#### Using Parsed Corpora for Estimating Stochastic Inversion Transduction Grammars



#### Universidad Politécnica de Valencia



Instituto Tecnológico de Informática

Germán Sanchis, Joan Andreu Sánchez

{gsanchis,jandreu}@dsic.upv.es

May 2008

- 1 Statistical Machine Translation > 1
- 2 Phrase Based models > 2
- 3 Stochastic Inversion Transduction Grammars > 3
- 4 SITGs for phrase extraction  $\triangleright$  5
- 5 Experimantal results > 8
- 6 Discussion  $\triangleright$  10
- 7 Conclusions > 11

SMT: efficient framework for building state-of-the-art MT systems.

Problem originally defined as

$$\hat{\mathbf{y}} = \underset{\mathbf{y}}{\operatorname{argmax}} \Pr(\mathbf{y}|\mathbf{x})$$
$$= \underset{\mathbf{y}}{\operatorname{argmax}} \Pr(\mathbf{x}|\mathbf{y}) \cdot \Pr(\mathbf{y})$$

ln practice,  $Pr(\mathbf{y}|\mathbf{x})$  is modelled using log-linear models:

$$\hat{\mathbf{y}} = \operatorname*{argmax}_{\mathbf{y}} \sum_{m=1}^{M} \lambda_m h_m(\mathbf{x}, \mathbf{y})$$

- Systems implementing PB models are dominant in the state of the art.
- Basic translation units are bilingual phrases (segments), not single words.
- In training time, bilingual segments must be extracted: lots of techniques.
- Most common approach:
  - Heuristical extraction of phrases using word alignments.
  - Let be  $(\mathbf{s},\mathbf{t})=x_{i+1}^{I},y_{k+1}^{K}$
  - 5 models:  $p_c(\mathbf{s}|\mathbf{t})$ ,  $p_c(\mathbf{t}|\mathbf{s})$ ,  $lex(\mathbf{s}|\mathbf{t})$ ,  $lex(\mathbf{t}|\mathbf{s})$ , C.

#### **Stochastic Inversion Transduction Grammars**

- Originally proposed by Dekai Wu.
- Closely related to context-free grammars.
- $\tau = (N, S, W_1, W_2, R, p)$ , with:
  - N: set of non-terminal symbols.
  - $S \in N$ : the axiom.
  - $W_1$ : finite set of terminal symbols of language 1.
  - $W_2$ : finite set of terminal symbols of language 2.
  - R: finite set of rules of type:
    - ▶ lexical rules:  $A \to x/\epsilon$ ,  $A \to \epsilon/y$ ,  $A \to x/y$ .
    - direct syntactic rules  $A \rightarrow [BC]$
    - inverse syntactic rules  $A \rightarrow \langle BC \rangle$
  - p: a function that determines the probability of each rule.
- Analyse two strings simultaneously.



#### **SITGs for phrase extraction**

- Analyse two strings simultaneously.
  - $\Rightarrow$  Can be used to extract segments.
  - $\Rightarrow$  Take into account syntax-motivated restrictions.
- Original algorithm for parsing a sentence by Wu similar to CYK,  $O(|\mathbf{x}|^3|\mathbf{y}|^3|\mathbf{R}|)$
- Sánchez and Benedí, 2006:  $\mathcal{O}(|\mathbf{x}||\mathbf{y}||\mathbf{R}|)$  when  $\mathbf{x}$  and  $\mathbf{y}$  are fully bracketed.
- Algorithm for phrase extraction:
  - Initial SITG built heuristically from word alignments.
  - Reestimation of probabilities with bracketed corpus to obtain improved SITG.
  - Training corpus parsed with SITG in order to obtain bilingual segments.
  - Inverse and direct translation probabilities:

$$p_c(\mathbf{s}|\mathbf{t}) = \frac{N(\mathbf{s}, \mathbf{t})}{N(\mathbf{t})} , \ p_c(\mathbf{t}|\mathbf{s}) = \frac{N(\mathbf{s}, \mathbf{t})}{N(\mathbf{s})}$$

#### **Phrase extraction example**



$$\Rightarrow \begin{cases} \{x_{i+1}...x_{I}, y_{k+1}...y_{K}\} \\ \{x_{I+1}...x_{j}, y_{K+1}...y_{l}\} \end{cases}$$

