A Comparative Cross-Domain Study of the Occurrence of Laughter in Meeting and Seminar Corpora

Susanne Burger ${ }^{1}$, Kornel Laskowski ${ }^{1,2}$, and Matthias Wölfel ${ }^{2}$
${ }^{1}$ interACT, Carnegie Mellon University, Pittsburgh PA, USA ${ }^{2}$ interACT, Universität Karlsruhe, Karlsruhe, Germany

May 28, 2008

Why Study the Occurrence of Laughter?

- primary motivation: conversation understanding

Why Study the Occurrence of Laughter?

- primary motivation: conversation understanding

Why Study the Occurrence of Laughter?

- primary motivation: conversation understanding

Why Study the Occurrence of Laughter?

- primary motivation: conversation understanding

Why Study the Occurrence of Laughter?

- primary motivation: conversation understanding

Why Study the Occurrence of Laughter?

- primary motivation: conversation understanding

Why Study the Occurrence of Laughter?

- primary motivation: conversation understanding

Why Study the Occurrence of Laughter?

- primary motivation: conversation understanding

Why Study the Occurrence of Laughter?

- primary motivation: conversation understanding

Why Study the Occurrence of Laughter?

- primary motivation: conversation understanding

Why Study the Occurrence of Laughter?

- primary motivation: conversation understanding

Why Study the Occurrence of Laughter?

- primary motivation: conversation understanding

Why Study the Occurrence of Laughter?

- primary motivation: conversation understanding

- detection and modeling of laughter is important for understanding both interaction and emotion

Why Study the Occurrence of Laughter?

- primary motivation: conversation understanding

- detection and modeling of laughter is important for understanding both interaction and emotion
- given a speech corpus genre, it is generally not known

Why Study the Occurrence of Laughter?

- primary motivation: conversation understanding

- detection and modeling of laughter is important for understanding both interaction and emotion
- given a speech corpus genre, it is generally not known
(1) how much laughter there actually is
(2) when it tends to occur

Three Specific Questions

To inform the design of computational models of conversational interaction in seminars:

Three Specific Questions

To inform the design of computational models of conversational interaction in seminars:
(1) What is the quantity of laughter, relative to the quantity of speech?

Three Specific Questions

To inform the design of computational models of conversational interaction in seminars:
(1) What is the quantity of laughter, relative to the quantity of speech?
(2) How does the durational distribution of episodes of laughter differ from that of episodes of speech?

Three Specific Questions

To inform the design of computational models of conversational interaction in seminars:
(1) What is the quantity of laughter, relative to the quantity of speech?
(2) How does the durational distribution of episodes of laughter differ from that of episodes of speech?
(3) How do meeting participants appear to affect each other in their use of laughter, relative to their use of speech?

For the ICSI Meeting Corpus (Janin et al, 2003), ...

... we know the answers (Laskowski \& Burger, 2007):

Aspect	meetings

For the ICSI Meeting Corpus (Janin et al, 2003), ...

... we know the answers (Laskowski \& Burger, 2007):

Aspect	meetings
\% of vocalization time in laughter	9.4%

For the ICSI Meeting Corpus (Janin et al, 2003), ...

... we know the answers (Laskowski \& Burger, 2007):

Aspect	meetings
\% of vocalization time in laughter	9.4%
\% of laugh time in voiced laugter	74.3%

For the ICSI Meeting Corpus (Janin et al, 2003), ...

... we know the answers (Laskowski \& Burger, 2007):

Aspect	meetings
\% of vocalization time in laughter	9.4%
\% of laugh time in voiced laugter	74.3%
\% of laugh time in "speech laughs"	4.9%

For the ICSI Meeting Corpus (Janin et al, 2003), ...

... we know the answers (Laskowski \& Burger, 2007):

Aspect	meetings
\% of vocalization time in laughter	9.4%
\% of laugh time in voiced laugter	74.3%
\% of laugh time in "speech laughs"	4.9%
Most likely laugh duration	1.1 s

For the ICSI Meeting Corpus (Janin et al, 2003), ...

... we know the answers (Laskowski \& Burger, 2007):

Aspect	meetings
\% of vocalization time in laughter	9.4%
\% of laugh time in voiced laugter	74.3%
\% of laugh time in "speech laughs"	4.9%
Most likely laugh duration	1.1 s
Most likely inter-laugh duration	17.8 s

For the ICSI Meeting Corpus (Janin et al, 2003), ...

... we know the answers (Laskowski \& Burger, 2007):

Aspect	meetings
\% of vocalization time in laughter	9.4%
\% of laugh time in voiced laugter	74.3%
\% of laugh time in "speech laughs"	4.9%
Most likely laugh duration	1.1 s
Most likely inter-laugh duration	17.8 s
"Compression ratio" $c_{\mathcal{L}}\left(c_{\mathcal{S}}\right)$	$1.71(1.08)$

For the ICSI Meeting Corpus (Janin et al, 2003), ...

... we know the answers (Laskowski \& Burger, 2007):

Aspect	meetings
\% of vocalization time in laughter	9.4%
\% of laugh time in voiced laugter	74.3%
\% of laugh time in "speech laughs"	4.9%
Most likely laugh duration	1.1 s
Most likely inter-laugh duration	17.8 s
"Compression ratio" $c_{\mathcal{L}}\left(c_{\mathcal{S}}\right)$	$1.71(1.08)$
Prob. of resolving 2-overlap in 500 ms for $\mathcal{L}(\mathcal{S})$	$27 \%(47 \%)$
Prob. of resolving 3-overlap in 500 ms for $\mathcal{L}(\mathcal{S})$	$17 \%(41 \%)$

For the ICSI Meeting Corpus (Janin et al, 2003), ...

... we know the answers (Laskowski \& Burger, 2007):

Aspect	meetings
\% of vocalization time in laughter	9.4%
$\%$ of laugh time in voiced laugter	74.3%
\% of laugh time in "speech laughs"	4.9%
Most likely laugh duration	1.1 s
Most likely inter-laugh duration	17.8 s
"Compression ratio" $c_{\mathcal{L}}\left(c_{\mathcal{S}}\right)$	$1.71(1.08)$
Prob. of resolving 2-overlap in 500 ms for $\mathcal{L}(\mathcal{S})$	$27 \%(47 \%)$
Prob. of resolving 3-overlap in 500 ms for $\mathcal{L}(\mathcal{S})$	$17 \%(41 \%)$
Prob. of continuing 2-overlap in 500 ms for $\mathcal{L}(\mathcal{S})$	$47 \%(39 \%)$
Prob. of continuing 3-overlap in 500 ms for $\mathcal{L}(\mathcal{S})$	$71 \%(28 \%)$

For the ICSI Meeting Corpus (Janin et al, 2003), ...

... we know the answers (Laskowski \& Burger, 2007):

Aspect	meetings
\% of vocalization time in laughter	9.4%
$\%$ of laugh time in voiced laugter	74.3%
\% of laugh time in "speech laughs"	4.9%
Most likely laugh duration	1.1 s
Most likely inter-laugh duration	17.8 s
"Compression ratio" $c_{\mathcal{L}}\left(c_{\mathcal{S}}\right)$	$1.71(1.08)$
Prob. of resolving 2-overlap in 500 ms for $\mathcal{L}(\mathcal{S})$	$27 \%(47 \%)$
Prob. of resolving 3-overlap in 500 ms for $\mathcal{L}(\mathcal{S})$	$17 \%(41 \%)$
Prob. of continuing 2-overlap in 500 ms for $\mathcal{L}(\mathcal{S})$	$47 \%(39 \%)$
Prob. of continuing 3-overlap in 500 ms for $\mathcal{L}(\mathcal{S})$	$71 \%(28 \%)$

Three Specific Questions + Two More

To inform the design of computational models of conversational interaction in seminars:
(1) What is the quantity of laughter, relative to the quantity of speech?
(2) How does the durational distribution of episodes of laughter differ from that of episodes of speech?
(3) How do meeting participants appear to affect each other in their use of laughter, relative to their use of speech?

Three Specific Questions + Two More

To inform the design of computational models of conversational interaction in seminars:
(1) What is the quantity of laughter, relative to the quantity of speech?
(2) How does the durational distribution of episodes of laughter differ from that of episodes of speech?
(3) How do meeting participants appear to affect each other in their use of laughter, relative to their use of speech?
(9) How robust are our findings regarding laughter in meetings?

