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Mimicking redundancy in referring 
expressions increases human-likeness.

Using corpus statistics to fine-tune 
referring expression generation increases 
human-likeness. 

2



Outline
1) Referring Expression Generation (REG)

• Redundancy in REG
2) The Graph-Based Algorithm

• Cost Functions and Property Orderings
• Redundancy in the Graph-Based Algorithm

3) The ASGRE TUNA Data
4) Tuning the Algorithm

• Corpus-Based Costs and Free Properties
• Frequent Properties Considered First

5) Evaluation
6) Conclusions and Future Work

3



Referring Expression Generation
...means automatically building 

distinguishing object descriptions.
  The small blue fan.

• Target referent: the object to be described.
• Distractors: other objects in the domain that the referent has 

to be distinguished from.
• Content selection from the properties of the referent and its 

relations to other objects.
• Minimal: all the properties used are needed for 

descriptiveness.
• Redundant: would still be descriptive if one or more 

properties were removed. 4



Redundancy in REG
• Humans use redundant properties.
• The Incremental Algorithm (IA) doesnʼt allow 

redundancy in a principled way ...
• ... but the Graph-Based Framework provides two 

parameters to control content selection: cost 
function, property ordering.

• We present the first corpus-based approach to 
setting these two parameters.

• The focus is on redundantly used properties.
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The Graph-Based Framework 
for REG1
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A distinguishing description:
• is a unique connected subgraph. 
• contains the node representing the 

target object.

The algorithm:
• does a depth-first search. 
• uses a cost function over the edges.
• returns the cheapest description.
1Krahmer et al. (2003) – CL
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Graphs and Cost Functions
Two distinguishing descriptions:
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cost function CHAIR FRONT SMALL BLUE
#1 1 12 11 11
#2 1 12 2 3
#3 1 4 2 3

cost function #1         cost(1) = 13, cost(2) = 22
cost function #2        cost(1) = 13, cost(2) = 5
cost function #3         cost(1) = cost(2) = 5

Three cost functions:

1) The front-facing chair.
2) The small blue one.



Determine which description is found first:

cost function #3:  cost(1) = cost(2) = 5

Property Ordering 1: [CHAIR, SMALL, FRONT, BLUE] 
The front-facing chair is chosen.

Property Ordering 2: [SMALL, CHAIR, BLUE, FRONT]
The small blue one is chosen.

      

Property Orderings in the 
Graph-Based Algorithm
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1) The front-facing chair.
2) The small blue one.



Redundancy in the Graph-Based 
Framework
• The cost function is required to be monotonic 

increasing ... 
• ... but properties can be free.

Description (2) will be returned only if:
• cost(BLUE) = 0 and 
• description (2) is found first.
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1) The front-facing chair. 
2) The blue front-facing chair.
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The ASGRE TUNA Data1

• Largest data set of human-produced referring expressions. 
• Two domains:                                 

• Stochastic costs derived from frequency counts:
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1http://www.csd.abdn.ac.uk/research/evaluation

Property # in desc P(v) -log2(P(v)) cost

colour 211 0.88 0.18 2
orientation 84 0.35 1.51 15
size 86 0.36 1.47 15
x-dimension 48 0.20 2.32 23
y-dimension 64 0.27 1.90 19

Furniture People

development / test 80 68
training 239 206

# of properties 6 12

http://www.csd.abdn.ac.uk/research/evaluation
http://www.csd.abdn.ac.uk/research/evaluation


Tuning the Graph-Based Algorithm
Cost Functions:

• Simple Costs: All properties cost 1.
• Stochastic Costs: Costs determined by frequency counts.
• Free–Stochastic: Most frequent properties are free, rest 

stochastic.
• Free–Naïve: Most frequent properties are free, least 

frequent cost 2, rest cost 1.
Property Orderings:

• Random Order (baseline)
• Free Properties First

        8 Conditions to be tested.
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• ASGRE 2007: first challenge on Attribute 
Selection for Generating Referring Expressions.

• DICE coefficient of set similarity:
•   
• Perfect match:
• No overlap: 

• PRP  (Perfect Recall Percentage): 
 proportion of DICE scores of 1. 

ASGRE 2007 Evaluation Metrics
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DICE(A, B) = (2×|A∩B|)
|A|+|B|

A = B → DICE(A, B) = 1

| A ∩B | = 0→ DICE(A, B) = 0



Results
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Random Order 
Baseline:

Furniture People
Cost function DICE PRP DICE PRP

Simple Cost 0.550 2.5 0.606 17.6

Stochastic 0.658 18.8 0.625 17.6
Free-Stoch 0.701 27.5 0.665 16.2
Free-Naïve 0.757 33.8 0.647 19.1

Free Properties 
First:

Furniture People
Cost function DICE PRP DICE PRP

Simple Cost 0.597 12.5 0.569 17.7

Stochastic 0.658 21.3 0.625 17.7
Free-Stoch 0.775 46.3 0.689 25
Free-Naïve 0.796 50 0.639 20.6
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Conclusions
• Corpus-based content selection makes sense 

for REG.
• Allowing redundancy better matches human 

data.
• Combination of cost functions and property 

orderings (to increase redundant properties) 
boosts performance.

• Free–Naïve does better on Furniture than on 
People because the People domain has more 
properties, so more information is lost.
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Future Work
• Handling the (redundant) use of relations between 

objects in the graph-based framework.
• Extending the framework to allow dynamic cost 

functions and property orderings.
• Performing human task-based evaluation.
• Collecting larger or more specified data sets.
• Developing different evaluation metrics.

21