Inverse translation rule:  $A \rightarrow \langle BC \rangle$ 



$$\Rightarrow \begin{cases} \{x_{i+1}...x_{I}, y_{K+1}...y_{l}\} \\ \{x_{I+1}...x_{j}, y_{k+1}...y_{K}\} \end{cases}$$

## **Adding Syntactic Translation Probabilities**

- When obtaining  $\hat{T}_{\mathbf{x},\mathbf{y}}$ , a subtree  $\hat{T}_{\mathbf{s},\mathbf{t}}$  is obtained as well for a specific  $(\mathbf{s},\mathbf{t})$
- This defines a joint probability  $\hat{p}(\mathbf{s}, \mathbf{t})$ .
- Given that the corpus is bracketed, different  $\hat{T}_{s,t}$  may be obtained.  $\Rightarrow$  different  $\hat{p}(s,t)$  may exist.
- Let be  $\Omega$  the multiset of spans obtained from a training sample.
- Let be  $\Omega_{\mathbf{s},\mathbf{t}} \subseteq \Omega$  a multiset of  $(\mathbf{s},\mathbf{t})$  spans.

$$\begin{split} & \Rightarrow E_{\Omega}(\hat{p}(\mathbf{s}, \mathbf{t})) = \frac{\sum_{\omega \in \Omega_{\mathbf{s}, \mathbf{t}}} \hat{p}_{\omega}(\mathbf{s}, \mathbf{t})}{|\Omega|} \\ & \Rightarrow p_s(\mathbf{s} | \mathbf{t}) = \frac{E_{\Omega}(\hat{p}(\mathbf{s}, \mathbf{t}))}{E_{\Omega}(\hat{p}(\mathbf{t}))} \quad \text{and} \quad p_s(\mathbf{t} | \mathbf{s}) = \frac{E_{\Omega}(\hat{p}(\mathbf{s}, \mathbf{t}))}{E_{\Omega}(\hat{p}(\mathbf{s}))} \,. \end{split}$$

## **Experimental results**

#### Corpus: Europarl

|             |                   | Spanish | English |  |
|-------------|-------------------|---------|---------|--|
|             | Sentences         | 730K    |         |  |
|             | Different pairs   | 716K    |         |  |
| Training    | Vocabulary size   | 103K    | 64K     |  |
|             | Average length    | 21.5    | 20.8    |  |
|             | Sentences         | 2000    |         |  |
|             | Average length    | 30.3    | 29.3    |  |
| Development | Out of vocabulary | 208     | 127     |  |
|             | Sentences         | 2000    |         |  |
|             | Average length    | 30.2    | 29.0    |  |
| Devtest     | Out of vocabulary | 207     | 125     |  |

- Translation results for a SITG with 1, 2, 3 and 4 non-terminal symbols.
- ▶ It. 0: Heuristically obtained SITG, only  $p_c(\cdot|\cdot)$
- ▶ It. 1: One estimation iteration,  $p_c(\cdot|\cdot)$
- ► + syntactic: adding  $p_s(\cdot|\cdot)$

|           | lt. O |      | lt. 1 |      | + syntactic |      |
|-----------|-------|------|-------|------|-------------|------|
| non terms | BLEU  | WER  | BLEU  | WER  | BLEU        | WER  |
| 1         | 26.8  | 62.5 | 26.9  | 62.6 | 27.7        | 61.6 |
| 4         | 26.6  | 63.2 | 27.9  | 61.5 | 28.9        | 60.0 |

Comparatively, best result reported so far with this technique was 23.0 BLEU.

- Best score obtained with Moses: 31.0 BLEU.
- with only direct and inverse models: 29.6 BLEU vs our 27.9 / 28.9.
  - $\Rightarrow$  Not directly comparable with Moses' best score: we have no lexical models.
  - $\Rightarrow$  Will add lexical models in the future.
  - $\Rightarrow$  Traditional PB models cannot obtain syntactic scores!
  - $\Rightarrow$  Moses best score uses 19M segment pairs, we use half that amount.
- Adding non-terminal symbols seems to improve.

## **Conclusions and ongoing/future work**

#### Conclusions:

- Alternative, competitive method for phrase extraction.
- Importance of parsed corpora for estimating SITG.
- Future work:
  - Add lexical probabilities.
  - Combine SITG's phrase table with Moses' phrase table.
  - Research ways to exploit reordering information in SITGs.

# Questions? Comments? Suggestions?