Three Specific Questions + Two More

To inform the design of computational models of conversational interaction in seminars:
(1) What is the quantity of laughter, relative to the quantity of speech?
(2) How does the durational distribution of episodes of laughter differ from that of episodes of speech?
(3) How do meeting participants appear to affect each other in their use of laughter, relative to their use of speech?
(9) How robust are our findings regarding laughter in meetings?
(0) How do corpus types differentiate with respect to laughter?

Laugh Bouts vs Talk Spurts

- we will contrast the occurrence of laughter \mathcal{L} with that of speech \mathcal{S}

Laugh Bouts vs Talk Spurts

- we will contrast the occurrence of laughter \mathcal{L} with that of speech \mathcal{S}
talk spurts contiguous per-participant intervals of speech (Norwine \& Murphy, 2001), containing pauses no longer than 300 ms (as in NIST RT-06s SAD)

Laugh Bouts vs Talk Spurts

- we will contrast the occurrence of laughter \mathcal{L} with that of speech \mathcal{S}
talk spurts contiguous per-participant intervals of speech (Norwine \& Murphy, 2001), containing pauses no longer than 300 ms (as in NIST RT-06s SAD)
laugh bouts contiguous per-participant intervals of laughter (Bachorowski et al, 2001), including recovery inhalation

Laugh Bouts vs Talk Spurts

- we will contrast the occurrence of laughter \mathcal{L} with that of speech \mathcal{S}
talk spurts contiguous per-participant intervals of speech (Norwine \& Murphy, 2001), containing pauses no longer than 300 ms (as in NIST RT-06s SAD)
laugh bouts contiguous per-participant intervals of laughter (Bachorowski et al, 2001), including recovery inhalation
$\mathcal{S} / \mathcal{L}$ islands contiguous per-group intervals in which at least one participant talks/laughs

Laugh Bouts vs Talk Spurts

- we will contrast the occurrence of laughter \mathcal{L} with that of speech \mathcal{S}

Outline of Talk

(1) Motivation
(2) The CHIL06 Seminar Corpus
(3) Analysis
(1) Quantity (3 slides)
(2) Duration (2 slides)
(3) Overlap (3 slides)
(1) Dynamics of Overlap (2 slides)
(9) Conclusions

The CHILO6 Seminar Corpus

The CHIL06 Seminar Corpus

- 5 interactive seminars, recorded at each of:
- Germany, Greece, Italy, Spain, and the United States

The CHIL06 Seminar Corpus

- 5 interactive seminars, recorded at each of:
- Germany, Greece, Italy, Spain, and the United States
- average duration: 33 minutes

The CHIL06 Seminar Corpus

- 5 interactive seminars, recorded at each of:
- Germany, Greece, Italy, Spain, and the United States
- average duration: 33 minutes
- 3-5 participants per seminar

The CHIL06 Seminar Corpus

- 5 interactive seminars, recorded at each of:
- Germany, Greece, Italy, Spain, and the United States
- average duration: 33 minutes
- 3-5 participants per seminar
- 71 different individuals

The CHIL06 Seminar Corpus

- 5 interactive seminars, recorded at each of:
- Germany, Greece, Italy, Spain, and the United States
- average duration: 33 minutes
- 3-5 participants per seminar
- 71 different individuals
- including
- openings \& closings
- lecture-like periods
- coffee breaks
- question-and-answer periods

The CHIL06 Seminar Corpus

- 5 interactive seminars, recorded at each of:
- Germany, Greece, Italy, Spain, and the United States
- average duration: 33 minutes
- 3-5 participants per seminar
- 71 different individuals
- including
- openings \& closings
- lecture-like periods
- coffee breaks
- question-and-answer periods
- collected to support major evaluations:
- NIST Rich Transcription (RT) Meeting Recogntion
- Classification of Events, Activities and Relationships (CLEAR)

NIST RT07s Corpus Split

A Manual Laugh Bout Segmentation, \mathcal{L}

(1) begin with orthographic transcriptions, containing <Laugh $>$

A Manual Laugh Bout Segmentation, \mathcal{L}

(1) begin with orthographic transcriptions, containing <Laugh>
(2) relisten to all close-talk channels

- verify
- augment

A Manual Laugh Bout Segmentation, \mathcal{L}

(1) begin with orthographic transcriptions, containing <Laugh $>$
(2) relisten to all close-talk channels

- verify
- augment
- manually timestamp boundaries

A Manual Laugh Bout Segmentation, \mathcal{L}

(1) begin with orthographic transcriptions, containing <Laugh $>$
(2) relisten to all close-talk channels

- verify
- augment
- manually timestamp boundaries
- broadly following (Bachorowski et al, 2001)

A Manual Laugh Bout Segmentation, \mathcal{L}

(1) begin with orthographic transcriptions, containing <Laugh $>$
(2) relisten to all close-talk channels

- verify
- augment
- manually timestamp boundaries
- broadly following (Bachorowski et al, 2001)
- manually classify as one of voiced, unvoiced, talking

A Manual Laugh Bout Segmentation, \mathcal{L}

(1) begin with orthographic transcriptions, containing <Laugh $>$
(2) relisten to all close-talk channels

- verify
- augment
- manually timestamp boundaries
- broadly following (Bachorowski et al, 2001)
- manually classify as one of Voiced, unvoiced, Talking
(3) all UNVOICED bouts $\longrightarrow \mathcal{L}_{U}$
(9) all voiced and talking bouts $\longrightarrow \mathcal{L}_{V}$

A Manual Laugh Bout Segmentation, \mathcal{L}

(1) begin with orthographic transcriptions, containing <Laugh $>$
(2) relisten to all close-talk channels

- verify
- augment
- manually timestamp boundaries
- broadly following (Bachorowski et al, 2001)
- manually classify as one of voiced, unvoiced, talking
(3) all UNVOICED bouts $\longrightarrow \mathcal{L}_{U}$
(9) all Voiced and TALKING bouts $\longrightarrow \mathcal{L}_{V}$
(3) available for all of CHILO6

An Automatic Talkspurt Segmentation, \mathcal{S}

(1) begin with orthographic transcriptions, including word fragments

An Automatic Talkspurt Segmentation, \mathcal{S}

(1) begin with orthographic transcriptions, including word fragments
(2) forced alignment, using

An Automatic Talkspurt Segmentation, \mathcal{S}

(1) begin with orthographic transcriptions, including word fragments
(2) forced alignment, using

- UKA submission ASR system in NIST RT-07s

An Automatic Talkspurt Segmentation, \mathcal{S}

(1) begin with orthographic transcriptions, including word fragments
(2) forced alignment, using

- UKA submission ASR system in NIST RT-07s
- single front-end (warped-MVDR(30))

An Automatic Talkspurt Segmentation, \mathcal{S}

(1) begin with orthographic transcriptions, including word fragments
(2) forced alignment, using

- UKA submission ASR system in NIST RT-07s
- single front-end (warped-MVDR(30))
- adaptation pass

An Automatic Talkspurt Segmentation, \mathcal{S}

(1) begin with orthographic transcriptions, including word fragments
(2) forced alignment, using

- UKA submission ASR system in NIST RT-07s
- single front-end (warped-MVDR(30))
- adaptation pass
(3) inter-lexeme gaps shorter than 0.3 bridged to form talkspurts (Norwine \& Murphy, 1938)

An Automatic Talkspurt Segmentation, \mathcal{S}

(1) begin with orthographic transcriptions, including word fragments
(2) forced alignment, using

- UKA submission ASR system in NIST RT-07s
- single front-end (warped-MVDR(30))
- adaptation pass
(3) inter-lexeme gaps shorter than 0.3 bridged to form talkspurts (Norwine \& Murphy, 1938)
(9) all talkspurts $\longrightarrow \mathcal{S}$

An Automatic Talkspurt Segmentation, \mathcal{S}

(1) begin with orthographic transcriptions, including word fragments
(2) forced alignment, using

