Anyone care to join us?

6. References
Chandioux, J. & Guéraud, M-F. (1981). MÉTÉO : un

système à l’épreuve du temps. META, 26(1), pp.
18--22.

Goldberg, E., Driedgar, N., Kittredge, R. (1994). Using
natural-language processing to produce weather
forecasts. IEEE Expert, 9(2), pp. 45--53.

6 LREC 2008 Workshop on Authoring Aids

Lapalme, G., Brun, C., Dymetman, M. (2003).
MDA-XML : une expérience de rédaction contrôlée
multilingue basée sur XML. In Proceedings of TALN
2003, Batz-sur-Mer, France, pp. 379--384.

Foster, G., Isabelle, P., Plamondon, P. (1997). Target-Text
Mediated Interactive Machine Translation. Machine
Translation, 12(1-2), pp. 175--194.

Foster, G., Langlais, P., Lapalme, G. (2002). User-Friendly
Text Prediction for Translators. In Proceedings of
EMNLP 2002, Philadelphia, PA., pp. 148--155.

Macklovitch, E. (2006). TransType2: The Last Word. In
Proceedings of LREC-2006, Genoa, Italy pp. 167--172.

Nepveu, L. (2004). Adaptation de modèles de traduction
dans le cadre du projet TransType. Mémoire de maîtrise
en Informatique, Université de Montréal.

Hartley, A. & Paris, C. (1997). Multilingual Document
Production: From Support for Translating to Support
for Authoring. Machine Translation, 12(1-2),
pp.109--128. Power, R. & Scott, D. (1998). Multilingual authoring

using feedback texts. In Proceedings of COLING-ACL
1998, Montreal, Canada, pp. 1053--1059.

Kay, M. (1973). The MIND System. In R. Rustin (ed.)
Natural Language Processing, New York, N.Y.:
Algorithmics Press, pp. 155--188. Reiter, E. & Dale, R. (1997). Building applied natural

language generation systems. Natural Language
Engineering, 3(1), pp. 57--87.

Langlais, P., Lapalme, G., Loranger, M. (2004).
TransType: Development-Evaluation Cycles to Boost
Translator's Productivity. Machine Translation (Special
Issue on Embedded Machine Translation Systems), 17
(2), pp. 77--98.

Wandmacher, T., Béchet, N., Barhoumi, Z., Poirier, F.,
Antoine, J-Y. (2007). Système Sibylle d’aide à la
communication pour personnes handicappés. In
Proceedings of TALN 2007, Toulouse, France,
pp.539--548.

Figure 1 : Snapshot of TransType session

The English source text appears in the left pane; on the right is the French translation currently being drafted. To assist the
human translator, TransType proposes completions to the target translation, generated on the fly, using a statistical
translation model combined with target language model. Here, three completions are suggested: to accept the top one, the
translator need only hit the Enter key; the others can be inserted into the text, in whole or in part, by pointing and clicking
with the mouse. Other versions of TransType are capable of proposing longer predictions, up to full-sentence length.

E. Macklovitch, G. Lapalme 7

Language-Aware Text Editing

Cerstin Mahlow, Michael Piotrowski, Michael Hess

Institute of Computational Linguistics, University of Zurich
Binzmühlestrasse 14, 8050 Zürich, Switzerland

{mahlow, mxp, hess}@cl.uzh.ch

Abstract
While software developers have various “power tools” at their disposal that make the writing of computer programs more efficient, authors
of texts do not have the support of such tools. Text processors still operate on the level of characters and strings rather than on the level
of word forms and grammatical constructions. This forces authors to constantly switch between low-level, character oriented, editing
operations and high-level, conceptual, verbalisation processes. We suggest the development of language-aware text editing tools that
simplify certain frequent, yet complex editing operations by defining them on the level of linguistic units. Pluralizing an entire noun phrase
plus the verb forms governed by it would be an ambitious example, swapping the elements of a conjunctive construction a more modest
one.
We propose a taxonomy for revising and editing operations with respect to revising and editing as such as well as engineering desiderata.
We describe the components of a pilot implementation for German where these operations are seamlessly integrated with the standard
functions of an existing open-source editor. The operations can be invoked on demand and do not intrude on the authoring process.
Changes can be performed locally or globally, thus simplifying the writing process considerably, and making the resulting texts more
consistent.

1. Introduction
The process of creating a high-quality text involves several
iterations of writing, revising and editing. Ever since the
beginnings of computerized word processing in the 1960s
(see Haigh (2006) for a historical overview) researchers
tried to develop tools to support writers. In the history of
text processing aids there were several attempts (see, e.g.,
Oakman (1994)) to create expert tools for expert writers,
but today’s word processors mainly operate on the level
of characters rather than linguistic units. The result are
typical revision and editing errors such as duplicate verbs or
extraneous conjunctions.
In this paper we propose functions for word processors
that aim at improving the “brain-to-hand-to-keyboard-to-
screen-connection” (Taylor, 1987, p. 79). We will show that
editors can be upgraded to provide functions that operate
on linguistic elements with relatively low costs in terms of
linguistic resources. We will outline what aspects need to
be considered when implementing these functions.

2. Motivation
We think that many of the revision and editing errors are
caused by attentional disruption since writers have to trans-
late their high-level goals (e.g., changing the grammatical
mood of an expression) into the low-level, character-oriented
functions of the editor.
Even simple revisions, such as changing “editing and revis-
ing” to “revising and editing”, which conceptually merely
consists of swapping the conjuncts, require substantial plan-
ning and memory capacity when they have to be executed
in an editor or word processor. 1

However, as McCutchen (1996) points out, the capacity of a
writer’s working memory and, of course, cognitive resources
in general are limited, and when resources are diverted to

1See (Mahlow and Piotrowski, 2008, p. 639) for a detailed
description.

other activities, this will have a negative impact on writing
processes (i.e., planning, translating, and reviewing).
In this paper we will concentrate on texts in German. Ger-
man is an interesting language for our research because, as
a heavily inflectional language, it is morphologically much
richer than English, and this has implications for revising
and editing. For example, globally replacing one word with
another, say, hut with tent, doesn’t pose any problem in En-
glish, since there are only three word forms and no changes
to the stems. Apart from a very small number of exceptions
(such as mouse or foot), all replacements can thus be done by
simple regular expressions. Inflectional languages typically
also have much freer word order than English so that writ-
ers are more likely to change the syntactic structure during
revision, but moving some words may require adjustments
in other parts of the sentence.
Our target group are experienced writers, i.e., the functions
we are proposing are intended for supporting writers who
know how to write and who are used to expressing their
writing and revising actions in exact terms. When writers
think and talk about texts, they do this on the level of linguis-
tic units, not on the level of characters, even though they
don’t necessarily use linguistic terms, such as genus verbi.
So, for example, they may say, “Let’s put this sentence into
passive voice”. Other examples may be “This phrase should
be plural”, “This sentence is too long, break it up”, “Merge
these two sentences”, or “We should use ‘laptop’ instead of
‘personal computer”’.

3. Improving word processing – related
work and state of the art

Even early editors had functions operating on other units
than characters and lines, viz. “words” and “sentences” (cf.
van Dam and Rice (1971), Callender (1982)). These units
were, however, only defined in terms of the writing system,
i.e., a “word” was defined as a string bounded by whitespace

9

or punctuation, and a “sentence” was defined as a string
terminated by a period followed by two space characters.
There has been research on automatic spelling, grammar,
and style checking at universities and research institutions
ever since computers started being used for writing natural-
language text; Cherry (1981) provides an overview of some
early research. With the spread of commercial word proces-
sors with graphical user interfaces and integrated checkers
most of these research systems disappeared (cf. Vernon
(2000, p. 332)). After several years of using commercial
software for composing – and for teaching how to compose –
the need for more suitable functionalities arose again, along
with criticism of the functionality of word processors and
checkers for spelling, grammar, and style (see, for example,
Piolat (1991), Dale (1997), Vernon (2000), McGee and Eric-
sson (2002)). But today, more than one decade later, we are
still lacking better functions. Popular word processors still
operate on non-linguistic entities and checkers for spelling,
grammar, or style are still unreliable.
Today, word processors, whether commercial or open-
source, whether used for print or for the Web, all have very
similar graphical user interfaces. You will find nearly identi-
cal buttons and menus for nearly identical sets of functions –
setting text in italics, changing the text color, switching from
flush left to fully justified alignment, etc. Writers are accus-
tomed to these functions and to this feature set. Sharples and
Pemberton argued in 1990 already that writers “can infer
the existence of operations and how to perform them from
previous experiences” (Sharples and Pemberton, 1990, p.
49). At this time, the use of word processors was not as
common as it is today, and today’s writers are even more
used to core operations as cut, copy, paste, etc. Since users
are conditioned on the core operations and their behavior,
experimental editors would have to behave in the same way
to be accepted.
Research projects that proposed new and improved func-
tionality by designing completely new editors with a com-
pletely different look and feel (see, for example, Dale
(1990; Williams (1990; Holt et al. (1990; Sharples and
Pemberton (1990; Dale (1997)) didn’t have much success,
and certainly no lasting impact. We thus think writers have
to be offered new and – in our opinion – more suitable func-
tions for professional writing, revising and editing as an
extension to their preferred word processor or editor. In the
1990s, performance issues may also have been a motivation
for the creation of new editors, but we now have enough
computing power for on-the-fly analyses and operations, and
we can thus take a different approach.

4. Approach
Writers are used to the functions that their editor of choice
provides. Having the possibility to directly compare the new
functions with the previous way of performing an operation
should promote the acceptance of the new functions and
help with the evaluation. We are therefore implementing
new functions in the XEmacs2 editor, which will thus serve
as a test bed for testing new functions with real users doing
their daily work. They will still be able to use the existing
functions and will not have to learn how to use a new editor.

2http://xemacs.org/

We do not want to create a new editor, and we are not inter-
ested in developing another grammar checker (or some other
postwriting tool) either. As Sharples (1999, p. 190) points
out, advanced writers tend to turn off this type of “assis-
tance”, or they try to ignore it (McGee and Ericsson, 2002,
p. 462). The problem with checkers is that they are good
for ensuring consistency; advanced writers, however, are
interested in creating specific effects (whether in terms of
vocabulary, syntax, or style) to achieve their specific commu-
nicative goals. Advanced writers know what they are doing
and they know why they are doing it. We do not want to
say that checkers are useless: They are certainly good tools
for detecting possible errors and for ensuring consistency.
However, for advanced writers, these tasks come typically
very late in the writing process (in the postwriting phase)
and are just another proofing step.
What we are more interested in is adding language aware-
ness (as in editors for programming languages) and creating
functions that support writers during the revision and editing
process by simplifying complex operations. Each of these
functions should assist the writer in one specific editing task
that is tedious or error-prone to carry out manually. The
support must be designed in a way that makes it a better
alternative. Thus, it must not interfere with the writing pro-
cess and it must not make any assumptions about what the
writer might want to do, or whether this is “correct”, but it
must perform the task quickly, reliably (another problem
with checkers is that they are not reliable), and under the
control of the writer. Also, as Williams (1990, p. 7) points
out, the functions have to be interactive to be useful during
the process of composing.

4.1. Types of functions
Generally speaking, language awareness can result in two
types of functions:

Informational functions Elements – such as words,
phrases, or clauses – can be highlighted (known as
syntax highlighting in programming editors), or the
writer can request information about certain aspects of
the text, such as prepositions used, conjuncts, sentences
without verbs, or variants of multi-word expressions.
The writer has to interpret the results himself and can
decide how to make use of them.

Operations The other type are functions that operate on
and make changes to textual elements. Linguistic ele-
ments can be reordered, modified, or deleted. In order
to reduce the cognitive load, it is desirable to reduce
the number of actions necessary to reach a specific goal
(Allen and Scerbo, 1983). This can be achieved by com-
bining sequences of core operations into higher-level
functions closer to the users’ goals and their mental
model of the task. These functions always behave in
the same way and none of the involved core operations
will be forgotten or executed twice. The cost of the
“brain-to-hand-to-keyboard-to-screen” process is thus
reduced.

