Personae, a corpus for author and personality prediction from text

Kim Luyckx & Walter Daelemans

CNTS Language Technology Group University of Antwerp, Belgium

LREC 2008 May 28th, 2008

Computational Stylometry

Writing style reflects

- Topic, register, genre (text)
- Identity, gender, region, age, personality (author)

Two-stage approach

- ► Selection of predictive features ⇒ Language Technology
- Machine Learning for categorization

Personae corpus: innovative for

- Author prediction
- ► Personality prediction

Author Prediction

	Traditional approach	Our approach	
AUTHORS	small, closed set of authors	large number of authors	
DATA	lots of data per author	limited data	
RESULTS	upper-90%	exploratory experiments	
APPS.	disputed authorship	plagiarism detection	
	unrealistic forensic linguistics	realistic forensic linguistics	
	PROBLEM ALMOST SOLVED	LOT OF WORK TO DO!	

forensic linguist C.Chaski "99.9% sure that x did not write the text (and y did)"

short e-mail, limited training data, lots of candidate authors

Personality Prediction

Relatively new in computational stylometry

- ▶ LangPsy: direct correlation between personality & language (Gill, 2003; Campbell & Pennebaker, 2003)
- CompLing: little research (Argamon et al., 2005; Nowson & Oberlander, 2007; Mairesse et al., 2007)
- Five-Factor Model of Personality: OCEAN
- Stream-of-consciousness essays by (psychology) students

We take it further

- 1. Texts on non-personality related topic
- 2. Corpus of Dutch written language
- 3. Lots of authors + limited data

Personae Corpus

- 200K words of Dutch
- ▶ 145 student essays about a documentary on Artificial Life (factual description & opinion)
 - ⇒ genre, register, topic & age are kept relatively constant
- avg. 1,400 words/student (1 text/student)
- Released copyright to University of Antwerp
- Online MBTI test

Myers-Briggs Type Indicator (MBTI)

- Forced-choice test
- Carl Jung's personality typology
- Categorization according to 4 preferences:
 - ▶ Introversion & Extraversion (attitudes) ~ Extraversion
 - ▶ iNtuition & Sensing (information-gathering) ~ Openness
 - ► Feeling & Thinking (decision-making) ~ Agreeableness
 - ▶ Judging & Perceiving (*lifestyle*) ~ Conscientiousness
- Parallels with Five-Factor Model of Personality
- Controversial domain
- Consensus over at least first 2 dimensions
- Apps.: career & marriage counseling, group dynamics, HR,...

Structure

- ➤ Too homogeneous for experiments on gender, mother tongue, or region
- ▶ Interesting distributions in at least 2 MBTI preferences

Exploratory experiments with Personae corpus

- author -

- personality -

1. Selection of predictive features

- Memory-Based Shallow Parsing (MBSP): tagging, chunking & id. of syntactic relations (Daelemans & van den Bosch, 2005)
- AA instances
 - ▶ Texts are split in 10 fragment, 9 in training and 1 in test
 - ► Feature vector per fragment + author label
- PP instances
 - ▶ 90% of authors in training, 10% in test
 - ► Feature vector per author + personality type
- Type-token ratio, readability components, function word distributions, n-grams of fine- & coarse-grained POS, n-grams of words
- $\rightarrow \chi^2$ metric
- Single feature sets + combinations

2. Machine Learning

- ► TiMBL (Daelemans et al., 2003)
 - Implementation of kNN
 - Extensions for nominal features & relevance weighting
 - Does not abstract away from exceptions
 - Compares test instance to all training instances in memory
 - Better fit for limited data than eager learners?
- ▶ 10-fold cross-validation & micro-average of confusion matrix
- AA: 145 author classes
- ▶ PP
 - 8 binary classification tasks (e.g. I or not-I)
 - 4 tasks: distinguish between two poles (e.g. I or E)

Features	Accuracy	
tok	29.17%	
fwd	32.83%	
lex 1	34.00%	
lex 2	22.90%	
lex 3	12.00%	
cgp 1	30.00%	
cgp 2	31.17%	
cgp 3	28.21%	
pos 1	34.48%	
pos 2	30.55%	
pos 3	17.10%	
lex1 + pos1	40.69%	
lex1 + pos1 + tok	48.28%	
lex1 + pos1 + tok + fwd1	48.28%	
lex1 + tok	49.21%	