- UKA submission ASR system in NIST RT-07s
- single front-end (warped-MVDR(30))
- adaptation pass
(3) inter-lexeme gaps shorter than 0.3 bridged to form talkspurts (Norwine \& Murphy, 1938)
(9) all talkspurts $\longrightarrow \mathcal{S}$
(3) available for:
- CHIL06_1 (三 rt07s_dev)
- a portion of CHILO6_2, rt07s_eval: :lectmtg

Speech vs Laughter by Time

- 1576 laugh bouts in total

Speech vs Laughter by Time

- 1576 laugh bouts in total
- for each participant $j, 1 \leq j \leq J \equiv 71$:

Speech vs Laughter by Time

- 1576 laugh bouts in total
- for each participant $j, 1 \leq j \leq J \equiv 71$:
- for each seminar $r, 1 \leq r \leq R \equiv 25$:

Speech vs Laughter by Time

- 1576 laugh bouts in total
- for each participant $j, 1 \leq j \leq J \equiv 71$:
- for each seminar $r, 1 \leq r \leq R \equiv 25$:
- $T_{\mathcal{L}_{V}}^{r, j}$: voiced-laugh-time

Speech vs Laughter by Time

- 1576 laugh bouts in total
- for each participant $j, 1 \leq j \leq J \equiv 71$:
- for each seminar $r, 1 \leq r \leq R \equiv 25$:
- $T_{\mathcal{L}_{V}, j}^{r,}$: voiced-laugh-time
- $T_{\mathcal{L}_{U}}^{r, j}$: unvoiced-laugh-time

Speech vs Laughter by Time

- 1576 laugh bouts in total
- for each participant $j, 1 \leq j \leq J \equiv 71$:
- for each seminar $r, 1 \leq r \leq R \equiv 25$:
- $T_{\mathcal{L}_{V}, j}^{r,}$: voiced-laugh-time
- $T_{\mathcal{L}}^{r, j}$: unvoiced-laugh-time
- $T_{\mathcal{L}}^{r, j}=T_{\mathcal{L}_{V}}^{r, j}+T_{\mathcal{L}_{U}}^{r, j}$: laugh-time

Speech vs Laughter by Time

- 1576 laugh bouts in total
- for each participant $j, 1 \leq j \leq J \equiv 71$:
- for each seminar $r, 1 \leq r \leq R \equiv 25$:
- $T_{\mathcal{L}_{V}, j}^{r,}$: voiced-laugh-time
- $T_{\mathcal{L}}^{r, j}$: unvoiced-laugh-time
- $T_{\mathcal{L}}^{r, j}=T_{\mathcal{L}}^{r, j}+T_{\mathcal{L}}^{r, j}$: laugh-time
- $T_{\mathcal{S}}^{r, j}:$ talk-time

Speech vs Laughter by Time

- 1576 laugh bouts in total
- for each participant $j, 1 \leq j \leq J \equiv 71$:
- for each seminar $r, 1 \leq r \leq R \equiv 25$:
- $T_{\mathcal{L}_{V}, j}^{r,}$: voiced-laugh-time
- $T_{\mathcal{L}}^{r, j}$: unvoiced-laugh-time
- $T_{\mathcal{L}}^{r, j}=T_{\mathcal{L}}^{r, j}+T_{\mathcal{L}}^{r, j}$: laugh-time
- $T_{S}^{r, j}:$ talk-time
- $T_{v}^{r, j}:$ vocalization-time

Speech vs Laughter by Time

- 1576 laugh bouts in total
- for each participant $j, 1 \leq j \leq J \equiv 71$:
- for each seminar $r, 1 \leq r \leq R \equiv 25$:
- $T_{\mathcal{L}_{V}, j}^{r,}$: voiced-laugh-time
- $T_{\mathcal{L}_{U}}^{r, j}$: unvoiced-laugh-time
- $T_{\mathcal{L}}^{r, j}=T_{\mathcal{L}, V}^{r, j}+T_{\mathcal{L} U}^{r, j}$: laugh-time
- $T_{S}^{r, j}:$ talk-time
- $T_{\nu}^{r, j}$: vocalization-time
- NOTE: $T_{\mathcal{S}}^{r, j}+T_{\mathcal{L}}^{r, j}>T_{\mathcal{V}}^{r, j}$, because $\mathcal{S} \cap \mathcal{L} \neq \emptyset$

Speech vs Laughter by Time

- 1576 laugh bouts in total
- for each participant $j, 1 \leq j \leq J \equiv 71$:
- for each seminar $r, 1 \leq r \leq R \equiv 25$:
- $T_{\mathcal{L}}^{r, j}$: voiced-laugh-time
- $T_{\mathcal{L}_{U}}^{r, j}$: unvoiced-laugh-time
- $T_{\mathcal{L}}^{r, j}=T_{\mathcal{L}, V}^{r, j}+T_{\mathcal{L} U}^{r, j}$: laugh-time
- $T_{\mathcal{S}}^{r, j}:$ talk-time
- $T_{\nu}^{r, j}$: vocalization-time
- NOTE: $T_{\mathcal{S}}^{r, j}+T_{\mathcal{L}}^{r, j}>T_{\mathcal{V}}^{r, j}$, because $\mathcal{S} \cap \mathcal{L} \neq \emptyset$
- $T^{r, j} \equiv T^{r}$: participation-time

Speech vs Laughter by Time

- 1576 laugh bouts in total
- for each participant $j, 1 \leq j \leq J \equiv 71$:
- for each seminar $r, 1 \leq r \leq R \equiv 25$:
- $T_{\mathcal{L}}^{r, j}$: voiced-laugh-time
- $T_{\mathcal{L}}^{r, j}$: unvoiced-laugh-time
- $T_{\mathcal{L}}^{r, j}=T_{\mathcal{L}, V}^{r, j}+T_{\mathcal{L} U}^{r, j}$: laugh-time
- $T_{\mathcal{S}}^{r, j}:$ talk-time
- $T_{\nu}^{r, j}$: vocalization-time
- NOTE: $T_{\mathcal{S}}^{r, j}+T_{\mathcal{L}}^{r, j}>T_{\mathcal{V}}^{r, j}$, because $\mathcal{S} \cap \mathcal{L} \neq \emptyset$
- $T^{r, j} \equiv T^{r}$: participation-time
- $T_{\mathcal{V}_{V}}=\sum_{j=1}^{J} \sum_{r=1}^{R} T_{\mathcal{L}_{V}}^{r, j}=37.2$ minutes

Speech vs Laughter by Time

- 1576 laugh bouts in total
- for each participant $j, 1 \leq j \leq J \equiv 71$:
- for each seminar $r, 1 \leq r \leq R \equiv 25$:
- $T_{\mathcal{L}}^{r, j}$: voiced-laugh-time
- $T_{\mathcal{L}_{U}, j}^{r_{j}}$: unvoiced-laugh-time
- $T_{\mathcal{L}}^{r, j}=T_{\mathcal{L}, V}^{r, j}+T_{\mathcal{L} U}^{r, j}$: laugh-time
- $T_{\mathcal{S}}^{r, j}:$ talk-time
- $T_{\nu}^{r, j}$: vocalization-time
- NOTE: $T_{\mathcal{S}}^{r, j}+T_{\mathcal{L}}^{r, j}>T_{\mathcal{V}}^{r, j}$, because $\mathcal{S} \cap \mathcal{L} \neq \emptyset$
- $T^{r, j} \equiv T^{r}$: participation-time
- $T_{\mathcal{V}_{V}}=\sum_{j=1}^{J} \sum_{r=1}^{R} T_{\mathcal{L}_{V}}^{r, j}=37.2$ minutes
- $T_{\mathcal{V}_{U}}=\sum_{j=1}^{J} \sum_{r=1}^{R} T_{\mathcal{L}_{U}}^{r, j}=8.4$ minutes

Speech vs Laughter by Time, by Participant

- for every participant $j, 1 \leq j \leq J$, proportion of participation time spent on producing vocalization type α

$$
p_{\alpha}^{j}=\frac{\sum_{r=1}^{R} T_{\alpha}^{r, j}}{\sum_{r=1}^{R} T^{r, j}}
$$