For both types of functions we can find examples requir-
ing only minimal linguistic knowledge. Functions requiring

10 LREC 2008 Workshop on Authoring Aids

more linguistic knowledge differ with respect to the required
resources: In some cases, only static resources, e.g., a list of
all conjunctions of a language, are necessary. In other cases,
morphologic analysis and/or generation may be needed at
run time. Sometimes an operation may even need syntactic
knowledge about the context. Since sufficient computing
power is available today to perform linguistic analyses on
the fly, and since linguistic resources, such as morphologic
components, are available for different languages at a rea-
sonable cost or even as open source, it is now realistic to
employ them in an interactive editing environment.
For example, highlighting conjunctions may help writers in
getting an overview of their argumentation structure. Ex-
ecuting the command show-conjunctions would give a
quick overview of the use of conjunctions. To implement
this function, only minimal linguistic resources are required.
As conjunctions are typically invariable, there is no need to
look for different word forms, and since conjunctions are
not linguistically productive (i.e., no new conjunctions are
produced using derivation or composition), it is not neces-
sary to consider morphological processes. Thus, only a list
of conjunctions is needed.
Detecting sentences without verbs is a more complex exam-
ple of an informational function. Here, linguistic resources
are clearly necessary: First, sentence boundaries must be
identified, and then the POS of the word forms of each sen-
tence have to be determined. Thus, this can be considered a
more advanced function.
For operations, swapping conjuncts may serve as an example
requiring only minimal linguistic resources. This function,
as mentioned in section 2., requires certain core operations,
depending on the editor. This type of function is aware of
(and dependent on) the writing system but needs no further
linguistic knowledge, e.g., of the word classes involved –
and we do not want to restrict writers in what they can
transpose.
At the other end of the spectrum would be a function for
replacing words, i.e., all word forms of a word should be
replaced with the corresponding word form of another word.
However, in inflectional languages, like German, words can
have many word forms and each word form can typically ex-
press more than one category (see table 1 for the paradigms
of two German nouns).
Manually replacing all occurrences of Zelt ‘tent’ with the
corresponding word form of Haus ‘house’ is therefore a
complex task: First, one has to find all word forms of Zelt
– with the usual search functions this will require to search
for each word form individually. Then, one has to deter-
mine the category of a specific occurrence; note that the
word form may be ambiguous, and the exact category can
only be found by looking at the syntactic context. Finally,
one must manually replace the word form of Zelt with the
corresponding word form of Haus. 3

We are thus proposing a function query-replace-word,
which would operate as follows: After calling the function,
the writer is prompted to enter the word to replace (from-
word) and its replacement (to-word). The function searches

3For a discussion of side effects of such functions see (Mahlow
and Piotrowski, 2008).

Word Forms Categories

Zelt
(n, (e)s/e decl.)

Zelt NomSg,
DatSg, AccSg

Zeltes GenSg
Zelts GenSg
Zelte DatSg, NomPl,

GenPl, AccPl
Zelten DatPl

Haus
(n, (e)s/er decl.)

Haus NomSg,
DatSg, AccSg

Hauses GenSg
Hause DatSg
Häuser NomPl, GenPl,

AccPl
Häusern DatPl

Table 1: Word forms of Zelt and Haus.

for all forms of the paradigm of from-word; when a form of
from-word is found, it is replaced with the corresponding
form of to-word. It is clear that this task requires morpholog-
ical analysis and generation. In fact, replacing the word form
Zelte with the corresponding word form of Haus requires
even syntactical analysis: Zelte can be of the categories
DatSg, NomPl, GenPl, AccPl, but Haus has different word
forms for DatSg on the one hand and for NomPl, GenPl,
AccPl on the other hand.

4.2. Components of a pilot implementation
We have chosen XEmacs as an implementation testbed for
the following reasons: It is open-source and new functions
can easily be added using Emacs Lisp, either as additional
functions or replacing existing functions.
All functions – informational functions as well as operations
– will be implemented in a new minor mode called natlang-
mode. This mode can then be used with various major
modes, such as LaTeX-mode, text-mode, or message-mode,
i.e., in all modes dealing with natural-language texts. The
syntax highlighting facilities can be used for implementing
various informational functions.
As usual in XEmacs, functions can either be bound to
keystrokes, e.g., C-c C-r for transpose-conjuncts,
or by called by name, e.g., using M-x transpose-
conjuncts. Functions can also be called by selecting them
from a menu. Since these functions will be implemented in
a similiar way existing functions are implemented, optional
or required parameters can be specified in the usual ways.
We make use of the internal handling of XEmacs for words
and sentences: A “word” is a character string bounded by
spaces, a “sentence” begins with a capitalized word and ends
with a period. To distinguish this period from the ones in
abbreviations in an easy way, we require writers to follow
sentence-final periods by two spaces, as it is commonly done
in English, even though this practice is not normally used
in German. Of course, in a more advanced implementation
we will use a proper sentence-detection component. By con-
sidering spelling German conventions, we can also extract
some basic information from the text: Nouns and proper
names are always capitalized, while all other word classes

C. Mahlow, M. Piotrowski, M. Hess 11

start with a lower case letter except when at the beginning
of a sentence.
The morphological component we use for German is DMM
(Deutsche Malaga-Morphologie) (Lorenz, 1996).

5. Towards a taxonomy of language-aware
functions

In section 4.1. we have presented some first thoughts on
linguistic support for revising and editing. However, we
still need to get a better idea of what is actually happening
when writers are revising and editing. The processes can
be described with respect to various dimensions, some of
which are:

Destructiveness As described in section 4.1., we distin-
guish between informational functions and operations.
Informational functions highlight elements to help the
writer in finding certain occurences of a linguistic el-
ement or phenomenon. They show results of certain
analyses, e.g., the number of sentences lacking a finite
verb or variants of multi-word expressions. Operations
modify linguistic elements such as words, phrases, or
clauses. Destructivness is a boolean attribute.

Level of language dependence The type of the required
linguistic resources determines the level of language
dependence of a function.

For functions like transpose-conjuncts it is suffi-
cient to use the core operations of a word processor and
the properties of the writing system of a certain lan-
guage. It is not necessary to analyze the words affected
by this function, and the definition of a word as a string
bounded by whitespace or punctuation is completely
sufficient for functions that transpose words or move
the cursor. Thus, functions using basic concepts and
principles of a certain language and core operations
will have a low level of language dependence.

Functions like show-conjunctions have a higher
level of language dependence: Linguistic resources
are required, in this case a list of conjunctions. In gen-
eral, highlighting functions, or functions operating on
invariable elements, need similar linguistic resources,
i.e., word lists or lexica, but they do not need explicit
morphological or syntactical rules. We call these lin-
guistic resources static.

The highest level of language dependence includes
functions like query-replace-word. Here, morpho-
logical analysis and generation and, in some cases,
even syntactic analysis are involved. The linguistic
resources have to be in a form suitable for run-time
execution. We call these linguistic resources dynamic.

The level of language dependence is not an absolute
value. It can only be determined by comparison with
the requirements of other functions.

Complexity We measure complexity in terms of core op-
erations required. The value for complexity can be
specified as an absolute number, or it can be specified
on a scale between high and low by comparing it with
the corresponding values of other functions.

We have to take into account that a certain function
can be split into core operations, i.e., atomic editor
operations, or into involved operations. If we combine
some of our additional functions, each consisting of
a certain sequence of core operations, into even more
complex functions, the constituent functions will be
called involved operations.

Specificity The kind of arguments a function takes deter-
mines the specificity of the function. Some functions
take a concrete element, such as a word like “house”,
while others operate on classes like conjunctions, finite
verbs in preterite tense, or relative clauses. The value
for specificity is an element from a set of argument
types.

Area of operation We use this term to describe whether
a function operates on one specific occurrence of a
linguistic element or whether it operates on all occur-
rences of an element. For example, a function such as
transpose-conjuncts only operates at the current
cursor position, whereas a function such as query-
replace-word is designed to operate on all occur-
rences of the specified from-word (even if the user
chooses to interrupt the function at some point). The
area of operation is either local or global.

Side effects When executing an operation it can happen
that the result is not grammatical. This is clearly a un-
intended side effect. Such an operation will thus require
further editing operations on other elements to restore
grammaticality. Side effects can be of different types,
such as agreement errors or dangling anaphoric refer-
ences. Side effects can also occur at different distances
from the original operation – they may be restricted to
the same phrase (e.g., adjective-noun agreement), or
they may occur further away, even in other sentences.

We can distinguish the values has side effects and has
no side effects. For operations with side effects we can
determine the type of side effects as one element from
a set of types.

To be able to determine these dimensions it is necessary to
analyze and to classify user actions, e.g., from keystroke
recordings (cf. Good (1985), Flinn (1987), Perrin (2006)),
and to consider linguistic rules and engineering issues.
The classification can serve as a help in making decisions,
and it can then be used to write specifications and serve as a
guideline for the actual implementation.

6. Conclusion and further work
We think that language-aware editing functions can relieve
writers from many low-level operations which distract from
the actual revision and editing process. Our approach con-
centrates on support during the writing process, enabling
the writer to interact with the word processor.
We showed some examples for such functions, concentrat-
ing on German. These functions can be seen as add-ons
to existing word processors, allowing writers to use the
functionality they are accustomed to and benefit from the
new ones. The required resources are relativly small but

12 LREC 2008 Workshop on Authoring Aids

can have a considerable impact on the writing process. We
then outlined a number of aspects which have to be taken
into consideration, and which should eventually result in a
taxonomy of revising and editing operations.
Currently we are selecting the operations to be implemented
according to the principles described in this paper. We will
then evaluate them with experienced writers.
Once we have an implementation serving as a proof of con-
cept, we will then be able to consider additional aspects:
What is the best way to make writers learn new functions?
What is the best way to call these functions: using keystrokes
or using pull-down menus? Which linguistic terms do writ-
ers really use when talking about linguistic units, and which
terms should be used in editor functions?

Acknowledgements We thank Yves Forkl and Rolf
Schwitter for fruitful discussions.

7. References
Robert B. Allen and M. W. Scerbo. 1983. Details of

command-language keystrokes. ACM Trans. Inf. Syst.,
1(2):159–178, April.

E. D. Callender. 1982. An evaluation of the AUGMENT
system. In SIGDOC ’82: Proceedings of the 1st an-
nual international conference on Systems documentation,
pages 29–35, New York, NY. ACM Press.

Lorinda Cherry. 1981. Computer aids for writers. ACM
SIGOA Newsletter, 2(1-2):61–67.

Robert Dale. 1990. A rule-based approach to computer-
assisted copy-editing. Computer Assisted Language
Learning, 2(1):59–67.

Robert Dale. 1997. Computer assistance in text creation
and editing. In Giovanni B. Varile, Antonio Zamponelli,
Ronald Cole, Joseph Mariani, Hans Uszkoreit, Annie
Zaenen, and Victor Zue, editors, Survey of the State of
the Art in Human Language Technology, pages 235–237.
Cambridge University Press, New York, NY.

Jane Z. Flinn. 1987. Case studies of revision aided by
keystroke recording and replaying software. Computers
and Composition, 5(1):31–44, November.

Michael Good. 1985. The use of logging data in the design
of a new text editor. SIGCHI Bull., 16(4):93–97, April.

Thomas Haigh. 2006. Remembering the office of the future:
The origins of word processing and office automation.
Annals of the History of Computing, IEEE, 28(4):6–31.

Patrik O. Holt, Dag C. Hegg, and Terje Johnsen. 1990.
Engineering written style. Computer Assisted Language
Learning, 2(1):27–35.

Oliver Lorenz. 1996. Automatische Wortformerkennung für
das Deutsche im Rahmen von MALAGA. Master’s thesis,
Friedrich-Alexander-Universität Erlangen-Nürnberg.

Cerstin Mahlow and Michael Piotrowski. 2008. Linguistic
support for revising and editing. In Alexander Gelbukh,
editor, Computational Linguistics and Intelligent Text
Processing: 9th International Conference, CICLing 2008,
Haifa, Israel, February 17–23, 2008. Proceedings, pages
631–642, Heidelberg. Springer.

Deborah McCutchen. 1996. A capacity theory of writing:
Working memory in composition. Educational Psychol-
ogy Review, 8(3):299–325.