Table: TiMBL results in authorship attribution on 145 authors

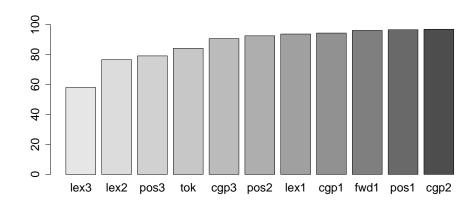


Table: TiMBL results in 100 AA experiments with random samples of 2 authors

Related Work in Authorship Attribution

- Van Halteren, 2005
 - 8 authors, 9 texts per author
 - ▶ 97% correctly classified
- Argamon et al., 2003
 - 20 authors
 - 25% 45% accuracy (depending on topic)
- ► Madigan *et al.*, 2005
 - ▶ 114 authors, 200 texts/author
 - Error rates between 97% and 20%
- Koppel et al., 2006
 - Thousands of candidate authors, lots of blogs/author
 - ▶ Answer in 31.3% of cases, correct almost 90% of the time

Task	Feature set	Precision	Recall	F-score	Accuracy
Introverted	lex 3-grams	56.70%	84.62%	67.90%	64.14%
	random	44.1%	46.2%		
Extraverted	cgPOS 3-grams	58.09%	98.75%	73.15%	60.00%
	random	54.6%	52.5%		
iNtuitive	cgPOS 3-grams	56.92%	94.87%	71.15%	58.62%
	random	48.7%	48.7%		
Sensing	POS 3-grams	50.81%	94.03%	65.97%	55.17%
	random	40.3%	40.3%		
Feeling	lex 3-grams	73.76%	99.05%	84.55%	73.79%
	random	72.6%	73.3%		
Thinking	lex 1-grams	40.00%	50.00%	44.44%	65.52%
	random	28.2%	27.5%		
Judging	lex 3-grams	81.82%	100.00%	90.00%	82.07%
	random	77.6%	76.9%		
Perceiving	lex 2-grams	26.76%	67.86%	38.38%	57.93%
	random	6.9%	7.1%		

CNTS
Language
Technology
Group

Table: TiMBL results for eight binary classification tasks

Task	Feature set	F-score	F-score	Average	Accuracy
		[INFJ]	[ESTP]	F-score	,
I vs. E	lex 3-grams	67.53%	63.24%	65.38%	65.52%
	random				49.7%
	majority				55.2%
N vs. S	pos 3-grams	58.65%	64.97%	61.81%	62.07%
	random				44.8%
	majority				53.8%
F vs. T	lex 3-grams	84.55%	13.64%	49.09%	73.79%
	random				60.7%
	majority				72.4%
J vs. P	lex 3-grams	90.00%	13.33%	51.67%	82.07%
	random				63.5%
	majority				80.7%

Table: TiMBL results for four discrimination tasks

Related Work in Personality Prediction

- Argamon et al., 2005
 - ► Stream-of-consciousness + deep self analysis essays
 - Lexical stylistic features
 - ► **E** 57%, **N** 58% acc.
- Nowson & Oberlander, 2007
 - ► Feature selection & training on small, clean blog corpus
 - Testing on large, automatically selected corpus
 - ▶ **O** skewed, **C** 56.6%, **E** 50.6%, **A** 52.9%, **N** 55.8% acc.
- ▶ Mairesse *et al.*, 2007
 - Stream-of-consciousness essays by psych. students
 - ► Top-down approach
 - Pos/neg emotion words, self-references,...
 - ▶ **O** 62.1%, **C** 55.3%, **E** 55.0%, **A** 55.8%, **N** 57.4% acc.

Conclusions

Personae corpus is innovative for AA & PP

- ► Large number of authors
- Limited data
- Closer to natural situation

Authorship Attribution

- ▶ 145 authors: almost 50% accuracy
- Using combinations leads to significant improvements

Personality Prediction

- ▶ First 2 personality dims are predicted fairly accurately
- Good results in 6 out of 8 binary classification tasks
- Skewed class distributions: around 51% and 46% F-score

Further Research

- ▶ Test features suggested in PP literature
- Effect* of number of authors
- Effect* of limited data
- Lazy vs. eager ML algorithms
- Authorship Verification: one-vs.-all
- Genetic Algorithm optimization
- * features, performance, Machine Learners

Contact

Kim Luyckx

kim.luyckx@ua.ac.be http://www.cnts.ua.ac.be/~kim

Walter Daelemans

walter.daelemans@ua.ac.be http://www.cnts.ua.ac.be/~walter

Stylometry Project

Sponsored by FWO (National Research Fund - Flanders) http://www.cnts.ua.ac.be/~kim/Stylometry.html

Questions?

"Piled Higher and Deeper" by Jorge Cham - www.phdcomics.com

WWW. PHDCOMICS. COM