Speech vs Laughter by Time, by Participant

- for every participant $j, 1 \leq j \leq J$, proportion of participation time spent on producing vocalization type α

$$
p_{\alpha}^{j}=\frac{\sum_{r=1}^{R} T_{\alpha}^{r, j}}{\sum_{r=1}^{R} T^{r, j}}
$$

- can easily compute for

Speech vs Laughter by Time, by Participant

- for every participant $j, 1 \leq j \leq J$, proportion of participation time spent on producing vocalization type α

$$
p_{\alpha}^{j}=\frac{\sum_{r=1}^{R} T_{\alpha}^{r, j}}{\sum_{r=1}^{R} T^{r, j}}
$$

- can easily compute for
- "laughed speech", $\alpha=\mathcal{S} \cap \mathcal{L}$

Speech vs Laughter by Time, by Participant

- for every participant $j, 1 \leq j \leq J$, proportion of participation time spent on producing vocalization type α

$$
p_{\alpha}^{j}=\frac{\sum_{r=1}^{R} T_{\alpha}^{r, j}}{\sum_{r=1}^{R} T^{r, j}}
$$

- can easily compute for
- "laughed speech", $\alpha=\mathcal{S} \cap \mathcal{L}$
- speech excluding "laughed speech", $\alpha=\mathcal{S}-\mathcal{S} \cap \mathcal{L}$

Speech vs Laughter by Time, by Participant

- for every participant $j, 1 \leq j \leq J$, proportion of participation time spent on producing vocalization type α

$$
p_{\alpha}^{j}=\frac{\sum_{r=1}^{R} T_{\alpha}^{r, j}}{\sum_{r=1}^{R} T^{r, j}}
$$

- can easily compute for
- "laughed speech", $\alpha=\mathcal{S} \cap \mathcal{L}$
- speech excluding "laughed speech", $\alpha=\mathcal{S}-\mathcal{S} \cap \mathcal{L}$
- voiced laughter excluding "laughed speech", $\alpha=\mathcal{L}_{V}-\mathcal{S} \cap \mathcal{L}$

Speech vs Laughter by Time, by Participant

- for every participant $j, 1 \leq j \leq J$, proportion of participation time spent on producing vocalization type α

$$
p_{\alpha}^{j}=\frac{\sum_{r=1}^{R} T_{\alpha}^{r, j}}{\sum_{r=1}^{R} T^{r, j}}
$$

- can easily compute for
- "laughed speech", $\alpha=\mathcal{S} \cap \mathcal{L}$
- speech excluding "laughed speech", $\alpha=\mathcal{S}-\mathcal{S} \cap \mathcal{L}$
- voiced laughter excluding "laughed speech", $\alpha=\mathcal{L}_{V}-\mathcal{S} \cap \mathcal{L}$
- unvoiced laughter, $\alpha=\mathcal{L}_{U}$

Speech vs Laughter by Time, by Participant

- for every participant $j, 1 \leq j \leq J$, proportion of participation time spent on producing vocalization type α

$$
p_{\alpha}^{j}=\frac{\sum_{r=1}^{R} T_{\alpha}^{r, j}}{\sum_{r=1}^{R} T^{r, j}}
$$

- can easily compute for
- "laughed speech", $\alpha=\mathcal{S} \cap \mathcal{L}$
- speech excluding "laughed speech", $\alpha=\mathcal{S}-\mathcal{S} \cap \mathcal{L}$
- voiced laughter excluding "laughed speech", $\alpha=\mathcal{L}_{V}-\mathcal{S} \cap \mathcal{L}$
- unvoiced laughter, $\alpha=\mathcal{L}_{U}$
- all vocalization, $\alpha=\mathcal{V}=\mathcal{S} \cup \mathcal{L}$

Speech vs Laughter by Time, by Participant

- for every participant $j, 1 \leq j \leq J$, proportion of participation time spent on producing vocalization type α

$$
p_{\alpha}^{j}=\frac{\sum_{r=1}^{R} T_{\alpha}^{r, j}}{\sum_{r=1}^{R} T^{r, j}}
$$

- can easily compute for
- "laughed speech", $\alpha=\mathcal{S} \cap \mathcal{L}$
- speech excluding "laughed speech", $\alpha=\mathcal{S}-\mathcal{S} \cap \mathcal{L}$
- voiced laughter excluding "laughed speech", $\alpha=\mathcal{L}_{V}-\mathcal{S} \cap \mathcal{L}$
- unvoiced laughter, $\alpha=\mathcal{L}_{U}$
- all vocalization, $\alpha=\mathcal{V}=\mathcal{S} \cup \mathcal{L}$
- NOTE: $p_{\mathcal{V}}^{j}=p_{\mathcal{S}^{j} \cap \mathcal{L}}^{j}+p_{\mathcal{S}-\mathcal{S} \cap \mathcal{L}}^{j}+p_{\mathcal{L}_{V}-\mathcal{S} \cap \mathcal{L}}^{j}+p_{\mathcal{L}_{U}}^{j}$

Speech vs Laughter by Time, by Participant: Results

Bout Duration, by Type

هرأشش المغرب , LREC 2008

Inter-Bout and Inter-Island Durations (seconds)

Recall:

talk spurt islands
laugh bout islands

Inter-Bout and Inter-Island Durations (seconds)

"island" durations

inter-"island" intervals

Overlap

- (recall) $T_{\alpha}^{r, j}$: total duration of all bouts/spurts of j in r

Overlap

- (recall) $T_{\alpha}^{r, j}$: total duration of all bouts/spurts of j in r
- (define) $T_{\alpha}^{r, *}$: total duration of all bout/spurt islands in r

Overlap

- (recall) $T_{\alpha}^{r, j}$: total duration of all bouts/spurts of j in r
- (define) $T_{\alpha}^{r, *}$: total duration of all bout/spurt islands in r
- for the whole corpus of R seminars,
duration of all bouts/spurts $T_{\alpha}=\sum_{r=1}^{R} \sum_{j=1}^{J} T_{\alpha}^{r, j}$
$\begin{aligned} \text { duration of all bout/spurt islands } T_{\alpha}^{*} & =\sum_{r=1}^{R} T_{\alpha}^{r, *} \\ \text { compression ratio } c_{\alpha} & =\frac{T_{\alpha}}{T_{\alpha}^{*}}\end{aligned}$

Overlap: Results for rt07s_dev (163.1 min)

Overlap: Results for rt07s_dev (163.1 min)

Vocali- zation Type α	$\begin{gathered} T_{\alpha} \\ (\min) \end{gathered}$	c_{α}	Proportion (in \%) of T_{α}^{*} with n participants vocalizing simultaneously			
					3	
\mathcal{S}	131.0	1.037	96.7	3.1	0.2	0.0
\mathcal{L} \mathcal{L}_{V} \mathcal{L}_{U}						
$\begin{aligned} & \mathcal{S} \cup \mathcal{L} \\ & \mathcal{S} \cap \mathcal{L} \end{aligned}$						

1. Speech (\mathcal{S}) exhibits relatively little overlap.

Overlap: Results for rt07s_dev (163.1 min)

Vocalization Type α	$\begin{gathered} T_{\alpha} \\ (\min) \end{gathered}$	c_{α}	Proportion (in \%) of T_{α}^{*} with n participants vocalizing simultaneously			
			1	2	3	≥ 4
\mathcal{S}	131.0	1.037	96.7	3.1	0.2	0.0
$\begin{aligned} & \overline{\mathcal{L}} \\ & \mathcal{L}_{V} \\ & \mathcal{L}_{U} \end{aligned}$	5.1	1.5	64.0	25.3	9.5	1.2
$\begin{aligned} & \mathcal{S} \cup \mathcal{L} \\ & \mathcal{S} \cap \mathcal{L} \end{aligned}$						

2. In contrast, laughter (\mathcal{L}) exhibits a lot.

Overlap: Results for rt07s_dev (163.1 min)

Vocali- zation	T_{α} Type α	(min)	c_{α}	Proportion (in \%) of T_{α}^{*} with n participants vocalizing simultaneously 		
		1	2	3	≥ 4	
\mathcal{S}	131.0	1.037	96.7	3.1	0.2	0.0
\mathcal{L}	5.1	1.5	64.0	25.3	9.5	1.2
\mathcal{L}_{V}						
\mathcal{L}_{U}						
$\mathcal{S} \cup \mathcal{L}$	133.4	1.050	95.6	3.8	0.5	0.1
$\mathcal{S} \cap \mathcal{L}$	2.5	1.316	74.0	21.4	3.5	1.1