Tim McGee and Patricia Ericsson. 2002. The politics of the
program: MS Word as the invisible grammarian. Com-
puters and Composition, 19(4):453–470, December.

R. L. Oakman. 1994. The evolution of intelligent writing
assistants: trends and future prospects. In Tools with Arti-
ficial Intelligence, 1994. Proceedings., Sixth International
Conference on, pages 233–234.

Daniel Perrin. 2006. Schreibforschung im Kursalltag:
Was die Progressionsanalyse praktisch nützt. In Otto
Kruse, Katja Berger, and Marianne Ulmi, editors, Prozes-
sorientierte Schreibdidaktik: Schreibtraining für Schule,
Studium und Beruf, pages 279–294. Haupt Verlag, Bern,
Stuttgart, Wien.

Annie Piolat. 1991. Effects of word processing on text
revision. Language and Education, 5(4):255–272.

Mike Sharples and Lyn Pemberton. 1990. Starting from the
writer: Guidelines for the design of user-centred docu-
ment processors. Computer Assisted Language Learning,
2(1):37–57.

Mike Sharples. 1999. How We Write: Writing As Creative
Design. Routledge, June.

Lee R. Taylor. 1987. Software views: A fistful of
word-processing programs. Computers and Composition,
5(1):79–90.

Andries van Dam and David E. Rice. 1971. On-line text
editing: A survey. ACM Comput. Surv., 3(3):93–114,
September.

Alex Vernon. 2000. Computerized grammar checkers 2000:
capabilities, limitations, and pedagogical possibilities.
Computers and Composition, 17(3):329–349, December.

Noel Williams. 1990. Writers’ problems and computer
solutions. Computer Assisted Language Learning, 2(1):5–
25.

C. Mahlow, M. Piotrowski, M. Hess 13

Enhancing the OpenOffice.org Word Processor with
Natural Language Processing Capabilities

Thomas Gitzinger1 and René Witte2

1Institut für Programmstrukturen und Datenorganisation (IPD)
Universität Karlsruhe (TH), Germany

2Department of Computer Science and Software Engineering
Concordia University, Montréal, Canada

http://semanticsoftware.info

Abstract
Today’s knowledger workers are often overwhelmed by the vast amount of readily available natural language documents that are potentially
relevant for a given task. Natural language processing (NLP) and text mining techniques can deliver automated analysis support, but
they are often not integrated into commonly used desktop clients, such as word processors. We present a plug-in for the OpenOffice.org
word processor Writer that allows to access any kind of NLP analysis service mediated through a service-oriented architecture. Semantic
Assistants can now provide services such as information extraction, question-answering, index generation, or automatic summarization
directly within an end user’s application.

1. Introduction
Information Retrieval (IR) is, in some respect, a solved prob-
lem: Users nowadays have immediate access to vast amounts
of information. Popular search engines, such as Google, can
deliver more documents in a fraction of a second than any
human can process in a lifetime. As (Simon, 1971) pointed
out, “A wealth of information creates a poverty of attention,”
and this statement certainly fits the information age. Practi-
cally no one dealing with large amounts of reports, literature,
drafts, articles and the like, can read everything they would
like to. This becomes a problem when decisions have to
be made and not all the information that is theoretically
available can be taken into account. It becomes a problem
when an expert or a reporter must gain an overview of a
large corpus of literature, be it news articles, opinion pieces
or technical reports, and has a very limited time frame.
While one might argue that retrieval speed and precision
of IR can still be improved, we believe the most important
advances in the near future will focus on improving the auto-
matic processing of retrieved information, thereby allowing
the human user to gain time for his actual task of evaluating
the information and creating new value from it. But although
natural language processing (NLP) and text mining research
has made impressive progress over the last decade, the de-
veloped technologies have not yet found wide adoption in
end-user tools commonly used for reading and developing
content. Knowledge workers1 in particular could make im-
mediate use of a wide selection of NLP services, such as
summarization, index generation, or question-answering, if
they just had access to them from their desktop tools, like
email clients, Web browsers, or word processors.
In this paper, we present a strategy for integrating any kind

1This term was coined by P. Drucker in 1959. Also known
as intellectual worker or brain worker, it emphasizes a worker’s
capability to work as an expert in a subject matter, rather than,
say, through physical labor. See, e.g., http://en.wikipedia.org/wiki/
Knowledge worker.

of NLP analysis service into a word processing application,
the OpenOffice.org2 Writer program. Based on an existing
service-oriented architecture, a plug-in created for Writer al-
lows to dynamically find, parametrize, and execute language
services. That is, in this work we are not concerned with
the development of new NLP services, but rather investigate
how any existing service can be integrated into an end user’s
tool. A simplified overview of this idea is shown in Figure 1.

NLP Service 1

NLP Service 2

NLP Service n

NLP Service
Result

Focused
Summarization

..
.Client

− Parameter
− Calling an NLP Service

Word Processor

Server

Figure 1: Invoking NLP services directly from a user’s client

Our approach allows for a complete reversal of common
knowledge acquisition processes: whereas today’s knowl-
edge worker has to leave his text processing application
to search for relevant information (e.g., through Google),
process the retrieved results manually, and then continue
working on his task, we propose to integrate knowledge re-
trieval, analysis, and content development into the end-user
client. Thus, a user does not have to interrupt his work-
flow but rather relies on external Semantic Assistants, which
provide NLP analysis services called directly from the end
user’s word processing application. These assistants can,
for example, search for relevant information on the Web
and produce a multi-document summary of the knowledge
relevant for the user’s current context.
This paper is structured as follows: In the next section,

2OpenOffice.org, http://openoffice.org

15

we describe some application scenarios relevant for our ap-
proach in more detail. The design and implementation of our
NLP/word processing integration is covered in Section 3.
Example applications of the developed solution are pre-
sented in Section 4. Related work is discussed in Section 5.
Finally, conclusions are presented in Section 6.

2. Application Scenarios
In this section, we describe a number of application scenar-
ios to further motivate our approach of integrating NLP ca-
pabilities into a word processor. These scenarios are meant
to illustrate the everyday problems that people face in numer-
ous professions and activities. The actors in these scenarios
are all knowledge workers, meaning that they have to find,
identify, evaluate, and incorporate considerable amounts of
existing knowledge in order to do their work.

Scenario 1: Authoring and Analyzing Documents. Ed-
itors and journalists continuously face deadlines for deliv-
ering articles. Although relevant knowledge—such as pre-
vious articles, web pages, and research papers—are readily
available online, the typically vast number of hits delivered
by an Internet or desktop search makes it impossible to
review all documents manually. In this scenario, focused
multi-document summarization can help the user by present-
ing an extract of information relevant for the task at hand.
The generation of this kind of summary has been investi-
gated for several years within the Document Understanding
Conference (DUC)3 competition and lends itself very well
to an integration into an office tool: the user can simply
highlight a text segment containing questions or other perti-
nent context information (usually between one and several
sentences4), which is then used to find relevant documents
with an IR system (e.g., from the Web, a digital library, or
a local document repository). The summarizer can then
prepare a focused multi-document summary of these doc-
uments, which contains only those pieces of information
relevant for the context question(s). This processing can be
performed in the background after the user requested the
summary, thereby allowing him to continue work on other
parts of his document.
This idea can be further enhanced by adding machine trans-
lation tools into the NLP processing pipeline (see the DUC
tasks on cross-language summarization), thereby allowing
end users access to knowledge in languages they do not
speak themselves.

Scenario 2: Information Extraction. Often, knowledge
workers require only particular information from a set of
documents while working on a task. This might simply be a
list of person or company names or entity relation informa-
tion, e.g., between persons and events. This can be achieved
with off-the-shelf information extraction (IE) tools, such
as the ANNIE system delivered with the GATE framework
(Cunningham et al., 2002). Additionally, domain-specific IE

3Document Understanding Conference, http://duc.nist.gov
4An example for such a context is (from DUC 2005): “What

countries are or have been involved in land or water boundary
disputes with each other over oil resources or exploration? How
have disputes been resolved, or towards what kind of resolution
are the countries moving? What other factors affect the disputes?”

can support users in specific knowledge management tasks:
For example, a biomedical researcher might need a list of
all mutated proteins from a set of papers (Witte et al., 2007);
and a software engineer might need to find all method names
covered in a system’s documentation (Witte et al., 2008).
By integrating IE services, the user can either opt to extract
the information from a document he his currently working
on, or, like in the previous scenario, on a set of external
documents.

Scenario 3: Index Generation. Adding a classical book
index to a document is often tedious work, especially when
it has not been planned from the start. Simple NLP pipelines
can facilitate this task—for example, by performing noun
phrase (NP) chunking and building an inverted index from
the head noun (first level) and modifier (second level) slots.
Using the information extraction techniques mentioned
above, specialized indices can additionally be generated,
such as person or organization names. Integrated into the
word processing application, a draft index can be created di-
rectly within the document window, and then further edited
and refined by the user.
Index generation can also be applied to external documents:
instead of looking at text summaries of potentially relevant
documents for the current task, a user can also request the
creation of a book-type index from documents retrieved
through an IR engine, using this as a further navigational
aid.

Other NLP Services. The scenarios here are by no means
exhaustive—they simply illustrate how enormously useful
standard NLP techniques that are already available today can
become for an end user when integrated into a standard desk-
top tool. We expect that future NLP analysis services will
be designed directly for deployment in a service-oriented
architecture and thereby target the needs of end users even
better.

3. Design and Implementation
We now present our solution to the integration of word pro-
cessing and NLP services. In the first subsection, we briefly
describe our service-oriented architecture for NLP/client
integration. The second subsection then describes in detail
our integration of the OpenOffice.org Writer word processor
into this architecture. The service-oriented approach was
chosen for its ability to model NLP services at a high level
of abstraction, thereby hiding the technical aspects of their
implementation from the end-user clients. To allow the rec-
ommendation of NLP services based on the user’s context,
i.e., his language capabilities, current task, and client, we
provide an ontology model that connects these aspects with
available language services.

3.1. Service-Oriented System Architecture
To facilitate the integration of end-user (desktop) clients
with natural language processing services, we developed
a service-oriented architecture (SOA) that allows to easily
connect arbitrary clients with an NLP framework using W3C
Web Services.5 The design and implementation of this archi-
tecture is described in (Witte and Gitzinger, 2008). Here, we

5W3C Web Services, http://www.w3.org/TR/ws-arch/

16 LREC 2008 Workshop on Authoring Aids

W
rite

r

O
p

e
n

O
ffic

e
.o

rg

P
lu

g
in

C
lie

n
t

C
lie

n
t S

id
e

 A
b

s
tra

c
tio

n
 L

a
y
e

r

Tier 1: Clients

P
lu

g
in

Tier 4: Resources

W
e

b
a

p
p

lic
a

tio
n

N
e

w

Tier 2: Presentation and Interaction Tier 3: Analysis and Retrieval

NLP Subsystem

Web Information System

NLP Service Connector

W
e

b
 S

e
rv

e
r

Navigation

Annotation

Presentation

Service Invocation

Service Information

Language Services

Web/IS Connector

Question Answering

Index Generation

Information Retrieval

Information Extraction

Automatic Summarization

Language

Service

Descriptions

Indexed

Documents

External

Documents

Figure 2: The Semantic Assistants architecture for integrating text analysis services and end-user clients

only provide a brief overview to illustrate the steps needed
for integrating a new client, in this case, a word processor.
An overview of the architecture is shown in Figure 2. It
is based on a typical multi-tier information system design.
Clients (Tier 1) provide access to an end-user. Here, we
only discuss the integration of a word processor, namely
the OpenOffice.org Writer application, but our architecture
has been designed to allow connections from any kind of
client. A client-side abstraction layer (CSAL) provided by
our architecture contains a number of pre-defined methods
commonly needed for integrating NLP into end-user clients,
such as finding available services and handling input/result
format conversions. Tier 2 is concerned with handling the
interaction between the clients and the NLP frameworks.
Since we rely on Web Services for the communication, a
web server handles the management of service discovery
and invocation, based on WSDL6 descriptions and SOAP7

messages. To connect with a concrete NLP framework, our
architecture contains an “NLP Service Connector,” which is
also part of Tier 2. The current version of our architecture
supports the GATE framework (Cunningham et al., 2002)
for NLP service execution, which forms Tier 3 of our ar-
chitecture (other frameworks, such as UIMA (Ferrucci and
Lally, 2004), can be integrated in the future). Resources
form Tier 4, which includes documents stored locally or on
a network (including the Internet), as well as metadata about
available NLP services, which are formally described using
an OWL-DL8 ontology.
To integrate a new client, the following four steps have to
be performed:

1. From the client application, import the Java archive
containing our implementation of the client-side ab-
straction layer (CSAL).

