Toward Active Learning in Data Selection: Automatic Discovery of
 Language Features During Elicitation

Jonathan Clark
Robert Frederking
Lori Levin

Language Technologies Institute Carnegie Mellon University

Pittsburgh, PA

Feature Detection

- Grammatemes* - Language features that express grammatical meanings (such as number, person, tense)
- Given a set of grammatemes and a structured corpus, can we determine if these grammatemes are expressed in a particular language?
- e.g. Answers "Does this language distinguish singular nouns from plural nouns?" ("And if so, how?")
* Source: Alena Böhmová, Silvie Cinková, Eva Hajičová. Annotation on the tectogrammatical layer in the Prague Dependency Treebank. 2005.

Feature Detection

The dog sleeps
((num sg)...)
The dogs sleep
((num dl)...)
The dogs sleep
((num pl)...)

Feature Detection

Feature Detection

Data Selection

- Given many potential training examples, select the ones that will help the target system most
- Many Uses - Seen in Speech Recognition, Speech Synthesis, and Machine Translation
- Corpus Navigation: Not all data is relevant for all languages
- Helps when money or time is limited
- e.g. Small Domains, MT Emergencies, and Minority Languages

Data Selection

Data Selection

Data Selection

Data Selection

Elicitation Corpus Entry

context: Maria bakes cookies regularly or habitually. srcsent: Maria bakes cookies .

Elicitation Corpus Entry

context: Maria bakes cookies regularly or habitually. srcsent: Maria bakes cookies .

Elicitation Corpus Entry

context: Maria bakes cookies regularly or habitually. srcsent: Maria bakes cookies .
tgtsent: Maria hornea galletas .
aligned: $\quad((1,1),(2,2),(3,3),(4,4))$

Elicitation Corpus Entry

context: Maria bakes cookies regularly or habitually. srcsent: Maria bakes cookies .
tgtsent: Maria hornea galletas .
aligned: $\quad((1,1),(2,2),(3,3),(4,4))$
fstruct: [f1]([f2](actor ((gender f)(anim human)(num sg))) [f3](undergoer ((person 3) (num dl))) (tense pres))
cstruct: $\quad[n 1](S 1$ [n2](S [n3](NP [n4](NNP Maria)) [n5](VP [n6](VBZ bakes) [n7](NP [n8](NNS cookies)))))
phimap: \quad phi(n1)=f1; phi(n3)=f2; phi(n7)=f3;
headmap: $h(n 1)=n 2 ; h(n 2)=n 5 ; h(n 3)=n 4 ; h(n 4)=n 4$; $h(n 5)=n 6 ; h(n 6)=n 6 ; h(n 7)=n 8 ; h(n 8)=n 8 ;$

Example Deduction Rule

\# Perfective/Imperfective Aspect
(rule (sentences (A (aspect perfective))
(B (aspect progressive)))

Example Deduction Rule

\# Perfective/Imperfective Aspect
(rule (sentences (A (aspect perfective))
(B (aspect progressive)))
(overlap on)

Example Deduction Rule

```
# Perfective/Imperfective Aspect
(rule (sentences (A (aspect perfective))
    (B (aspect progressive)))
    (overlap on)
    (if 0.6 (different
        (target-lex (fnode (A)))
        (target-lex (fnode (B))))
        (then (WALS "Perfective/Imperfective Aspect"
        "Grammatical marking")))
```


Example Deduction Rule

```
# Perfective/Imperfective Aspect
(rule (sentences (A (aspect perfective))
                                    (B (aspect progressive)))
(overlap on)
(if 0.6 (different
    (target-lex (fnode (A)))
    (target-lex (fnode (B))))
    (then (WALS "Perfective/Imperfective Aspect"
(if 0.4 (same "Grammatical marking")))
    (target-lex (fnode (A)))
    (target-lex (fnode (B))))
(then (WALS "Perfective/Imperfective Aspect"
                                    "No grammatical marking")))
```


Feature Detection Experiment

- Corpus of 60 Spanish-English sentences

100\%

- Tried to identify 21 features from the World Atlas of Language Structures

Toward Corpus Navigation

- Not all data is relevant for every language
- Performed while a linguistically naive bilingual person translates sentences in GUI
- After eliciting each sentence:
* Apply feature detection
* Choose the most valuable sentence to elicit next
- Leverages knowledge from Greenbergian Implicational Universals (from Hal Daume's database learned from WALS)

Other Applications

- Learning feature-annotated closed-class morphemes
- Factored MT
- Selection of data for automatic grammar induction for syntactic and hybrid MT systems
- Aid for linguistics field work

Language Resources

- Result of Corpus Navigation is:
I. A resource dense with the "right" features

2. Highly structured; each language feature is linked with sentences that illustrate it
3. Word-aligned, feature-annotated sentences useful for studying divergences and MT

Toward Active Learning in Data Selection:

 Automatic Discovery of Language Features During Elicitation
Questions?

Jonathan Clark
Robert Frederking
Lori Levin
Language Technologies Institute
Carnegie Mellon University
Pittsburgh, PA

WALS Features for Experiment

Gender Distinctions in Independent Personal Pronouns	Position of Interrogative Phrases in Content Questions
Nominal and Locational Predication	Position of Pronominal Possessive Affixes
Occurrence of Nominal Plurality	Position of Tense-Aspect Affixes
Order of Adjective and Noun	Inclusive/Exclusive Distinction in Independent
Pronouns	

Production Predicates

fnode
in-order
source-lex
target-lex
*-uhead
*-ihead
same
present
not-present

Elicitation Corpus Availability

- Included in LDC's Less Commonly Taught Languages (LCTL) Language Packs
- I3 languages have already been translated by the LDC
- Urdu language pack used in this year's NIST MT Eval
- Bengali queued for general release this year