3. Approximately 50% of laughter is "laughed speech".

Overlap: Results for rt07s_dev (163.1 min)

Vocali- zation Type α	$\begin{gathered} T_{\alpha} \\ (\mathrm{min}) \end{gathered}$	c_{α}	Proportion (in \%) of T_{α}^{*} with n participants vocalizing simultaneously			
			1	2	3	≥ 4
\mathcal{S}	131.0	1.037	96.7	3.1	0.2	0.0
\mathcal{L}	5.1	1.5	64.0	25.3	9.5	1.2
\mathcal{L}_{V}	4.5	1.45	63.6	27.2	8.0	1.2
$\mathcal{S} \cup \mathcal{L}$	133.4	1.050	95.6	3.8	0.5	0.1
$\mathcal{S} \cap \mathcal{L}$	2.5	1.316	74.0	21.4	3.5	1.1

4. Approximately 90% of laughter is voiced; lots of overlap.

Overlap: Results for rt07s_dev (163.1 min)

Vocali-			Proportion (in \%) of T_{α}^{*} zation			T_{α}
Type α	(min)	c_{α}	with n participants vocalizing simultaneously 			
1	2	3	≥ 4			
\mathcal{S}	131.0	1.037	96.7	3.1	0.2	0.0
\mathcal{L}	5.1	1.5	64.0	25.3	9.5	1.2
\mathcal{L}_{V}	4.5	1.45	63.6	27.2	8.0	1.2
\mathcal{L}_{U}	0.5	1.0	100.0	0.0	0.0	0.0
$\mathcal{S} \cup \mathcal{L}$	133.4	1.050	95.6	3.8	0.5	0.1
$\mathcal{S} \cap \mathcal{L}$	2.5	1.316	74.0	21.4	3.5	1.1

5. Unvoiced laughter is never overlapped with itself.

Overlap: Results for rt07s_eval : : lectmtg (163.6 min)

Vocali-			Proportion (in \%) of T_{α}^{*} zation			T_{α}
Type α	(min)	c_{α}	with n participants vocalizing simultaneously 1			
			1	2	3	≥ 4
\mathcal{S}	120.6	1.062	94.2	5.5	0.3	0.0
\mathcal{L}	13.6	1.462	66.5	24.0	6.9	2.6
\mathcal{L}_{V}	11.5	1.46	66.9	24.0	6.8	2.3
\mathcal{L}_{U}	2.0	1.05	95.0	5.0	0.0	0.0
$\mathcal{S} \cup \mathcal{L}$	132.8	1.127	89.6	8.5	1.4	0.5
$\mathcal{S} \cap \mathcal{L}$	1.4	1.077	95.7	4.3	0.0	0.0

Overlap: Results for rt07s_eval : : lectmtg (163.6 min)

Vocali-			Proportion (in \%) of T_{α}^{*} zation			T_{α}
Type α	(min)	c_{α}	with n participants vocalizing simultaneously 1			
			1	2	3	≥ 4
\mathcal{S}	120.6	1.062	94.2	5.5	0.3	0.0
\mathcal{L}	13.6	1.462	66.5	24.0	6.9	2.6
\mathcal{L}_{V}	11.5	1.46	66.9	24.0	6.8	2.3
\mathcal{L}_{U}	2.0	1.05	95.0	5.0	0.0	0.0
$\mathcal{S} \cup \mathcal{L}$	132.8	1.127	89.6	8.5	1.4	0.5
$\mathcal{S} \cap \mathcal{L}$	1.4	1.077	95.7	4.3	0.0	0.0

1. Speech (\mathcal{S}) exhibits little overlap (but more than CHILO6_1).

Overlap: Results for rt07s_eval : : lectmtg (163.6 min)

Vocali-			Proportion (in \%) of T_{α}^{*} zation			T_{α}
Type α	(\min)	c_{α}	with n participants vocalizing simultaneously 1			
			1	2	3	≥ 4
\mathcal{S}	120.6	1.062	94.2	5.5	0.3	0.0
\mathcal{L}	13.6	1.462	66.5	24.0	6.9	2.6
\mathcal{L}_{V}	11.5	1.46	66.9	24.0	6.8	2.3
\mathcal{L}_{U}	2.0	1.05	95.0	5.0	0.0	0.0
$\mathcal{S} \cup \mathcal{L}$	132.8	1.127	89.6	8.5	1.4	0.5
$\mathcal{S} \cap \mathcal{L}$	1.4	1.077	95.7	4.3	0.0	0.0

2. Laughter (\mathcal{L}) exhibits lots.

Overlap: Results for rt07s_eval : : lectmtg (163.6 min)

Vocali-			Proportion (in \%) of T_{α}^{*} zation			T_{α}
Type α	(\min)	c_{α}	with n participants vocalizing simultaneously 1			
			1	2	3	≥ 4
\mathcal{S}	120.6	1.062	94.2	5.5	0.3	0.0
\mathcal{L}	13.6	1.462	66.5	24.0	6.9	2.6
\mathcal{L}_{V}	11.5	1.46	66.9	24.0	6.8	2.3
\mathcal{L}_{U}	2.0	1.05	95.0	5.0	0.0	0.0
$\mathcal{S} \cup \mathcal{L}$	132.8	1.127	89.6	8.5	1.4	0.5
$\mathcal{S} \cap \mathcal{L}$	1.4	1.077	95.7	4.3	0.0	0.0

3. Only 10% of laughter is "laughed speech".

Overlap: Results for rt07s_eval : : lectmtg (163.6 min)

Vocali-			Proportion (in \%) of T_{α}^{*} zation			T_{α}
Type α	(\min)	c_{α}	with n participants vocalizing simultaneously 1			
			1	2	3	≥ 4
\mathcal{S}	120.6	1.062	94.2	5.5	0.3	0.0
\mathcal{L}	13.6	1.462	66.5	24.0	6.9	2.6
\mathcal{L}_{V}	11.5	1.46	66.9	24.0	6.8	2.3
\mathcal{L}_{U}	2.0	1.05	95.0	5.0	0.0	0.0
$\mathcal{S} \cup \mathcal{L}$	132.8	1.127	89.6	8.5	1.4	0.5
$\mathcal{S} \cap \mathcal{L}$	1.4	1.077	95.7	4.3	0.0	0.0

4. Approximately 85% of laughter is voiced; lots of overlap.

Overlap: Results for rt07s_eval : : lectmtg (163.6 min)

Vocali- zation Type α	$\begin{gathered} T_{\alpha} \\ (\min) \end{gathered}$	c_{α}	Proportion (in \%) of T_{α}^{*} with n participants vocalizing simultaneously			
			1	2	3	
\mathcal{S}	120.6	1.062	94.2	5.5	0.3	0.0
\mathcal{L}	13.6	1.462	66.5	24.0	6.9	2.6
\mathcal{L}_{V}	11.5	1.46	66.9	24.0	6.8	2.3
\mathcal{L}_{U}	2.0	1.05	95.0	5.0	0.0	0.0
$\mathcal{S} \cup \mathcal{L}$	132.8	1.127	89.6	8.5	1.4	0.5
$\mathcal{S} \cap \mathcal{L}$	1.4	1.077	95.7	4.3	0.0	0.0

5. Unvoiced laughter does overlap with unvoiced laughter (rarely).

Overlap Dynamics: What happens once overlap exists?

Overlap Dynamics: What happens once overlap exists?

- once $\mathbf{2}$ participants vocalizing simultaneously?

Overlap Dynamics: What happens once overlap exists?

- once $\mathbf{3}$ or more participants vocalizing simultaneously?

Overlap Dynamics: What happens once overlap exists?

- what is the likelihood that overlap continue?

Overlap Dynamics: What happens once overlap exists?

- what is the likelihood that overlap be resolved?

