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Abstract

We describe the induction of lexical resources from uneatedtcorpora that are aligned with treebank grammars, diraya systematic
correspondence between features in the lexical resoucta sieebank syntactic resource. We first describe a methggldlased on
parsing technology for augmenting a treebank databaselinithistic features. A PCFG containing these featuresested from the
augmented treebank. We then use a procedure based on theedngside algorithm to learn lexical resources aligneth tie treebank
PCFG from large unannotated corpora. The method has bediechpp creating a feature-annotated English treebankdasethe
Penn Treebank. The unsupervised estimation procedurs gigeibstantial error reduction (up to 31.6%) on the taskarhlag the
subcategorization preference of novel verbs that are esgot in the annotated training sample.

1. Introduction probabilistic grammar and a probabilistic lexicon which en

The standard treebanks that are being created for thePdes lexical features.

world’s languages consist of labeled trees with indexed’"€vious research has argued that because of sparseness of
empty categories. The choice of a simple formal vocabulexical distributions, computational lexicons derivedrfr

lary for treebank annotation has advantages—for instance $OrPOra should be based on very large corpus samples,
enables simple search methods and search languages, gRHCN larger than the roughly 50,000-sentence Penn Tree-
has spurred research on statistical parsing. For some othBgnk (for example, (Briscoe and Carroll, 1997)). (Beil et
purposes, including aspects of linguistic research, texic &l 1999; im Walde, 2002) demonstrated that PCFG gram-
graphic research and development, and research on higfars and IeX|c0n§ Wlth.mcorporate.zd va_lence features cogld
end parsing, it is a drawback that features such as infled?® improved by iterative EM estimation; however their
tional category, lemmas, sub-classification of clausa-cat 9rammar was not a treebank grammar, and therefore could
gories, subcategorization frames of verbs and nouns, ariptbe evalu_ated using standard|ze(_1I evaluation critetia. O
localized information about long distance dependencies arif¢€bank-aligned grammar and lexicon allows us to evalu-
not overtly available in treebank annotations. In addition € lexical learning using a held-out portion of the treéban
lexical resources where there is a systematic corresporf’ tésting.

dence between the lexicon and such fine-grained annot@h the task of identifying the valence of token occurrences
tion in a treebank database would also be valuable. Fopf novel verbs, we get up to 23.38% error reduction fol-
instance, the lexical resource may contain features reprd2Wing a standard inside-outside estimation procedurs (La
senting the subcategorization frames of verbs, which cor@"d Young, 1990). A modified inside-outside procedure
respond to structural configurations that the verb occyrs inVhich re-estimated lexical parameters while retaining syn
in a treebank. Given such an alignment, a treebank can H@ctic parameters in the PCFG gives a reduction in error rate
compiled into a lexicon by collecting the combinations of of 31.6%. ) } )

lexical entries and their local features found in the treba N the sections to follow, we first describe our methodol-
This paper focuses on these two problems: one focus is @Y for augmenting treebank&(), building a PCFG from
development framework which allows existing treebanks td"€ augmented treebank3() and then a procedure based
be annotated by linguistically relevant features. The ram ©N the inside-outside algorithm to re-estimate the treeban
work includes creation of an augmented treebank databag¥igned lexicon using unannotated da$d.f. Finally, we

and the creation of treebank PCFGs, including probabilisPresent evaluations of the resulting lexicon on the task of
tic lexicons, based on the augmented treebank. The secoif§"P@l subcategorization detection. We also discuss the
focus is the induction from unannotated data of treebankmModularity of the components of the system, and alternate
aligned probabilistic lexicons which encode lexical featy  US€S of the different modules in the distribution of the sys-
such as verbal valence (subcategorization) in pre-terimina{em'

symbols. In this paper, we focus on learning verbal valence; .

however there are many such lexically oriented features for 2. Treebank Feature Augmentation

which treebank data is sparse, such as the attachment pré&ur methodology for augmenting the treebank with fea-
erences of adverbs to nominal, verbal or sentential nodesures involves constraint-solving with a feature grammar
the valence of nouns and subclasses of adjectives. We usendnose backbone is the context-free grammar obtained from
method based on constraint solving to add feature annotdhe treebank. First a feature constraint grammar is con-
tions to the Penn Treebank of English (Marcus et al., 1993)structed by adding feature-constraints to a grammar ob-
Features are then incorporated in the symbols of a contexéined from the vanilla treebank. The formalism used is
free grammar and frequencies are collected, resulting in the Yap feature-constraint formalism (Schmid, 2000). The
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feature constraint annotations are similar in some respec{particle) andSbj (subject) features on the verb have a
to those used in LFG frameworks like (O’'Donovan et al., default value in this rule—for VP constructions involving
2005)— however, unlike (O’'Donovan et al., 2005) who cre-main verbs (non-auxiliary constructionB),ep gets a non-

ate atreebank LFG grammar, our goal is to use this methodiefault value if the verb has a PP complemént, cl gets
ology for treebank transformation and to realize a PCFGa non-default value for particle verbs, aBtj character-