2. If necessary, tell the CSAL the address of the Web
service endpoint. The CSAL classes that need to know

6WS Description Language, http://www.w3.org/TR/wsdl
7Simple Object Access Protocol, http://www.w3.org/TR/soap/
8OWL Web Ontology, http://www.w3.org/TR/owl-guide/

the address have a default value for it.

3. Create a SemanticServiceBrokerService object,
which serves as a factory for proxy objects.

4. Create such a proxy object. This is your “remote con-
trol” to the Web service. You can call all methods that
have been published through the Web service on this
object.

We can now discuss how these steps are performed for a
concrete client, a word processor, to integrate it into our
architecture.

3.2. The OpenOffice.org Writer Plug-in
The OpenOffice.org application suite offers a mechanism
to add application extensions, or plug-ins. We used this
mechanism to integrate OpenOffice.org’s word processing
application Writer with our architecture, and thus equip the
Writer with Semantic Assistants (Figure 3).
Our primary goal for the Writer extension was to be able
to perform text analysis on the current document. This
text can, for instance, be a large document from which
information should be extracted, or a problem statement
consisting of a few questions, which serves as input for a
question-answering (QA) Semantic Assistant. Especially
for the last use case, it must allow a user to highlight part of
a document (e.g., a question) and be able to pass only the
highlighted part as input to a language service. Furthermore,
the extension must offer the possibility to specify parameters
that need to be passed to a selected NLP service.
An OpenOffice.org plug-in is basically a zip file with specific
contents and certain descriptions of these contents. The
files and directories contained in our zip file are shown
in Figure 4. Every plug-in has to include a META-INF
directory, which contains a file called manifest.xml. This
XML file lists the elements that come with this plug-in; The
concrete manifest file for our plug-in is listed in Figure 5.
We can see that it defines three file-entry elements specifying
the type and location of the following files:

T. Gitzinger, R. Witte 17

Figure 3: The new “Semantic Assistants” menu entry in OpenOffice.org Writer allows to find and execute NLP services

Figure 4: The plug-in file structure

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE manifest:manifest PUBLIC
"-//OpenOffice.org//DTD Manifest 1.0//EN" "Manifest.dtd">
<manifest:manifest
xmlns:manifest="http://openoffice.org/2001/manifest">
<manifest:file-entry

manifest:media-type=
"application/vnd.sun.star.configuration-data"

manifest:full-path="Addons.xcu"/>
<manifest:file-entry

manifest:media-type=
"application/vnd.sun.star.configuration-data"

manifest:full-path="ProtocolHandler.xcu"/>
<manifest:file-entry

manifest:media-type=
"application/vnd.sun.star.uno-component;type=Java"

manifest:full-path=
"ProtocolHandlerAddon_java.uno.jar"/>

</manifest:manifest>

Figure 5: The manifest.xml file for our plug-in

Addons.xcu. This XML file defines how the plug-in should
be integrated with OpenOffice.org. In our case, it con-
tains a menu definition, specifying that the menu should
only appear in the Writer application. For each menu
item, we specify which messages should be broadcast
throughout the OpenOffice.org runtime system when
the menu item is activated.

ProtocolHandler.xcu. This XML file specifies that the
messages defined in Addons.xcu should be handled
by an object of a certain class. This class is provided in
the Java archive and must adhere to a certain interface.

ProtocolHandlerAddon java.uno.jar. This Java archive
contains the actual functionality of the plug-in. It holds
classes responsible for receiving the messages gener-
ated by the menu items, as well as classes responsible
for the interaction with the client-side abstraction layer.

Our plug-in creates a new menu entry “Semantic Assistants,”

as shown in Figure 3. In this menu, the user can inquire
about available services, which are selected based on the
client (here Writer) and the language capabilities of the de-
ployed NLP services (described in service metadata). The
dynamically generated list of available services is then pre-
sented to the user, together with a brief description, in a
separate window, as shown in Figure 6. Note that the inte-
gration of a new service does not require any changes on
the client side—any new NLP service created and deployed
by a language engineer is dynamically discovered through
its OWL metadata maintained by the architecture and so
becomes immediately available to any connected client.

Figure 6: List of available semantic assistants

The user can now select an assistant and execute it. In
case the service requires additional parameters, such as the
length of a summary to be generated, they are detected by
our architecture through the OWL-based service description
and requested from the user through an additional dialog
window. An example, for the Web Retrieval Summarizer
assistant, is shown in Figure 7.

Figure 7: The parameters dialog, which appears when a
Semantic Assistant requiring further input is invoked

Once requested, the language service is executed asyn-

18 LREC 2008 Workshop on Authoring Aids

chronously by our architecture, allowing the user to continue
his work (he can even execute additional services). The se-
quence diagram in Figure 8 shows the execution of a service
through the various tiers described in Section 3.1. Note
that all low-level details of handling language services, such
as metadata lookup, parametrization, and result handling,
are hidden from the client plug-in through our client-side
abstraction layer.

Client Abstraction Layer Server Language Service Resources

Invoke service

Invoke service

Metadata lookup

Metadata

Run service

Store result

Result stored

Return

Collect result

Result

Transform result

Response Message

Refined Response

msc Invoking a Single Language Service

Figure 8: The client invokes a language service and receives
a result

4. Application
One direct use case of our Semantic Assistants is to sat-
isfy information needs of a knowledge worker. As mo-
tivated in the introduction, language services can deliver
focused analysis results directly within the client—here a
word processor—needed to perform a task, rather than in-
terrupting the user’s workflow by forcing him to perform an
external (Web) search.
For example, a user might develop a report on the global
climate change and needs information on the role of “DMSP
in the Atlantic marine biology.”9 With our OpenOffice.org
plug-in, the user can simply highlight this phrase in the
Writer editor window and select the “Web Retrieval Sum-
marizer.” This is a compound Semantic Assistant, which
performs two functions: In a first step, a selected number
of hits from a Yahoo! search using the highlighted phrase
is retrieved to build a corpus on-the-fly. This corpus is then
fed into the context-sensitive multi-document summarizer
ERSS (Witte and Bergler, 2007) to produce a summary. All
these actions are performed in the background, allowing
the user to continue with other parts of his report. When
the summary is ready, the architecture notifies the plug-in,
which then presents the generated summary in a new win-
dow, as shown in Figure 9. The user can now analyze, edit,
or copy parts of the summary within his workflow.
Note that our architecture does not require that the user’s
word processor and the NLP service reside on the same
physical machine. Although this is a possible configuration
for personal knowledge management, the underlying Web
Service framework also allows to access specific analysis
tools from an external service provider. For example, a

9DMSP stands for “Dimethylsulfoniopropionate” and is a com-
ponent of the organic sulfur cycle.

university might want to deliver question-answering services
targeted to its students, answering questions about courses
and facilities. A commercial scientific publisher might want
to offer a “related work finder” analysis service, similar to
the one presented by (Zeni et al., 2007), to scientists writing
research papers or proposals.

5. Related Work
There is not much previous work that deals with the software
engineering aspects of integrating NLP services into existing
desktop tools.
In their article “Just-in-time information retrieval agents”
(JITIR agents), (Rhodes and Maes, 2000) presented a plug-
in for the Emacs text editor called the Remembrance Agent
(RA). The RA presents, in a special sub-window at the
bottom of the Emacs window, a small list of documents
that are related to the document currently being written or
read. These suggestions can come from multiple different
databases or e-mail archives, and are periodically updated.
More concretely, every few seconds, an Information Re-
trieval (IR) process is triggered, performing a search on the
specified databases based on, for example, the last 500 words
written or the e-mail message that has just been opened for
viewing. The results of this IR process are then ranked and
listed in the sub-window at the bottom. The second JITIR
agent presented in the article, Margin Notes, works by the
same principle as the Remembrance Agent. It rewrites dis-
played Web pages and adds annotations (e.g., links to related
e-mail documents) in a separate column on the right to the
Web page.
(Colbath and Kubala, 2003) presented TAP-XL, an “auto-
mated analyst’s assistant.” The system’s front end is an
extension to Microsoft Word. The user writes an initial
problem statement, which the system analyzes and uses to
retrieve possibly related articles or documents from Internet
sources. Unlike with the Remembrance Agent mentioned
above, which performs its work in the background without
the user actively triggering that work, the user’s interaction
with the TAP-XL system is more conscious, as he actively
poses a problem statement that the system processes. The
processing elements that make TAP-XL work form a dis-
tributed system of Web Services. Among these services are
machine translation, document clustering, multi-document
summarization, and fact extraction. The results of these com-
ponents are stored in a central repository, from where they
are accessible to downstream technologies like the word
processing front end. The documents to feed this whole
system come from a commercial source, as well as from
Web harvesting.
These approaches differ from our work in that they are
strictly bound to one field of application (e.g., word pro-
cessing for TAP-XL). By providing an open, client-server,
standards-based infrastructure, we can bring NLP to the end
user practically regardless of what kind of application she is
using. Moreover, the mentioned text assistants’ functionality
is confined to providing possibly relevant documents. In
contrast to that, we want to offer a theoretically open-ended
number of NLP services, including machine translation,
information extraction, automatic summarization, and auto-
matic indexing. While referenced applications like TAP-XL

T. Gitzinger, R. Witte 19

Figure 9: The result of the “Web Retrieval Summarizer” Semantic Assistant, answering the user’s question, is displayed as a
new document

have their NLP functionality largely built right into them,
we follow a different approach in that we clearly distinguish
between service requester (the client), the requested service
(semantic text assistant), and the underlying architecture.
The services offered as part of our architecture are entirely
self-contained and unaware of anything that is going on “on
the outside.” On the other end of the communication, the
client program is initially unaware what semantic services
it can make use of. It only knows how to talk to the Web
Service connecting the two ends. This separation simplifies
client development, bears no influence on the NLP develop-
ment, and allows for higher flexibility.

6. Summary and Conclusions
Today’s knowledge workers face constant “information over-
load.” Many NLP techniques and text mining systems have
been developed to address the (semi-)automatic analysis of
natural language texts—but none of these are of any use
to an end user if they are not readily accessible within the
applications commonly found on today’s desktop environ-
ments. In this paper, we described a novel solution for the
integration of any kind of NLP service into a word proces-
sor application. Our underlying architecture together with
the created plug-in perform the “heavy lifting,” so to speak,
of software engineering work necessary to bring semantic
analysis tools to end users. Through its service-oriented ap-
proach, it decouples the creation of NLP pipelines and their
access from connected clients, so that NLP developers do
not need to be concerned with the technical details on how
their created services will become available within desktop
applications, and client developers likewise do not need to
know about the intricacies of developing natural language
processing pipelines, since all they see are Web Service de-
scriptions of these services. The developed architecture has
been developed based on open standards and open source
tools and will also be made available as free software.
Further improvements on the plug-in side will focus on
enhanced formatting of NLP results, which can come in
diverse formats (e.g., unstructured summaries, structured
tables, XML or OWL files). Further plug-ins extending
other end-user clients with NLP services are under investi-
gation, like for an email client, Web browser, and software

development environment.
On the architectural side, a more detailed handling of the
user’s current context using our ontological model will allow
for a more fine-grained pre-selection and -parametrization
of available language services. Together with automated
reasoning capabilities of OWL-DL ontology reasoners, an
agent-like approach becomes possible, where relevant ser-
vices are not only executed explicitly, but can also be auto-
matically scheduled by the architecture based on the user’s
current behavior.

7. References
Sean Colbath and Francis Kubala. 2003. TAP-XL: An Automated

Analyst’s Assistant. In NAACL ’03: Proc. of the 2003 Confer-
ence of the North American Chapter of the ACL, pages 7–8.