Overlap Dynamics: What happens once overlap exists?

at time t
at time $t+1$

at time t

Overlap Dynamics: What happens once overlap exists?

at time t
at time $t+1$

at time t

$\longrightarrow t$

Overlap Dynamics: What happens once overlap exists?

at time t
at time $t+1$

at time $t+1$

1

Overlap Dynamics: What happens once overlap exists?

at time t
at time $t+1$

at time t
at time $t+1$

Overlap Dynamics: What happens once overlap exists?

at time t
at time $t+1$

at time t

Overlap Dynamics: What happens once overlap exists?

at time t
at time $t+1$

at time t

Overlap Dynamics: What happens once overlap exists?

at time t
at time $t+1$

at time t

Overlap Dynamics: What happens once overlap exists?

at time t
at time $t+1$

at time t

Overlap Dynamics: What happens once overlap exists?

at time t
at time $t+1$

at time t

Overlap Dynamics: What happens once overlap exists?

Overlap Dynamics: What happens once overlap exists?

at time t
at time $t+1$

at time t

Overlap Dynamics: What happens once overlap exists?

Overlap Dynamics: What happens once overlap exists?

at time t
at time $t+1$

at time t

Overlap Dynamics: What happens once overlap exists?

at time t
at time $t+1$

at time t

Overlap Dynamics: What happens once overlap exists?

at time t
at time $t+1$

at time t

Overlap Dynamics: What happens once overlap exists?

at time t
at time $t+1$

at time t

$\rightarrow t$

Overlap Dynamics: What happens once overlap exists?

at time t
at time $t+1$

at time t

$\longrightarrow t$

Overlap Dynamics: What happens once overlap exists?

at time t
at time $t+1$

at time t

Overlap Dynamics: What happens once overlap exists?

at time t
at time $t+1$

at time t

$\longrightarrow t$

Overlap Dynamics: What happens once overlap exists?

at time t
at time $t+1$

at time t

$\longrightarrow t$

Overlap Dynamics: What happens once overlap exists?

${ }^{2} \square \square$
${ }^{3} \square \neg \square \square \square \square \square \square \square \square$

Overlap Dynamics: What happens once overlap exists?

at time t
at time $t+1$

at time t

${ }^{2} \square \square$

Overlap Dynamics: What happens once overlap exists?

at time t
at time $t+1$

at time t

1.

Overlap Dynamics: What happens once overlap exists?

1.
${ }^{2} \square \sqcap \square \square$
${ }^{3} \square \square$

Overlap Dynamics: What happens once overlap exists?

at time t
at time $t+1$

at time t

Overlap Dynamics: What happens once overlap exists?

at time t
at time $t+1$

at time t

Overlap Dynamics: What happens once overlap exists?

at time t
at time $t+1$

at time t

Overlap Dynamics: What happens once overlap exists?

at time t
at time $t+1$

at time t

Overlap Dynamics: What happens once overlap exists?

at time t
at time $t+1$

at time t

Overlap Dynamics: What happens once overlap exists?

at time t
at time $t+1$

at time t

${ }^{2} \square \square$
$3 \quad \square \square$

Overlap Dynamics: What happens once overlap exists?

at time t
at time $t+1$

at time t

${ }^{2} \square \square$
$3 \quad \square \square$

Overlap Dynamics: Results

Select Transition			$\begin{gathered} \hline \text { CHILO6_1 } \\ \hline \text { rt07s_dev } \end{gathered}$		CHIL06_2				
			$\begin{gathered} \hline \text { rt07s_eval } \\ \text { ::lectmtg } \\ \hline \end{gathered}$	(all)					
at t	at	1			\mathcal{S}	\mathcal{L}	\mathcal{S}	\mathcal{L}	\mathcal{L}
2	\rightarrow	1	48.01	22.12	47.17	22.78	25.31		
2	\rightarrow	2	37.95	60.18	40.11	60.44	55.34		
2	\rightarrow	≥ 3	3.25	10.62	2.73	9.81	9.79		
≥ 3	\rightarrow	1	17.35	5.08	18.49	7.69	5.63		
≥ 3	\rightarrow	2	35.71	25.42	43.70	22.38	21.65		
≥ 3	\rightarrow	≥ 3	36.73	69.49	29.41	69.23	69.91		

Overlap Dynamics: Results

Select Transition			$\begin{gathered} \hline \text { CHIL06_1 } \\ \hline \text { rt07s_dev } \end{gathered}$		CHIL06_2				
			$\begin{gathered} \hline \text { rt07s_eval } \\ \text { ::lectmtg } \\ \hline \end{gathered}$	(all)L					
at t	at	1				\mathcal{S}	\mathcal{L}	S	\mathcal{L}
2	\rightarrow	1	48.01	22.12	47.17	22.78	25.31		
2	\rightarrow	2	37.95	60.18	40.11	60.44	55.34		
2	\rightarrow	≥ 3	3.25	10.62	2.73	9.81	9.79		
≥ 3	\rightarrow	1	17.35	5.08	18.49	7.69	5.63		
≥ 3	\rightarrow	2	35.71	25.42	43.70	22.38	21.65		
≥ 3	\rightarrow	≥ 3	36.73	69.49	29.41	69.23	69.91		

Overlap Dynamics: Results

Select Transition			$\begin{gathered} \hline \text { CHIL06_1 } \\ \hline \text { rt07s_dev } \end{gathered}$		CHIL06_2				
			$\begin{gathered} \hline \text { rt07s_eval } \\ \text { ::lectmtg } \end{gathered}$	(all)					
at t	at	+1			\mathcal{S}	\mathcal{L}	\mathcal{S}	\mathcal{L}	\mathcal{L}
2	\rightarrow	1	48.01	22.12	47.17	22.78	25.31		
2	\rightarrow	2	37.95	60.18	40.11	60.44	55.34		
2	\rightarrow	≥ 3	3.25	10.62	2.73	9.81	9.79		
≥ 3	\rightarrow	1	17.35	5.08	18.49	7.69	5.63		
≥ 3	\rightarrow		35.71	25.42	43.70	22.38	21.65		
≥ 3	\rightarrow	≥ 3	36.73	69.49	29.41	69.23	69.91		

Conclusions

- a new resource for acoustic modeling of laughter

Conclusions

- a new resource for acoustic modeling of laughter
- 1576 bouts of laughter
- 45.8 minutes of laughter
- new domain

Conclusions

- a new resource for acoustic modeling of laughter
- 1576 bouts of laughter
- 45.8 minutes of laughter
- new domain
- and ...

Conclusions, II

Aspect	CHIL06_1 rt07s_dev	CHIL06_2 rt07s_eval $::$ lectmtg	ICSI Meeting Corpus
$T_{\mathcal{L}} / T_{\mathcal{V}}$	3.8%	10.2%	9.4%
$T_{\mathcal{L}_{\mathcal{V}}} / T_{\mathcal{L}}$	88.2%	84.6%	74.3%
$T_{\mathcal{L} \cap \mathcal{S}} / T_{\mathcal{L}}$	49%	10.3%	4.9%
$M L\left(T_{\text {bout }}\right)$	≈ 0.8 seconds		1.1 s
$M L\left(T_{\text {inter-bout-island }}\right)$	≈ 15 seconds		17.8 s
Compression ratio c_{α}	$1.5(1.04)$	$1.46(1.06)$	$1.71(1.08)$
$P(2 \rightarrow 1), 500 \mathrm{~ms}$	$22 \%(48 \%)$	$23 \%(47 \%)$	$27 \%(47 \%)$
$P(3 \rightarrow 2), 500 \mathrm{~ms}$	$25 \%(38 \%)$	$22 \%(44 \%)$	$17 \%(41 \%)$
$P(2 \rightarrow 2), 500 \mathrm{~ms}$	$60 \%(38 \%)$	$60 \%(40 \%)$	$47 \%(39 \%)$
$P(3 \rightarrow 3), 500 \mathrm{~ms}$	$69 \%(37 \%)$	$69 \%(29 \%)$	$71 \%(28 \%)$

