Using the Multilingual Central Repository for Graph-Based Word Sense Disambiguation

Eneko Agirre and Aitor Soroa

<a.soroa@ehu.es>

University of the Basque Country

LREC, Marrakesh 2008

Introduction

- WSD: assign a sense to a word in a particular context
- Supervised WSD performs best
 - but needs large amounts of hand-tagged data
- Knowledge-based WSD
 - Exploit information present on a LKB
 - No further corpus evidence

Knowledge-based WSD

• Traditional approach:

- Assign a sense to an ambiguous word by comparing each of its senses with those of the surrounding context
- Some semantic similarity metric used for calculating the relatedness among senses
- Due to combinatorial explosion, words are disambiguated individually

• Graph based methods

- Graph-based techniques to exploit the structural properties of the graph underlying the LKB
- Find globally optimal solutions given the relations between entities
- Disambiguate large portions of text in one go

Main goal of the work

- Novel graph-based method for performing unsupervised WSD
- The method is independent of underlying LKB
 - Applied to Multilingual Central Repository (MCR)
- Evaluate separate and combined performance of several relation types of the MCR

- 2 A graph algorithm for knowledge-based WSD
- 3 Multilingual Central Repository
 - 4 Experiments
- 5 Conclusions

A graph algorithm for knowledge-based WSD

- Represent the LKB as a graph
 - Nodes are the concepts (v_i)
 - Edges are relations among concepts (e_{ij})
- Given an input context
 - W_i $i = 1 \dots m$: content words (nouns, verbs, adjectives and adverbs)
 - Synsets_i = {v_{i1},..., v_{in}}: synsets associated to word i
- Two steps for WSD
 - Extract a representative subgraph: disambiguation subgraph
 - Pind the "best" synsets of the subgraph

Extracting the disambiguation subgraph

- Subgraph extraction:
 - For each word W_i , $i = 1 \dots m$
 - For each synset $v_{i1} \dots v_{in}$ input word W_i
 - Find the shortest paths from v_{ij} to synsets of rest of words (BFS search)
 - Create subgraph by joining all minimum distance paths
- The vertices and relations of the subgraph are particularly relevant for a given input context.

Identifying the best synsets: PageRank

- Google's PageRank (Brin and Page, 1998): model a random walk on the graph
 - A walker takes random steps
 - Converges to a stationary distribution of probabilities
- *G* = (*V*,*E*) a graph
 - $In(V_i)$ = nodes pointing to V_i
 - d_j = degree of node v_j

$$PR(V_i) = (1 - \alpha) + \alpha \sum_{j \in In(V_i)} \frac{1}{d_j} PR(V_j)$$

Usually $\alpha = 0.85$. Models random jumps.

Identifying the best synsets: PageRank

- PageRank ranks vertices according to their structural importance on the graph
- Apply PageRank over disambiguation subgraph
- Select the synsets with maximum rank for each input word
 - In case of ties, select all synsets with same rank

1 Introduction

2 A graph algorithm for knowledge-based WSD

3 Multilingual Central Repository

4 Experiments

5 Conclusions

Multilingual Central Repository (MCR)

- Knowledge base built whithin the MEANING project
 - Multilingual interface for integrating and distributing all the knowledge acquired in the project
- Current version: 1,500,000 relations
 - Most of them automatic
- MCR integrates
 - ILI based on WN1.6
 - EWN Base Concepts
 - MultiWordNet Domains (MWND)
 - Local WordNets connected to the ILI
 - English WN1.5, 1.6, 1.7, 1.7.1
 - Basque, Catalan, Italian and Spanish WordNets
 - Semantic preferences
 - Acquired automatically from Semcor and BNC
 - eXtended WordNet
 - Instances, including named entities

Multilingual Central Repository (MCR)

• In this work, we have used:

- WN1.6: English WordNet 1.6 synsets and relations
- WN2.0: English WordNet 2.0 relations (mapped to WN1.6 synsets)
- XNET: eXtended WordNet (gold, silver and normal)
- sPref: Selectional preferences
- sCooc: Coocurrence
- WN1.7: English WordNet 1.7 synsets and relations
- sPref and sCooc extracted from Semcor
 - system benefits from supervised information when using these

Multilingual Central Repository

Multilingual Central Repository (MCR)

• We have tried different set of relations

Name	Relations	#synsets	#relations
M16	WN1.6, REL2.0, XNET, sPref, sCooc	99,634	1,651,445
M16_wout_sPref	WN1.6, REL2.0, XNET, sCooc	99,634	1,519,833
M16_wout_sCooc	WN1.6, REL2.0, XNET, sPref	99,632	798,453
M16_wout_Xnet	WN1.6, REL2.0, sPref, sCooc	99,238	1,169,300
M16_wout_Semcor	WN1.6, REL2.0, XNET	99,632	637,290
M17	WN1.7, XNET	109,359	620,396
M16_wout_WXnet	sPref, sCooc	27,336	1,024,698

Two main groups

- M16: Based on WordNet 1.6
- M17: Based on WordNet 1.7

Introduction

- 2 A graph algorithm for knowledge-based WSD
 - 3 Multilingual Central Repository

4 Experiments

5 Conclusions

Experiment setting

- Applied to Senseval 3 All Words dataset
 - Based on WordNet 1.7
- Contexts of at least 20 words
 - Adding sentences immediately before and after

Experiment results

Relations	All	Noun	Verb	Adj.	Adv.				
Semi supervised									
M16	57.30	62.30	49.00	62.40	92.90				
M16_wout_sPref	57.90	63.10	49.80	61.80	92.90				
M16_wout_sCooc	53.00	58.10	44.20	58.30	92.90				
M16_wout_Xnet	57.60	63.10	49.60	61.00	92.90				
M16_wout_WXnet	55.30	58.70	48.70	60.80	85.70				
Unsupervised									
M16_wout_semcor	53.70	59.50	45.00	57.80	92.90				
M17	56.20	61.60	47.30	61.80	92.90				

Supervised relations achieve best overall results

- Specially sCooc, not so with sPref
- Using only supervised also yields good results
- Unsupervised results: M17 performs best
 - probably due to mapping noise

Comparison to related work

System	All	Noun	Verb	Adj.	Adv.
Mih05	52.2	-	-	-	-
Sin07	52.4	60.45	40.57	54.14	100
Nav07	-	61.9	36.1	62.8	-
M17	56.20	61.60	47.30	61.80	92.90
MFS	60.9-62.4	-	-	-	-
GAMBL	65.1	-	-	-	-

- *Mih05, Sin07*: create a complete weighted graph with synsets of the words in the input context. Weights calculated with similarity measures. Apply PageRank for disambiguating.
- *Nav07*: create subgraph of LKB using DFS search. LKB: Manually enriched WordNet.

1 Introduction

- 2 A graph algorithm for knowledge-based WSD
 - 3 Multilingual Central Repository

4 Experiments

Conclusions

Conclusions

- Graph-based method for performing knowledge-based WSD
- Exploits the structural properties of the graph underlying the chosen knowledge base
- The method is not tied to any particular knowledge base
- Evaluation performed on Senseval-3 All Words
- Evaluation of separate and combined performance of each type of relation in the MCR
 - Validate the contents of the MCR and their potential for WSD
- MCR valuable for performing WSD
 - Relations coming from hand-tagged corpora are the most valuable
- Version of WordNet is highly relevant
- Our graph-based WSD system is competitive with the current state-of-the-art
 - Yields best results that can be obtained using publicly available data