H. Cunningham, D. Maynard, K. Bontcheva, and V. Tablan. 2002.
GATE: A Framework and Graphical Development Environment
for Robust NLP Tools and Applications. In Proc. of the 40th
Anniversary Meeting of the ACL. http://gate.ac.uk.

D. Ferrucci and A. Lally. 2004. UIMA: An Architectural Ap-
proach to Unstructured Information Processing in the Corporate
Research Environment. Natural Language Engineering, 10(3-
4):327–348.

B. J. Rhodes and P. Maes. 2000. Just-in-time Information Retrieval
Agents. IBM Syst. J., 39(3–4):685–704.

Herbert A. Simon. 1971. Designing Organizations for an
Information-Rich World. In Computers, Communication, and
the Public Interest, pages 40–41. The John Hopkins Press.

René Witte and Sabine Bergler. 2007. Fuzzy Clustering for Topic
Analysis and Summarization of Document Collections. In Proc.
Canadian A.I. 2007, LNAI 4509, pages 476–488, Montréal,
Québec, Canada, May 28–30. Springer.

René Witte and Thomas Gitzinger. 2008. A General Architecture
for Connecting NLP Frameworks and Desktop Clients using
Web Services. In NLDB 2008, LNCS. Springer.

René Witte, Thomas Kappler, and Christopher J. O. Baker. 2007.
Enhanced Semantic Access to the Protein Engineering Literature
using Ontologies Populated by Text Mining. Int. Journal of
Bioinformatics Research and Applications (IJBRA), 3(3).

R. Witte, Q. Li, Y. Zhang, and J. Rilling. 2008. Text mining and
software engineering: an integrated source code and document
analysis approach. IET Software, 2(1):3–16.

N. Zeni, N. Kiyavitskaya, L. Mich, J. Mylopoulos, and J.R. Cordy.
2007. A Lightweight Approach to Semantic Annotation of
Research Papers. In Proc. NLDB.

20 LREC 2008 Workshop on Authoring Aids

A Personalized Recommender System
for Writing in the Internet Age

Mari Carmen Puerta Melguizo∗, Olga Muñoz Ramos∗, Lou Boves∗,
Toine Bogers†, Antal van den Bosch†

∗Department of Language and Speech, Radboud University.
P.O. Box 9103, 6500 HD Nijmegen, The Netherlands.

M.Puerta, O.MunozRamos, L.Boves@let.ru.nl

†ILK/Language and Information Science, Tilburg University
P.O. Box 90153 NL 5000 LE Tilburg, The Netherlands

A.M.Bogers, Antal.vdnBosch@uvt.nl

Abstract
Writing is a complex task and several computer systems have been developed in order to support writing. Most of these systems,
however, are mainly designed with the purpose of supporting the processes of planning, organizing and connecting ideas. In general,
these systems help writers to formulate external visual representations of their ideas and connections of the main topics that should
be addressed in the paper, sequence of the sections, etc. With the advent of the world wide web, writing and finding information
for the written text has become increasingly intertwined. Consequently, it is necessary to develop systems able to support the task of
finding relevant information during writing, without interfering with the writing process proper. In this paper we present the Proactive
Recommender System: À propos. This system is being developed in order to support writers in the difficult task of finding appropriate
relevant information during writing. We raise the question whether the tendency to interleave (re)search and writing implies a need for
developing more comprehensive models of the cognitive processes involved in writing scientific and policy papers.

1. Introduction

Writing in a professional environment is a difficult task.
Although writing has been practiced for more than 25 cen-
turies, empirical research of the writing process only started
some 50 years ago. The first broadly accepted model of the
cognitive processes involved in writing was the one pro-
posed by Hayes and Flower developed in the early 80s
(Hayes and Flower, 1980). Because text processors were
not widely available at that time, it comes as no surprise
that they model the cognitive processes involved in writing
with pen and paper. Furthermore, since almost all research
of the writing process has been conducted in laboratory set-
tings where subjects had to produce short essays, one may
ask whether the model can also be applied to writing re-
search papers and policy documents. Finally, the criteria to
assess the quality of a short essay are probably very differ-
ent from those used to assess professional papers. For one
thing, writers of professional documents must include or re-
fer to all relevant information that is known, while writers
of a short essay are only supposed to cover some items they
deem relevant for their exposé. Yet, virtually all software
for supporting text production seems to build on the con-
cepts developed in pen-and-paper research.
In this paper we first explain the Hayes and Flower model
and its later additions. Then we will relate the model to
what is considered good practice for writing in the Internet
age, and analyze the ways in which existing writing tools
facilitate the tasks and in which ways these tools can be im-
proved. We will illustrate our arguments with a Proactive
Recommender System: À Propos. This system is being de-
veloped in order to support writers in the difficult task of
finding relevant information during writing.

2. The cognitive processes involved in
writing

2.1. The Model of Hayes and Flower (1980)

Since the beginning of empirical research scholars have
agreed that writing involves at least three different cogni-
tive processes, usually called ’planning’, ’translation’ and
’review/editing’. Hayes and Flower (1980) propose that
there is a recursive interaction between planning, transla-
tion and review/editing. The model defines three compo-
nents: the writing process proper (which includes the three
processes/stages mentioned above), the task environment
and the writer’s long-term memory (see Fig. 1).
Planning involves retrieving domain knowledge from the
writer’s Long-Term memory (LTM) and organizing it into
a plan that specifies, among other things, the effects that
the writer wants (or needs) the text to have. During the pro-
cess of Translating writer’s plans and goals are transformed
into sentences. In the Reviewing stage the writer evaluates
the relation between the text written so far and the linguis-
tic, semantic and pragmatic aspects that best serve the goal.
The task environment includes everything existing outside
the writers’ mind and that can influence the writing task.
The main elements included here are the text produced so
far and the so called rhetorical problem (the writing assign-
ment, the specification of topic and the audience).
In the writer’s LTM are stored the writer’s knowledge about
the topic, the knowledge of sources based on literature
search, the writing plans and the knowledge about the au-
dience who will read the work.

21

Task Environment

Monitor

Writer’s LTM

Knowledge of topics

Knowledges of
audience

Stored writing plans

Knowledge of
sources based on
literature search

Writers
assigment

Topic
Audience

Text produced
so far

Revising/
reviewing

Reading

Editing

T
ra

n
sla

tin
g

G
e

n
e

ra
tin

g

Writing process

Organi-
zation

Goal
Setting

Figure 1: The Model of Writing proposed by Hayes and
Flower (1980)

2.2. The Revised Model by Hayes (1996)
Later on, Hayes (1996) revised the model and emphasized
the role of working memory, as well as socio-cultural and
motivational aspects in writing. The main components are
now the task environment and the individual (see Fig. 2). In
the new model the task environment is divided into social
and physical contexts. The social environment needs to be
considered because the way a text is written ought to be af-
fected by the audience it is meant for.
In the physical environment the composing medium or tool
used to write is included. Variations in the medium seem to
lead to differences in the way people carry out the writing
task. For example, Haas (1996) found that writers tend to
plan more when they write on paper than with a word pro-
cessor, presumably because it is easier to sketch, draw and
interconnect ideas using pen and paper. Haas also found
that writers tend to revise documents on general level (i.e.
modifying the structure) when using a pen, and more on a
local level (i.e. revision of syntax, semantics, vocabulary)
when working on screen. These results suggest that the in-
troduction of computer tools as a medium for writing entice
users to change the processes, rather than making the orig-
inal processes easier or more effective. However, it should
be noted that the revised model of Hayes still seems to deal
only with writing short essays with pen and paper or with a
stand-alone text processor and without the need to look for
external information.
The components motivation/affect, cognitive processes,
working memory and long-term memory are included in
the part that models the writing individual. The main cog-
nitive processes of writing are now text interpretation, re-
flection and text production. Text interpretation refers to
the creation of internal representations based on linguistic
and also graphic input. Planning has been replaced with the
more general cognitive function of reflection that includes
processes of problem solving, decision making and infer-
ence. Text production refers of course, to the act itself of
producing written texts.
The working memory is also included in the model and in

The Social Environment

The audience

The Collaborators

The Phisical Environment

The text so far

The Composing medium

THE TASK ENVIRONMENT

THE INDIVIDUALMotivation/Affect

Goals

Predispositions

Beliefs and
attitudes

Cost/benefit
estimates

Working Memory

Reflection

Phonological
Memory

Text production

Cognitive
Processes

Text
interpretation

Semantic
Memory

Visual/spatial
sketchpad

Long-term Memory

Task Schemas

Topic knowledge

Audience
Knowledge

Linguistic
Knowledge

Genre
Knowledge

Figure 2: The Model of Writing proposed by Hayes (1996)

addition to its storage function, it performs a set of control
functions. In a similar way, the model of Kellog (1996) in-
tegrates working memory into writing. During the writing
process information from LTM is retrieved and deposited
into working memory.

2.3. The Role of Long-term Memory and the Need to
Look for New Information

Current models of writing assume that knowledge about the
topic of the text is available in the writer’s neural LTM.
The reality of writing professional texts, however shows
that writers almost invariably need to look for additional
external information. Sometimes it is just very difficult to
remember and retrieve information that is already stored in
the writer’s LTM. The need for searching or verifying de-
tailed factual data is especially important during the review-
ing phase. At other times the writer does not know about
a specific bit of information and needs to consult external
sources.
Of course, the need to do research before writing a paper
existed before the advent of digital computers and text pro-
cessors. Most probably, the idea that Planning should pre-
cede Translation derives from that practice. However, the
advent of the Internet has caused a dramatic change in the
process of writing. More often than not, writing is now in-
terleaved with searching for information. Searching while
writing is so easy that few writers can resist it. The ques-
tion remains, however, whether continuously switching be-
tween the tasks of writing and searching is efficient, and
whether it tends to result in the best possible quality of the
texts. Because it is now common practice to interleave writ-
ing and searching, it is not only necessary to design tools

22 LREC 2008 Workshop on Authoring Aids

that support the cognitive processes involved in writing, but
also tools that help users in finding information that writers
cannot retrieve from their own memory.
Most computer writing environments (Britton and Glynn,
1989) seem to have been designed with the purpose of sup-
porting the process of reflection. In general, systems help
writers with grammar and spelling or to formulate exter-
nal representations of their ideas and connect the main is-
sues that should be covered, the ordering of the sections,
etc. The Writing Environment (WE) developed by Smith et
al. (1987) was one of the first to support the processes of or-
ganization and editing by means of a network mode, a tree
mode, an editing mode, and a text mode. Another exam-
ple is the tool developed by Neuwirth and Kaufer (1989),
which offers visual representations that help to organize
notes and graph summaries.

3. Writing in the internet age: finding
related information during writing

The World Wide Web is a rich source of information about
virtually any topic and looking for information on websites
has become the most popular way to access information.
Search engines have become the primary tool for informa-
tion access in the Internet and company-internal networks.
However, searching and navigating is often not as efficient
and easy as users might like. Users frequently feel ”lost
in hyperspace”. Feeling lost or the tendency to lose one’s
sense of location is the most common problem users ex-
perience while navigating and strongly affects user’s per-
formance and satisfaction (Conklin, 1987; Gwizdka and
Spence, 2007; Puerta Melguizo et al., 2006). Ironically,
the very potential strength of hypertext, namely improving
the management of loose collections of relatively unstruc-
tured information, turned out to be a major potential weak-
ness (Neuwirth and Kaufer, 1989).
Furthermore, keyword-based search is inefficient and rele-
vant information may be missed because the writer did not
realize that the information exists and could be looked up.
Considerable time is spent interacting with low-precision
search engines. Consequently, the time in which the au-
thor is away from creating the document can affect the total
time spent, and the eventual quality of the text. Switching
from the text editor to the search engine imposes extra de-
mands on the user’s cognitive capacities. A system that can
relieve authors from explicit search and switching between
applications by means of searching information accurately
and recommending this information in a proactive manner
would be most welcome.