Conclusions, II

Aspect	CHIL06_1 rt07s_dev	CHIL06_2 rt07s_eval $::$ lectmtg	ICSI Meeting Corpus
$T_{\mathcal{L}} / T_{\mathcal{V}}$	3.8%	10.2%	9.4%
$T_{\mathcal{L}_{\mathcal{V}}} / T_{\mathcal{L}}$	88.2%	84.6%	74.3%
$T_{\mathcal{L} \cap \mathcal{S}} / T_{\mathcal{L}}$	49%	10.3%	4.9%
$M L\left(T_{\text {bout }}\right)$	≈ 0.8 seconds		1.1 s
$M L\left(T_{\text {inter-bout-island }}\right)$	≈ 15 seconds		17.8 s
Compression ratio c_{α}	$1.5(1.04)$	$1.46(1.06)$	$1.71(1.08)$
$P(2 \rightarrow 1), 500 \mathrm{~ms}$	$22 \%(48 \%)$	$23 \%(47 \%)$	$27 \%(47 \%)$
$P(3 \rightarrow 2), 500 \mathrm{~ms}$	$25 \%(38 \%)$	$22 \%(44 \%)$	$17 \%(41 \%)$
$P(2 \rightarrow 2), 500 \mathrm{~ms}$	$60 \%(38 \%)$	$60 \%(40 \%)$	$47 \%(39 \%)$
$P(3 \rightarrow 3), 500 \mathrm{~ms}$	$69 \%(37 \%)$	$69 \%(29 \%)$	$71 \%(28 \%)$

Conclusions, II

Aspect	CHIL06_1 rt07s_dev	CHIL06_2 rt07s_eval $::$ lectmtg	ICSI Meeting Corpus
$T_{\mathcal{L}} / T_{\mathcal{V}}$	3.8%	10.2%	9.4%
$T_{\mathcal{L}_{\mathcal{V}}} / T_{\mathcal{L}}$	88.2%	84.6%	74.3%
$T_{\mathcal{L} \cap \mathcal{S}} / T_{\mathcal{L}}$	49%	10.3%	4.9%
$M L\left(T_{\text {bout }}\right)$	≈ 0.8 seconds		1.1 s
$M L\left(T_{\text {inter-bout-island }}\right)$	≈ 15 seconds		17.8 s
Compression ratio c_{α}	$1.5(1.04)$	$1.46(1.06)$	$1.71(1.08)$
$P(2 \rightarrow 1), 500 \mathrm{~ms}$	$22 \%(48 \%)$	$23 \%(47 \%)$	$27 \%(47 \%)$
$P(3 \rightarrow 2), 500 \mathrm{~ms}$	$25 \%(38 \%)$	$22 \%(44 \%)$	$17 \%(41 \%)$
$P(2 \rightarrow 2), 500 \mathrm{~ms}$	$60 \%(38 \%)$	$60 \%(40 \%)$	$47 \%(39 \%)$
$P(3 \rightarrow 3), 500 \mathrm{~ms}$	$69 \%(37 \%)$	$69 \%(29 \%)$	$71 \%(28 \%)$

Conclusions, II

Aspect	CHIL06_1 rt07s_dev	CHIL06_2 rt07s_eval $::$ lectmtg	ICSI Meeting Corpus
$T_{\mathcal{L}} / T_{\mathcal{V}}$	3.8%	10.2%	9.4%
$T_{\mathcal{L}_{\mathcal{V}}} / T_{\mathcal{L}}$	88.2%	84.6%	74.3%
$T_{\mathcal{L} \cap \mathcal{S}} / T_{\mathcal{L}}$	49%	10.3%	4.9%
$M L\left(T_{\text {bout }}\right)$	≈ 0.8 seconds		1.1 s
$M L\left(T_{\text {inter-bout-island }}\right)$	≈ 15 seconds		17.8 s
Compression ratio c_{α}	$1.5(1.04)$	$1.46(1.06)$	$1.71(1.08)$
$P(2 \rightarrow 1), 500 \mathrm{~ms}$	$22 \%(48 \%)$	$23 \%(47 \%)$	$27 \%(47 \%)$
$P(3 \rightarrow 2), 500 \mathrm{~ms}$	$25 \%(38 \%)$	$22 \%(44 \%)$	$17 \%(41 \%)$
$P(2 \rightarrow 2), 500 \mathrm{~ms}$	$60 \%(38 \%)$	$60 \%(40 \%)$	$47 \%(39 \%)$
$P(3 \rightarrow 3), 500 \mathrm{~ms}$	$69 \%(37 \%)$	$69 \%(29 \%)$	$71 \%(28 \%)$

Conclusions, II

Aspect	CHIL06_1 rt07s_dev	CHIL06_2 rt07s_eval $::$ lectmtg	ICSI Meeting Corpus
$T_{\mathcal{L}} / T_{\mathcal{V}}$	3.8%	10.2%	9.4%
$T_{\mathcal{L}_{\mathcal{V}}} / T_{\mathcal{L}}$	88.2%	84.6%	74.3%
$T_{\mathcal{L} \cap \mathcal{S}} / T_{\mathcal{L}}$	49%	10.3%	4.9%
$M L\left(T_{\text {bout }}\right)$	≈ 0.8 seconds		1.1 s
$M L\left(T_{\text {inter-bout-island }}\right)$	≈ 15 seconds		17.8 s
Compression ratio c_{α}	$1.5(1.04)$	$1.46(1.06)$	$1.71(1.08)$
$P(2 \rightarrow 1), 500 \mathrm{~ms}$	$22 \%(48 \%)$	$23 \%(47 \%)$	$27 \%(47 \%)$
$P(3 \rightarrow 2), 500 \mathrm{~ms}$	$25 \%(38 \%)$	$22 \%(44 \%)$	$17 \%(41 \%)$
$P(2 \rightarrow 2), 500 \mathrm{~ms}$	$60 \%(38 \%)$	$60 \%(40 \%)$	$47 \%(39 \%)$
$P(3 \rightarrow 3), 500 \mathrm{~ms}$	$69 \%(37 \%)$	$69 \%(29 \%)$	$71 \%(28 \%)$

Conclusions, II

Aspect	CHIL06_1 rt07s_dev	CHIL06_2 rt07s_eval $::$ lectmtg	ICSI Meeting Corpus
$T_{\mathcal{L}} / T_{\mathcal{V}}$	3.8%	10.2%	9.4%
$T_{\mathcal{L}_{\mathcal{V}}} / T_{\mathcal{L}}$	88.2%	84.6%	74.3%
$T_{\mathcal{L} \cap \mathcal{S}} / T_{\mathcal{L}}$	49%	10.3%	4.9%
$M L\left(T_{\text {bout }}\right)$	≈ 0.8 seconds		1.1 s
$M L\left(T_{\text {inter-bout-island }}\right)$	≈ 15 seconds		17.8 s
Compression ratio c_{α}	$1.5(1.04)$	$1.46(1.06)$	$1.71(1.08)$
$P(2 \rightarrow 1), 500 \mathrm{~ms}$	$22 \%(48 \%)$	$23 \%(47 \%)$	$27 \%(47 \%)$
$P(3 \rightarrow 2), 500 \mathrm{~ms}$	$25 \%(38 \%)$	$22 \%(44 \%)$	$17 \%(41 \%)$
$P(2 \rightarrow 2), 500 \mathrm{~ms}$	$60 \%(38 \%)$	$60 \%(40 \%)$	$47 \%(39 \%)$
$P(3 \rightarrow 3), 500 \mathrm{~ms}$	$69 \%(37 \%)$	$69 \%(29 \%)$	$71 \%(28 \%)$

Conclusions, II

Aspect	CHIL06_1 rt07s_dev	CHIL06_2 rt07s_eval $::$ lectmtg	ICSI Meeting Corpus
$T_{\mathcal{L}} / T_{\mathcal{V}}$	3.8%	10.2%	9.4%
$T_{\mathcal{L}_{\mathcal{V}}} / T_{\mathcal{L}}$	88.2%	84.6%	74.3%
$T_{\mathcal{L} \cap \mathcal{S}} / T_{\mathcal{L}}$	49%	10.3%	4.9%
$M L\left(T_{\text {bout }}\right)$	≈ 0.8 seconds		1.1 s
$M L\left(T_{\text {inter-bout-island }}\right)$	≈ 15 seconds		17.8 s
Compression ratio c_{α}	$1.5(1.04)$	$1.46(1.06)$	$1.71(1.08)$
$P(2 \rightarrow 1), 500 \mathrm{~ms}$	$22 \%(48 \%)$	$23 \%(47 \%)$	$27 \%(47 \%)$
$P(3 \rightarrow 2), 500 \mathrm{~ms}$	$25 \%(38 \%)$	$22 \%(44 \%)$	$17 \%(41 \%)$
$P(2 \rightarrow 2), 500 \mathrm{~ms}$	$60 \%(38 \%)$	$60 \%(40 \%)$	$47 \%(39 \%)$
$P(3 \rightarrow 3), 500 \mathrm{~ms}$	$69 \%(37 \%)$	$69 \%(29 \%)$	$71 \%(28 \%)$

Conclusions, II

Aspect	CHIL06_1 rt07s_dev	CHIL06_2 rt07s_eval $::$ lectmtg	ICSI Meeting Corpus
$T_{\mathcal{L}} / T_{\mathcal{V}}$	3.8%	10.2%	9.4%
$T_{\mathcal{L}_{\mathcal{V}}} / T_{\mathcal{L}}$	88.2%	84.6%	74.3%
$T_{\mathcal{L} \cap \mathcal{S}} / T_{\mathcal{L}}$	49%	10.3%	4.9%
$M L\left(T_{\text {bout }}\right)$	≈ 0.8 seconds		1.1 s
$M L\left(T_{\text {inter-bout-island }}\right)$	≈ 15 seconds		17.8 s
Compression ratio c_{α}	$1.5(1.04)$	$1.46(1.06)$	$1.71(1.08)$
$P(2 \rightarrow 1), 500 \mathrm{~ms}$	$22 \%(48 \%)$	$23 \%(47 \%)$	$27 \%(47 \%)$
$P(3 \rightarrow 2), 500 \mathrm{~ms}$	$25 \%(38 \%)$	$22 \%(44 \%)$	$17 \%(41 \%)$
$P(2 \rightarrow 2), 500 \mathrm{~ms}$	$60 \%(38 \%)$	$60 \%(40 \%)$	$47 \%(39 \%)$
$P(3 \rightarrow 3), 500 \mathrm{~ms}$	$69 \%(37 \%)$	$69 \%(29 \%)$	$71 \%(28 \%)$

Conclusions, II

Aspect	CHIL06_1 rt07s_dev	CHIL06_2 rt07s_eval $::$ lectmtg	ICSI Meeting Corpus
$T_{\mathcal{L}} / T_{\mathcal{V}}$	3.8%	10.2%	9.4%
$T_{\mathcal{L}_{\mathcal{V}}} / T_{\mathcal{L}}$	88.2%	84.6%	74.3%
$T_{\mathcal{L} \cap \mathcal{S}} / T_{\mathcal{L}}$	49%	10.3%	4.9%
$M L\left(T_{\text {bout }}\right)$	≈ 0.8 seconds		1.1 s
$M L\left(T_{\text {inter-bout-island }}\right)$	≈ 15 seconds		17.8 s
Compression ratio c_{α}	$1.5(1.04)$	$1.46(1.06)$	$1.71(1.08)$
$P(2 \rightarrow 1), 500 \mathrm{~ms}$	$22 \%(48 \%)$	$23 \%(47 \%)$	$27 \%(47 \%)$
$P(3 \rightarrow 2), 500 \mathrm{~ms}$	$25 \%(38 \%)$	$22 \%(44 \%)$	$17 \%(41 \%)$
$P(2 \rightarrow 2), 500 \mathrm{~ms}$	$60 \%(38 \%)$	$60 \%(40 \%)$	$47 \%(39 \%)$
$P(3 \rightarrow 3), 500 \mathrm{~ms}$	$69 \%(37 \%)$	$69 \%(29 \%)$	$71 \%(28 \%)$

Conclusions, II

Aspect	CHIL06_1 rt07s_dev	CHIL06_2 rt07s_eval $::$ lectmtg	ICSI Meeting Corpus
$T_{\mathcal{L}} / T_{\mathcal{V}}$	3.8%	10.2%	9.4%
$T_{\mathcal{L}_{\mathcal{V}}} / T_{\mathcal{L}}$	88.2%	84.6%	74.3%
$T_{\mathcal{L} \cap \mathcal{S}} / T_{\mathcal{L}}$	49%	10.3%	4.9%
$M L\left(T_{\text {bout }}\right)$	≈ 0.8 seconds		1.1 s
$M L\left(T_{\text {inter-bout-island }}\right)$	≈ 15 seconds		17.8 s
Compression ratio c_{α}	$1.5(1.04)$	$1.46(1.06)$	$1.71(1.08)$
$P(2 \rightarrow 1), 500 \mathrm{~ms}$	$22 \%(48 \%)$	$23 \%(47 \%)$	$27 \%(47 \%)$
$P(3 \rightarrow 2), 500 \mathrm{~ms}$	$25 \%(38 \%)$	$22 \%(44 \%)$	$17 \%(41 \%)$
$P(2 \rightarrow 2), 500 \mathrm{~ms}$	$60 \%(38 \%)$	$60 \%(40 \%)$	$47 \%(39 \%)$
$P(3 \rightarrow 3), 500 \mathrm{~ms}$	$69 \%(37 \%)$	$69 \%(29 \%)$	$71 \%(28 \%)$

Conclusions, II

Aspect	CHIL06_1 rt07s_dev	CHIL06_2 rt07s_eval $::$ lectmtg	ICSI Meeting Corpus
$T_{\mathcal{L}} / T_{\mathcal{V}}$	3.8%	10.2%	9.4%
$T_{\mathcal{L}_{\mathcal{V}}} / T_{\mathcal{L}}$	88.2%	84.6%	74.3%
$T_{\mathcal{L} \cap \mathcal{S}} / T_{\mathcal{L}}$	49%	10.3%	4.9%
$M L\left(T_{\text {bout }}\right)$	≈ 0.8 seconds		1.1 s
$M L\left(T_{\text {inter-bout-island }}\right)$	≈ 15 seconds		17.8 s
Compression ratio c_{α}	$1.5(1.04)$	$1.46(1.06)$	$1.71(1.08)$
$P(2 \rightarrow 1), 500 \mathrm{~ms}$	$22 \%(48 \%)$	$23 \%(47 \%)$	$27 \%(47 \%)$
$P(3 \rightarrow 2), 500 \mathrm{~ms}$	$25 \%(38 \%)$	$22 \%(44 \%)$	$17 \%(41 \%)$
$P(2 \rightarrow 2), 500 \mathrm{~ms}$	$60 \%(38 \%)$	$60 \%(40 \%)$	$47 \%(39 \%)$
$P(3 \rightarrow 3), 500 \mathrm{~ms}$	$69 \%(37 \%)$	$69 \%(29 \%)$	$71 \%(28 \%)$

Conclusions

- a new resource for acoustic modeling of laughter
- 1576 bouts of laughter
- 45.8 minutes of laughter
- new domain
- occurrence of laughter in CHIL06 is similar to that in meetings, except:

Conclusions

- a new resource for acoustic modeling of laughter
- 1576 bouts of laughter
- 45.8 minutes of laughter
- new domain
- occurrence of laughter in CHILO6 is similar to that in meetings, except:
- in CHILO6_1, less laughter overall

Conclusions

- a new resource for acoustic modeling of laughter
- 1576 bouts of laughter
- 45.8 minutes of laughter
- new domain
- occurrence of laughter in CHILO6 is similar to that in meetings, except:
- in CHILO6_1, less laughter overall
- higher proportion of voiced laughter

Conclusions

- a new resource for acoustic modeling of laughter
- 1576 bouts of laughter
- 45.8 minutes of laughter
- new domain
- occurrence of laughter in CHILO6 is similar to that in meetings, except:
- in CHILO6_1, less laughter overall
- higher proportion of voiced laughter
- more "speech laughs"

Conclusions

- a new resource for acoustic modeling of laughter
- 1576 bouts of laughter
- 45.8 minutes of laughter
- new domain
- occurrence of laughter in CHILO6 is similar to that in meetings, except:
- in CHILO6_1, less laughter overall
- higher proportion of voiced laughter
- more "speech laughs"
- \longrightarrow consequences for models on interaction when applied to laughter detection this domain

The End

- Thank you for attending.
- We would also like to our annotators:
- Matthew Bell
- Brian Anna
- Joseph Fridy
- Brett Nelson