4. À Propos: a proactive recommender
system

The main goal of Proactive Recommendation Systems
(PRSs) is to consult large quantities of documents, decide
what available information is most relevant for the task, and
offer that information without user requests. The decision
about what information to offer is mainly based on the text
that is currently being written, in combination with per-
sonal profiles and profiles of the person’s working group.
A few PRSs for writing have been developed. For exam-

ple, the Remembrance Agent (Rhodes, 2000) suggests per-
sonal email and documents. Watson (Budzik and Ham-
mond, 1999) performs automatic Web searches based on
text being written or read. A problem with these PRSs is
that they are developed as search support tools and do not
seem to take into account the specific characteristics of the
writing task, which can be seriously affected by any type of
interruption from the environment.
The goal of the project À Propos is to develop a proac-
tive, adaptive, personalized, just-in-time knowledge man-
agement environment for writers in a professional envi-
ronment. The architecture of À Propos is inspired by
other PRSs such as Watson (Budzik and Hammond,
1999) and Stuff I’ve Seen (Dumais et al., 2003). A de-
tailed description of the system’s architecture can be found
in (Puerta Melguizo et al., 2007) where the role of the dif-
ferent components of the system such as observers, filters
and gatekeepers is explained.
Deshpande found that two main issues need to be addressed
if a PRS for writing is to assist rather than distract the
users (Deshpande et al., 2006). First, proactive suggestions
must be extremely accurate. Second, procedures to identify
the different writing stages and related information needs
must be created in order to design an appropriate user’s in-
terface.

4.1. Selecting and Presenting Relevant Information
Recommendations should be both on topic and personal-
ized. To increase the topicality of suggestions one can use
detailed personalized taxonomies integrated in an easily ex-
pandable, yet robust IR model (such as the Vector Space
model). Ideally, personalization should go so far that two
users with different interests writing or reading the same
document should get different personalized recommenda-
tions. We are investigating two different types of personal-
ization: on the user level and on the group level.

4.1.1. User personalization
From the user perspective we only consider evidence of the
user’s interests and expertise. From these data we build a
personal profile of terms which is used to re-rank the ini-
tial recommendations list. Three different sources of infor-
mation are considered for this purpose. First, the impor-
tant terms of previously selected documents are added to
the user’s personal profile. Second, important terms in the
user’s past documents are given different weights, depen-
dent on whether they were written by the user or merely
read. Finally, the PRS allows users to enter informational
queries manually; the important query terms entered explic-
itly are also be included into the user profile.

4.1.2. Group personalization
Group personalization is done on the basis of the expertise
of the members of a group. Not every group member has
an equal level of expertise or interest in the specific topic
of the document being written by an active user. À Propos
performs group personalization by identifying the expertise
of the group members in different topics. The user-level
profile can be seen as an expertise fingerprint of that user,
with terms that describe his or her interests. The user’s own
documents are an effective source for obtaining important

M. Melguizo, O. Ramos, L. Boves, T. Bogers, A. Bosch 23

expertise terms (Balog et al., 2007). We can then use tax-
onomies, such as the ACM hierarchy, to represent the topics
for which we want to quantify a group members’ expertise.
By collecting an adequate number of documents for each
topic we can construct topic fingerprints.
The next step is to match these topic fingerprints with the
user’s expertise profile by calculating the term overlap. A
higher overlap indicates more expertise in the subject. This
way we can calculate the expertise of each group member
on the different topic areas and also find out which group
members are experts in the topic of the user’s active docu-
ment. Figure 3 shows an example of such a distribution.
Knowledge of the distribution of expertise over the group
is then used for personalization. The recommendation of a
document by an expert on the topic should be considered
as more reliable and this can have a significant influence
on the final re-ranking (Bogers and Van den Bosch, 2006).
Group personalization can be used to recommend highly
regarded documents that were not in the initial recommen-
dation list. Finally, the expertise fingerprints can also be
compared to each other and used to suggest related topics
to provide for a more serendipitous experience. Serendip-
ity is especially important in the earliest phases of planning
and composing a document.

Figure 3: Distribution of expertise in a group. The vertical
axis represents overlap between the fingerprints of individ-
ual users and experts.

4.2. The Current User’s Interface

À Propos proactively submits queries based on the user pro-
file, in combination with what the user is currently typing
or reading. The retrieved information is presented proac-
tively and immediately. In the present version of the sys-
tem, search results are presented in a semi-transparent win-
dow located in the bottom right of the screen (see Fig. 4).
The window contains URLs related to what the user is typ-
ing. As the user moves the cursor over the references, the
URLs become fully visible and active. On clicking the
required URL, the user accesses the corresponding paper.
The information presented also changes as the user moves
the cursor while reviewing previously written parts of the
document, on the basis of queries created from the text in
the paragraph in which the cursor is located.

4.3. Writing Stages and No Intrusiveness
One problem with presenting proactive information is that
it can interrupt the ongoing writing task. Interruptions can
be more disturbing and distracting in specific stages of the
writing process. This needs to be considered in order for the
system to recognize what are the most opportune moments
to present the information in a non-intrusive and timely
fashion.
Furthermore, replicating other studies (Dansac and Alamar-
got, 1994; Jones, 2003) it has been found that writers look
for extra information especially during Planning and Re-
viewing (Deshpande et al., 2006; Puerta Melguizo et al.,
2007). We studied the effects of presenting proactive infor-
mation during Planning and Reviewing.

Figure 4: The user’s interface.

4.3.1. Presenting Proactive Information during
Planning Tasks

Planning involves creating and organizing ideas, and setting
goals during composition. In order to simulate the stage of
Planning, we used a procedure similar to the one described
by Berninger et al. (1996). Participants were told that they
had to write short essays about different topics, but before
starting to create actual sentences they had to plan and write
an outline of the major points of the text with supporting de-
tails and the order in which they would be introduced.
A total of 32 participants wrote the planning outlines un-
der four information seeking conditions: 1) without PRS
and no option of looking for extra information, 2) without
PRS and with the option of getting information by actively
searching information in the Web (active search), 3) with
presentation of relevant information by our PRS, and 4)
with presentation of non-relevant information by our PRS.
We found that the presentation of information by the PRS
did not seriously impair time performance during plan-
ning. Furthermore, when relevant information was pre-
sented proactively, the quality of the resulting writing plan
was significantly better, in the sense that participants intro-
duced more information and included more correct ideas in
their planning than in any of the other conditions. Conclud-
ing, the presentation of proactive relevant information by
the PRS improves the quality of the planning process. At

24 LREC 2008 Workshop on Authoring Aids

the same time, the interrupts caused by presenting newly re-
trieved information does not disturb the task, since it does
not take more time to write a plan in the condition where
the PRS presented relevant information, compared to the
other conditions. The results of this experiment also show
that active search initiated by the user resulted in a lower
quality of the information found and the written text.

4.3.2. Presenting Proactive Information during
Reviewing Tasks

When reviewing previously composed text, writers read
and edit their written text whenever errors or weaknesses
are detected in the text. In this stage writers normally look
for factual information in order to correct and/or justify
written ideas. To explore the effects of presenting proactive
information during the review phase, we asked participants
to perform two different editing tasks: spelling corrections
and filling in factual information that was left to be spec-
ified exactly when the text was drafted. These two tasks
are similar to the ones described by Iqbal et al. (2005).
Twenty participants performed both reviewing tasks under
three different information seeking conditions: 1) without
PRS but with the option of getting information by actively
searching information in the Web (active search), 2) with
presentation of proactive relevant information by our PRS
3) with presentation of non-relevant information by our
PRS. Again, the main results of this experiment show that
the presentation of proactive information does not seriously
impair the time performance in editing tasks in comparison
with the conditions in which the user was not interrupted
by the system. Furthermore and very importantly, the time
spent in looking for new relevant information was shorter
when the PRS presented relevant information than in the
cases in which participants had to search for the informa-
tion actively. The information seeking time was even longer
when non-relevant information was presented proactively.
In this case, after assessing that the information by the PRS
could not help in completing the editing task, participants
started an active search. This result emphasizes the im-
portance of developing appropriate search profiles and fil-
ters as described above. Finally, the quality of the editing
tasks was also significantly better when proactive relevant
information was presented showing once more, that active
search initiated by a user is less effective.

5. Conclusions
Several systems have been developed to support the process
of writing. Most of these systems, however, are mainly
designed with the purpose of supporting the processes of
reviewing and planning, organizing and connecting ideas.
We think that it is also necessary to develop systems able
to support author’s knowledge about the topic. Or in other
words, to develop systems that offer an external LTM mem-
ory to the writer and that can be accessed whenever the need
to enter new information is needed. In this paper we pre-
sented the Proactive Recommender System: À propos. This
system aims at supporting writers in the task of finding ap-
propriate relevant information during writing.
First, we presented our approach at developing group and
personal profiles that make sure the information presented

by the system is relevant to the writer and to the specific
piece of text is being written. We also describe the stud-
ies we performed in order to explore the effects of present-
ing proactive information when writers are planning and
reviewing text. From our experiments we conclude that the
user’s interface of the PRS does not negatively affect the
task of writing. And even more important, when relevant
information is presented, the quality of the resulting text
significantly improves in comparison with the situations in
which the user actively seeks for information.
Futhermore, the results of our experiments with proactive
presentation of information suggest that professionals are
willing to accept unsolicited pop-up windows and similar
interrupts if the information that they are alerted to by those
interrupts is relevant for the completion of their (writing)
task. Yet, more research is needed to better understand the
human factors issues related to these interrupts.

5.1. An External Long-Term Memory

One of our goals is to develop the PRS in such a way that it
can be used as an addition to the writer’s neural Long-Term
Memory (LTM). So far, virtually all writing research has
been conducted in settings in which the LTM was limited to
the writer’s own brain (Berninger et al., 1996; Neuwirth and
Kaufer, 1989). The advent of extremely powerful search
systems already has had a large effect on the way people
consider LTM. Students are no longer trained to memorize
facts and information; rather, they are trained in efficient
and effective search techniques. Thus, it is becoming more
important to know how to find information than to memo-
rize information in the first place. However, access to the
virtually unlimited information in the Internet is not with-
out problems. Knowing less, while searching more will
make it more difficult to assess the importance of newly
found information and to integrate it in a coherent frame-
work. While computer tools may not be able to facilitate
the integration process any time soon, they may be able to
support the decisions about the relevance of the results re-
turned from a query. The personalization and expert rank-
ing that we are investigation holds the promise that it can
help pofessionals to avoid getting lost in hyperspace and
cyberspace. Also information retrieved in the form of doc-
uments or text snippets may have a different impact on how
one decides to organize the information in a coherent text
than when the information is retrieved from one’s own ex-
perience. Consequently, we think it is neccesary to develop
a new model of cognitive writing processes in which the ex-
ternal LTM that the WWW and other databases conforms,
needs to be included as an important part of the physical
environment. In this new model it would be also necce-
sary to include the need to look for information outside our
brain during writing as another important cognitive process
to consider. Currently there are a few models that try to rep-
resent writing and information searching process. The most
relevant is the model of Kuhlthau (2004). In this model
however, the writing starts as the search is finished. The
real situation however is that both processes interact con-
tinuosly while writing and consequently a model that takes
this issue into account is neccesary.

M. Melguizo, O. Ramos, L. Boves, T. Bogers, A. Bosch 25

6. References
K. Balog, T. Bogers, L. Azzopardi, M. De Rijke, and

A. Van den Bosch. 2007. Broad expertise retrieval for
sparse data enviroments. In Proceedings of the 30th An-
nual International Conference on Research and Devel-
opment in Information Retrieval (SIGIR, 2007), pages
551–558, Amsterdam, The Netherlands. ACM Press.

V. Berninger, D. Whitaker, H.L. Yuen Feng Swanson, and
R.D. Abbott. 1996. Assessment of planning, translating,
and revising in junior high writers. Journal of School
Psychology, pages 23–52.

T. Bogers and A. Van den Bosch. 2006. Authoritative re-
ranking of search results. In Proceedings of the 28th
European Conference on Information Retrieval (ECIR
2006), volume 3936, pages 519–522.

B.K. Britton and S.M. Glynn. 1989. Computer Writing
Environments: Theory Research and Design. Lawrence
Erlbaum Associates, Hillsdale, New Jersey.

J. Budzik and K. Hammond. 1999. Watson: Anticipating
and contextualizing information needs. In Proceeding of
the 62th Annual Meeting of the American Society for In-
formation Science, pages 727–740.

J. Conklin. 1987. Hypertext: An introduction and survey.
In IEEE Computer Magazine, volume 20, pages 17–41.

C. Dansac and D. Alamargot, 1994. Accessing referential
information during text composition: when and why?,
pages 76–97. Amsterdam University Press.

A. Deshpande, L. Boves, and M.C. Puerta Melguizo. 2006.
À propos: Pro-active personalization for professional
document writing. In SigWriting, 10th International
Conference of the EARLI Special Interest Group on writ-
ing.

S. Dumais, E. Cutrell, J. Cadiz, G. Jancke, R. Sarin, and
D. C. Robbins. 2003. Stuff ive seen: a system for per-
sonal information retrieval and re-use. In Proceeding of
the 26th Annual Int. Conference on Research and De-
velopment in Information Retrieval (SIGIR 2003), New
York. ACM Press.

J. Gwizdka and I. Spence. 2007. Implicit measures of lost-
ness and success in web navigation. Interacting with
Computers, pages 357–369.

C. Haas. 1996. Writing Technology Studies on the Mate-
riality of literacy. Lawrence Erlbaum Associates, Hills-
dale New Jersey.

J.R. Hayes and L. S. Flower, 1980. Cognitive processes in
writing, chapter Identifying the organization of writing
processes, pages 3–30. Lawrence Erlbaum Associates,
Hillsdale New Jersey.

J.R. Hayes, 1996. The science of writing: Theories, meth-
ods, individual differences and applications, chapter A
new framework for understanding cognition and affect
in writing, pages 76–97. Lawrence Erlbaum Associates,
Hillsdale New Jersey.

S.T. Iqbal, P. D. Adamczyk, X. S. Zheng, and B. P. Bailey.
2005. Towards an index of opportunity: understanding
changes in mental workload during task execution. In
Proceedings of ACM Conference on Human Factors in
Computing Systems (ACM CHI 2005), pages 311–320.

P.H. Jones. 2003. Distributed information seeking in

research collaboration: An extended economy of re-
sources, memory and cognition. In CSAPC 2003 Work-
shop, Amsterdam.

R.T. Kellogg, 1996. The science of writing, chapter A
model of working memory in writing, pages 57–71.
Lawrence Erlbaum Associates, Mahwah, New Jersey.

C.C. Kuhlthau. 2004. Seeking meaning: a process ap-
proach to library and information services. Libraries
Unlimited, Westport CT.

C.M. Neuwirth and D.S. Kaufer. 1989. The role of external
representations in the writing process: Implications for
the design of hypertext-based writing tools. In Hypertext
1989, pages 319–341. ACM Press.

M.C. Puerta Melguizo, V.R. Lemmert, and H. Van Oos-
tendorp, 2006. Current Research in Information Sci-
ences and Technologies: multidisciplinary approaches to
global information systems, volume 1, chapter Lostness,
Mental Models and Performance, pages 256–260.

M.C. Puerta Melguizo, L. Boves, A. Deshpande, and
O. Muñoz Ramos. 2007. A proactive recommendation
system for writing: Helping without disrupting. In W-
P. Brinkman, D-H. Ham, and Wong W., editors, ECCE
2007: European Conference on Cognitive Ergonomics,
pages 89–95.

B. J. Rhodes. 2000. Just-in-time Information Retrieval.
Phd thesis, Massachusetts Institute of Technology, Mas-
sachusetts, USA.

J.B. Smith, S.F. Weiss, and G.J. Ferguson. 1987. A hy-
pertext writing environment and its cognitive basis. In
Hypertext 1987, pages 195–214.

26 LREC 2008 Workshop on Authoring Aids

Towards Automatic Document Quality Assurance

Neil Newbold and Lee Gillam
University of Surrey

Surrey GU2 7XH, UK
E-mail: n.newbold@surrey.ac.uk, l.gillam@surrey.ac.uk

Abstract
In our work, we are exploring the potential for automation of the quality assurance process as it applies to document production and
revision, and how a variety of corpus linguistics techniques, typically used in isolation, can be combined as a means to achieve this. In
this paper, we describe developments to date and results obtained, through the implementation and evaluation of a number of software
components, including those of the University of Surrey’s content analysis applications (System Quirk). These components include a
Plain English thesaurus, terminological lookup supported by ISO standards, automatic terminology discovery using statistical and
linguistic techniques, and the use of five readability metrics to assess any apparent improvements indicated by these processes. The
components were integrated within the existing framework of GATE to demonstrate the potential for wider use of controlled authoring,
and analysis was based on standards being produced within the EU eContent project LIRICS.

1. Introduction
A vital aspect of effective communication is ensuring that
the right message is being conveyed. Clear and consistent
use of language, and especially terminology, will have an
impact on the ability of readers to comprehend and
assimilate what is written. Over-reliance on ill-defined or
author-invented terminology leads to the word “jargon”
being applied in a pejorative sense. Restrictions on
vocabulary and grammatical structure in controlled
authoring systems such as the ASD Simplified Technical
English Specification (ASD-STE100) can be vital to the
continued maintenance of systems, in this case the upkeep
of aircraft, and assume a common and well-governed use
of terminology. The restrictions on vocabulary and
grammatical structure are closely aligned to the
maintenance processes, and the need for critical
communications where ambiguity or difficulties in
interpreting subclauses could have devastating
consequences. A beneficial side-effect in such systems is
the improved ease of translation: Boldyreff et al (2001)
identify that such improvements may be of benefit also to
those with learning difficulties, limited reading skills,
dyslexia, and deaf users preferring visual language. In the
mainstream, the notion of quality assurance is well
established, yet quality assurance per se appears not to
extend to the written word. For example, authors of
international standards, through ISO, demand that written
work be precise and comprehensible. However, there is
only a small amount of written “guidance” on how to do
so, and where it does exist it is easily ignored. In a wider
context, the quality of the written word on the (English)
web requires even greater attention.
In our work, we are exploring the potential for automation
of the quality assurance process as it applies to document
production and revision, and how a variety of corpus
linguistics techniques, typically used in isolation, can be
combined as a means to achieve this. Such efforts have
multiple potential outcomes: (i) improved human
understanding and transference of concepts between

author and reader; (ii) improved machine processing,
including suitability of documents for agents of the
semantic web to find, share and integrate more easily; (iii)
improved capacity for filtering, using document quality as
an additional measure, to avoid opaque texts.
In this paper, we describe the system developed,
techniques employed, and results obtained in our work
towards automatic document quality assurance. We have
implemented and evaluated a number of software
components, including those of the University of Surrey
Department of Computing’s content analysis applications
(System Quirk). This includes a Plain English thesaurus,
terminological lookup supported by ISO standards,
automatic terminology discovery using statistical and
linguistic techniques, and the use of five readability
metrics to assess any apparent improvements indicated by
these processes. These components were integrated
within the existing framework of GATE (Cunningham et
al, 2002) to demonstrate the potential for controlled
authoring, and efforts were based on standards being
produced within the EU eContent project LIRICS. These
efforts lead us toward the development of an assistive tool,
at least for authors of standards but potentially also for
authors of other critical communications. Though we
have used emerging ISO standards to demonstrate our
approach, we do not consider it to be limited only to ISO
standards. However, adaptation to other documents
requires consideration of, at least, the availability of an
existing terminology: provision of such resources
alongside the documents may also assist readers in
navigating the content.

2. Background
A significant consideration in our work is that of
“readability”. A variety of measures of readability have
been constructed on the basis that determining factors
largely comprise sentence length, word length, and in
some cases a function of the number of syllables. The
results of applying such formulae are computed to provide
either the level of education or a difficulty score on a scale

27

of 1-100. The most common method for readability
measurement is the Kincaid Formula, used by the
American Navy to judge readability of their technical
manuals. The U.S. Department of Defence prefers the
Flesch Easy Reading Formula, and most U.S. states
require insurance forms to score 40-50 on the test (an
“average” English document usually scores 60-70).
Another common metric is the Fog Index, which indicates
how easy the writing is it is to understand. The Fog Index
produces a number denoting the number of years of
formal education needed by a person to easily understand
the text on the first reading. The "ideal" Fog Index is 7 or
8, with indexes of more than 12 supposedly running a
serious risk of not being understood or even read. The
so-called Simple Measure of Gobbledygook (SMOG) was
named as a tribute to the Fog Index and is widely used, in
particular by health authorities such as the Veteran's
Association, to assess the educational level needed to
fully understand a text. In contrast to these metrics, which
all involve the computation of the number of syllables per
word, numbers for which can vary, the Automated
Readability Index (ARI) uses the number of characters
per word and its output also produces an approximation to
the U.S. grade level needed to understand the text. The
different characteristics of the readability formulae
(Kincaid, Flesch, Fog, SMOG and ARI) are presented in
Table 1. Further discussion of these formulae and others
can be found elsewhere (DuBay 2004; Gillam and
Newbold 2007).

 Kincaid Flesch Fog SMOG ARI
Sentence length ✓ ✓ ✓ ✓ ✓
Characters/word ✓
Syllables/word ✓ ✓
Complex words
count
(more than three
syllables)

 ✓ ✓

Scale Grade
level

0-100 Grade
level

Grade
level

Grade
level

Ideal outcome 7-8
(13-14)

100 7-8 7-8 7-8

Figure 1: Features of the traditional readability metrics

Common amongst these measures is the lack of
consideration of prior knowledge as a mitigation for
higher scoring, and other considerations of complexity.
Furthermore, the formulae measure only the expected
reading level or ability of a reader, and take no account of
their expertise in the subject matter, or even their
intelligence level. Prior knowledge might be indicated by,
inter alia, word frequency and existence of a terminology,
thesaurus or glossary: commonly encountered words
comprising three or more syllables may be more difficult
than infrequently encountered words of fewer syllables:
consider, e.g. economic vs pithy; a terminology, thesaurus
or glossary provided alongside the document may explain
apparently complex terms in more familiar ways.
Increased complexity could be indicated by longer noun

compounds where bracketing (see, e.g. Pustejovsky,
Bergler and Anick 1994) could become problematic, and
other potential ambiguities may exist, for example with
multiple senses in the same domain. Oakland and Lane
(2004) identify “reader factors” and “text factors” that
contribute to text difficulty, in which background
knowledge and lexical knowledge are reader factors,
whereas syntactic structure and word rarity are considered
under text factors. For these authors, the existence of a
terminology, thesaurus or glossary may itself cause a
difficulty due to the possible need for multiple inferences
in associating terms and definitions, and definitions
across terms, contributing to “Cognitive Load”. DuBay
(2004, p31) identifies a range of prior literature in relation
to readability and comprehension involving factors such
as idea density and embeddedness. To be able to take
proper account of these factors, we first need to be able to
assess the document content, and the content of the related
language resources. The more immediate goal is to
formulate readability metrics that begin to incorporate
such considerations.

3. A System for Document Quality
We (re-)engineered a number of System Quirk
components for integration with GATE, building on some
of GATE’s existing processing resources1. Components
within our pipeline include:

1. Terminology Lookup
2. Linguistic Term Finder
3. Keyword Extractor
4. Statistical Term Finder
5. SimpleText Analyser
6. Annotation Controller
7. Readability Analyser
8. Replacer

The pipeline for these resources is shown in Figure 1.
Terminology Lookup (1) makes use of an existing
database of terms, interfaced using the Terminological
markup framework (ISO 16642). Each term discovered
within the document is annotated using this component.
These annotations become useful at a later stage.
Unknown terms are annotated via two approaches for
terminology extraction: linguistically using the Linguistic
Term Finder (2), and statistically using the combination of
the Keyword Extractor (3) and Statistical Term Finder (4).
The Linguistic Term Finder discovers compound nouns in
the document according to specified patterns of part of
speech annotations (e.g. in Jacquemin 2001). These map
to patterns for use with the GATE POS tagger: a
compound noun is identified simply as either a noun (or
compound noun) preceded by a noun or as a noun (or
compound noun) preceded by an adjective. Multiword
(noun) expressions which occur in the document with a
greater frequency than the selected threshold are
annotated. The Keyword Extractor calculates the

1 The software and associated documents are available at:
http://www.cs.surrey.ac.uk/BIMA/Projects/LIRICS/liricsSoftw
are.html

28 LREC 2008 Workshop on Authoring Aids

frequency and weirdness of individual words, as defined
by Gillam (2004), using the British National Corpus
(BNC) as a reference collection. The so-called
“Strathclyde Readability Measure” (Weir and Ritchie
2006) uses the BNC in a slightly different orientation,
using frequencies in the BNC as a proxy for the
complexity of the text. Our use here incorporates
comparison as a means to an end, not the end itself. Our
approach compares frequencies in the source text with
those in BNC, annotating so-called “weird” words.
Annotations can be controlled by the user via thresholds
for relative strength of frequency and weirdness. The
Statistical Term Finder (4) then uses the “weird”
annotations as seeds to examine neighbouring words and
identify collocation patterns (Smadja 1993). If a
collocating word consistently appears in the user-defined
neighbourhood size above a predetermined weirdness
threshold, the resulting multiword expression is annotated.
This can be made iterative, such that the resulting
multiword expression is used to derive longer expressions
satisfying the threshold.

Figure 2: Pipeline

Complex and verbose words and phrases in the document
are identified using a Plain English thesaurus, which
offers simpler alternatives, through the Simple Text
Analyser (5). Alternatives are suggested to the user as
annotations, and selected alternatives can be
automatically substituted via the Replacer (8). The
Annotation Controller (6) collects annotations from the
Linguistic Term Finder and the Statistical Term Finder to
annotate term candidates with metadata detailing whether
the new term originated from linguistic or statistical
analysis. Terms which are both linguistically and
statistically valid provide a stronger case for addition to

the terminology collection. The Annotation Controller
also collects annotations from the Simple Text Analyser
and optionally allows for annotations to be prioritised
such that recognised terms are not additionally annotated
as potential new terms, and annotations from the Simple
Text Analyser would also be dropped. This means that
complex phrases recognised as existing or potential
terminology will not be annotated as verbose text by the
SimpleText Analyser. The five implemented readability
metrics can be run over the input text, and also prior to
running the Replacer to determine the likely impact of
making replacements. The Replacer only substitutes
complex phrases selected by the user. These decisions
cannot be automated and require author feedback. The
process is iterative, enabling the author to assess the
impacts of a variety of modifications.

4.1 Analysis
To demonstrate our analysis, two standards being
developed within the LIRICS project, at various stages of
the ISO process, have been analysed using this system.
The documents are the ‘Lexical markup framework
(LMF)’ (at Draft International Standard stage) and the
‘Syntactic Annotation Framework (SynAF)’ (at Working
Draft stage). Terminology Lookup (1) identified 466
instances of known terms in the LMF document, and 96 in
SynAF. By contrast, the combined linguistic and
statistical techniques for term identification discovered a
further 3712 and 1125 potential instances of undefined
terms, respectively. This suggests a particular workload
for the author and reader alike. The ‘LMF’ document was
roughly three times the size of ‘SynAF’, but indicatively
has rather more terminological content. The top 10
known terms and their frequencies in ‘LMF’ and ‘SynAF
are shown in Table 1.

LMF SynAF

Term Count Term Count

Class 238 Type 28

Form 99 label 15

Lexical Entry 59 data 14

Word 57 definition 9

Lexicon 46 object 9

Data 44 information 6

Paradigm 39 Merge 2

Paradigm Class 31 Parsing 2

Lemma 30 Read 2

Extension 27 Context 1

Table 1: The top 10 known terms with their frequencies in

‘LMF’ and ‘SynAF’

Candidate terms such as ‘syntactic annotation’,
‘annotation’, ‘SynAF’ and ‘morph’ were identified as
items that may need to be defined, definitions for which
would be incorporated within Terminology Lookup and
applied at the next iteration. Further filtering of this list is

N. Newbold, L. Gillam 29

required, and frequency information can be helpful here
also. We may consider whether it is worth having
definitions for candidates at lower frequencies, or indeed
whether such low frequencies are indicative of other
issues with the document. Examples of discovered
(bigram) term candidates from LMF are shown in Table 2.

Term
Linguistic
Discovery

Statistical
Discovery Count

sense class Y N 14

lexicon instance Y N 8

core package Y N 6

sense instance Y N 6

external system Y N 5

Table 2: Examples of frequent bigrams in ‘LMF’

Discovered terms of increased length at lower frequencies
indicate the existence of potentially highly complex
expressions. The combination of the two methods of
identifying candidate terms allows for readability issues
caused by ambiguous bracketing to be highlighted. Such
a readability issue can be demonstrated by the first item in
Table 3, the ”complex knowledge organization system”:
1. [complex knowledge] [organization system]: an
organization system for complex knowledge, simple
knowledge is excluded?
2. [complex][knowledge organization system]: a
knowledge organization system that is somehow
complicated?
3. [complex knowledge organization] [system]: the
system is for an intricately arranged “knowledge
organization”?

Term
Linguistic
Discovery

Statistical
Discovery Count

complex knowledge organization
system Y N 4
lmf data category selection
procedures Y N 2

semantic predicate class section Y N 2

dual use mrd metamodel Y N 2

dual use mrd package Y N 2

multi-layered annotation N Y 3

multi-layered annotation strategy Y N 2

Table 3: Examples of potential multiword terms that were

discovered in ‘LMF’

Table 3 also demonstrates term inclusion: “data category”
is a term from "ISO 1087-2:2000 Terminology work -
Vocabulary - Part 2: Computer applications" and "data
category selection" is defined in "ISO 12620:1999
Computer applications in terminology - Data categories".
We find 2 instances of “lmf data category selection
procedures”, which appears to extend this notion
somehow. Correct interpretation, however, remains an
exercise for the document author. The discovery of the

“multi-layered annotation” and its “strategy”, or perhaps
the “annotation strategy” and its multiple layers, may also
suggest the need for the correct interpretation to be made
clear.
In analysis using a subset of the Plain English
substitutions against a further document, ISO/DIS 12620,
we found 183 potential replacements, of which 65 were
deemed valid. A sample of these is contained in Table 4.
Further analysis needs to be performed on the validity of
replacements, if the ‘component’, ‘part’ substitution is
dismissed; the overall success is increased to over 50%.

Phrase Replacement
Occurs
In Text

Replaced
%
Correct

application use 17 1 5.88%
by means of by 2 2 100.00%

component part 68 1 1.47%

comprises is made up of 4 4 100.00%

consequence result 1 1 100.00%

essential important 2 2 100.00%
in conjunction
with

with 2 2 100.00%

in order to to 4 4 100.00%

various different 10 4 40.00%

within in 20 14 70.00%

Table 4: Replacements filtered from initial suggestions,
with the number of times the replacements were correct

throughout the rest of the document

To investigate the extent to which this limited number of
substitutions could influence the readability scores of the
document, the substitutions were made and the readability
analysis was re-run. All readability scores demonstrated
slight reductions except for the FOG and SMOG results.
The increase in readability scores can be attributed to the
fact that some Plain English replacements do not increase
readability scores. In fact, the number of words in a
document can actually increase due to some of the
replacements. The most common example of this
occurrence is the substitution of “comprises” for “is made
up of”. The readability scores before and after the
replacements are shown in Table 5.

Score Before After

Kincaid 14.753 14.747

Flesch 28.534 28.611

FOG 17.234 17.254

SMOG 15.432 15.447

ARI 14.408 14.398

Table 5: Readability scores before and after the

SimpleText process

4. Discussion
Draft standards were analysed using the techniques
presented, and additional commentary was fed into the

30 LREC 2008 Workshop on Authoring Aids

ISO process either in NSB comments, or in interactions
with the author/editor of the standard. The analysis of
language simplicity and consistency, identification of
known and unknown terms, and the generation of
“understandability” metrics all demonstrated interesting
and potentially highly-valuable results. Human
interpretation of, and action upon, the results being
produced by these components is still required to varying
extents. As such, this is very much a work in progress,
and further efforts are needed both to improve the
formulation of feedback and to lead to improved
automation in the system. Ideally, standards authors
would make use of such a system prior to document
review in the ISO process, potentially leading to a
reduction in the quantity of comments relating to
document syntax or terminology.
While typical readability formulae can be useful for
comparative measurements, they largely lack
consideration of external factors that may make a text
more or less easy to understand. In addition, while
readability formulae consider short sentences, little by
way of other lexical or syntactic features tend to be
examined. In our work, we primarily consider
terminological complexity and how this might be useful
as a means to compute the cognitive load in understanding
a new text. Avenues for further research are likely to
include: (1) improving SimpleText performance through
consideration of local contexts (lexical and/or
grammatical); (2) consideration of cognitive load through
semantic distance; (3) enhanced statistical (term)
detection by improving discrimination of collocation
patterns, with related investigations currently being
undertaken on the Enron email corpus; (4) production of
readability metrics that incorporate the results of the
approach outlined, taking account of additional
background knowledge that can be provided alongside the
document.
During the authoring process in general, the
disassociation between author and reader can tend to lead
to comments about documents being impenetrable. In the
development life cycle of an ISO standard, various
iterations of the document are reviewed and commented
upon. Versions of the document include the Working draft
(WD), Committee draft (CD), Draft International
Standard (DIS) and Final DIS (FDIS). Comments are
generally provided through National Standards Bodies
(NSB), where they are expected to have been validated
against principles and methods used for the production of
the standards. The amount of hidden effort in the
production of standards can be significant: consider the
possible commentary from twenty NSBs; the number of
people involved with each NSB who read the documents
and who provide comments into the NSB, and the
potential scale of duplicated comments across NSBs
becomes apparent. Comments from NSBs then have to be
merged, filtered, and subsequently dealt with by the editor
of the standard. This multiple-authoring approach should
lead to more understandable documents – however, such
documents are mostly authored within the technical

domain of the committee, with shared knowledge and
understanding having developed within these committees,
and distributed across some number of other documents
produced previously by these committees. It is likely that
a reader would need multiple ISO documents open
simultaneously to take some account of such prior work.
Increasingly, this is true of most ventures.

5. Acknowledgements
This work has been supported, in part, by the EU eContent
project LIRICS (22236) and the UK’s EPSRC project
REVEAL (GR/S98443/01).

6. References
ASD Simplified Technical English. URL:

http://www.asd-ste100.org/. Last accessed 19 Feb.
2008.

Boldyreff, C., Burd, E., Donkin, J. and Marshall, S.
(2001). The Case for the Use of Plain English to
Increase Web Accessibility. In Proceedings of the 3rd
Intl. Workshop on Web Site Evolution (WSE’01).

Cunningham, H., Maynard, D., Bontcheva, K. and Tablan,
V. (2002). GATE: A Framework and Graphical
Development Environment for Robust NLP Tools and
Applications. In Proceedings of the 40th Anniversary
Meeting of the Association for Computational
Linguistics(ACL'02). Philadelphia, July 2002.

DuBay, W.H. (2004). The Principles of Readability, Costa
Mesa, CA:Impact Information,:
http://www.impact-information.com/impactinfo/reada
bility02.pdf. Last accessed 19 Feb. 2008.

Gillam, L. and Newbold N. (2007) Quality Assessment.
Deliverable 1.3 of EU eContent project LIRICS. URL:
http://lirics.loria.fr/doc_pub/T1.3Deliverable.final.2.pd
f. Last accessed 19 Feb. 2008.

Pustejovsky, J., Bergler, S. and Anick, P. (1994). Lexical
Semantic Techniques for Corpus Analysis.
Computational Linguistics 19(2), pp. 331--358.

Gillam, L. (2004). Systems of concepts and their
extraction from text. Unpublished PhD thesis,
University of Surrey.

Jacquemin, C. (2001) Spotting and Discovering Terms
through Natural Language Processing. The MIT Press.

Oakland, T. and Lane, H.B. (2004), Language, Reading,
and Readability Formulas: Implications for Developing
and Adapting Tests, International Journal of Testing,
Vol. 4, No. 3, pp. 239--252.

Plain English Campaign. URL:
http://www.plainenglish.co.uk/. Last accessed 19 Feb.
2008.

Smadja, F. (1993). Retrieving collocations from text:
Xtract. Computational Linguistics, 19(1) pp. 143--178.

Weir, G. R. S. and Ritchie, C., 2006. Estimating
readability with the Strathclyde readability measure.
ICTATLL Workshop Preprints, 21-22 August 2006, pp.
25--32.

N. Newbold, L. Gillam 31