in the end. In the first step of the transformation processizes the subject of an S complement. The backquote on VB
for each tree in the treebank, a trivial context-free shareds a head marking that is required by the Yap formalism, but
forest is constructed that represents a single tree. In thehich is irrelevant to our feature constraint grammar.
second stage, the shared forest is passed to a constraiftte next example illustrates the encoding of valence (sub-
solver, which solves constraints in the shared forest. Thigategorization) on verbs. The VP rule below introduces the
stage adds features and may split a tree into several strace of a passive NP, which in our notation is the empty
lutions, writing out a feature shared forest. For solvingcategory +EI-NP+. A valence featukal is marked on
constraints, we use the parser Yap (Schmid, 2000), and werbs. The valence valugs on the past tense verb VBD
feature-constraint grammar that we create using the @anillindicates a combination of NP and S complements. We use
treebank grammar as backbone. a vocabulary of 31 basic valence values. A partial key for

i the valence feature values used in examples in the paper
2.1 FeatureConstraint Grammar is shown in Figure 1. The slash value is matched between
A context free grammar containing approximatély 000 the parent and the S child. The equatidror m=n on the
rules is obtained as the set of local tree configurationsdfounparent identifies the passive verb phrase. In general, depen
in a training portion of the treebank (in this paper, Section dencies such as passive and raising are constrained with lo-

0-22 of the Penn Treebank). Feature constraints are addQﬁj features such a# or mandVsel , reserving the slash
to the rules using Perl and Lisp programs which examindeature for A-bar dependencies.

patterns in the rule shapes. The constraints assign con-

stant values to features or specify feature equalities. Agp -> VBD +El-NP+ PP-TMP
an illustration, consider auxiliary verb constructions |

the Penn Treebank Il convention, any local tree with a VPVP {Vf or men; Sl ash=sl;} ->

parent and having both VP and verb children is an auxil- "VBD { Val=ns; Vsel =vf; Prep=-;
iary verb construction. Hence, constraints suitable tdlaux Prtcl=-; Sbj=-; }
iary verb constructions should be added to any rule of this +El - NP+

form. In the example below, the first line gives the original S { Sbj=X, Slash=sl; Viormevi; };

context free rule, and the subsequent lines the Correspond-h_ le also il h f broiecting i
ing feature constraint rule. Feature constraints in the YaJ Is rule also lllustrates the strategy of projecting |

formalism are enclosed in braces associated with conte>%$n about the tree.sha.\pe into a lexical ftem. A past tense
free categories. A constraint consists of a feature name, a BD) verb occurning in the above conflguratlon W'”, get
equal sign and a value, followed by a semi-colon, and witnarked with a speC|f|<_: valence valos, and also wittgbj
possible feature values being variables, constants, dits andVsel values copied from the S complement, and de-

(Schmid, 2000). fault valges for the fgatgrd& ep andl?rt cl. 3
The basic valence (indicated Bal ) is sub-classified by
VP -> VB ADVP VP additional features. Th¥sel feature marks th&/f or m

of a complement S, or for auxiliary verbs, the comple-
ment VP. This distinguishes, for instance, control verkss li
try which select an S witlvf or m=t 0. The Sbj feature

VP {Vf or nrbase; Sl ash=sl;} ->
VB { Val =aux; Prep=-; Vsel =vf;

ADVP {P;t cl = Sbj=:} marks whether the complement, if it is an S, has an empty
VP { Slash=sl: Vformevf: } subject. For example, a control use of the vémphas

Sbj =ei , marking an indexed null subject. The vertin-
The above rule is for auxiliary VPs. A VP licensed by the sideredin the treebank sententieey are officially consid-
rule may have a variablgf or mon the complement VP  ered strategigets pre-terminal values dal =s, Shj =e,
(the VP on the RHS of the above rule) which correlates withand Visel =sc. These values indicates a clausal comple-
the particular auxiliary verb (VB on RHS). For instance, ment &) which has an empty subject)since the sentence
a progressivée conditions the present participéd or m s passive and is of the tymenall clausdsc). There are31
valueg). The dependence is expressed in the above rulgealized combinations of values foal , Vsel , andSbj ,
by using a variablef to match thevf or mfeature marked providing a moderately fine-grained classification of va-
on the complement VP with the value ofsel feature lences. The featurda t cl andPr ep further sub-classify
marked on the auxiliary verb. The verb is marked as anverbs with particle and prepositional complements, by in-
auxiliary verb with the constraintal =aux, using theval  dicating the particular choice of particle or prepositidm.
attribute which is also used to describe the valences of maig method described in the next section, the effect will be
verbs. A slash feature is used in the standard way to express construct a lexicon with fairly specific information attou
wh dependencies; the rule matches 8ieash values of  the tree shapes associated with lexical items, using infor-
the parent and child VPs using a variable The grammar mation implicit in the treebank.
includes features which constrain the distribution of com-We also use features which are tree-geometric rather that
mon empty categories. THer ep (preposition),Prt cl linguistic in nature, in the style of (Johnson, 1998; Klein
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Z.-.-.- intransitive| n.-.-.- NP tried VBD.s.e.to.-32.0 VBN.s.e.to.-11.0

p.--.- PP np.-.-.- NP PP VBN.n.-.-.-5.0 VBD.z.-.-.- 1.0
S-.-- S b.--- SBAR VBD.n.-.-.-1.0 VBD.s.e.g.-1.0
t.-.-.- -PRD (predicate complement) VBN.z.-.-.-1.0

s.e.to  control attacked VBN.n.-.-.-5.0 VBN.np.-.-.as 1.0
s.-.sc  active small clause complement VBD.np.-.-~.as2.0 VBD.z.-.-.-1.0
s.e.sc passive small clause complement attain VB.n.-.-.- 2.0

attest VB.b.-.-.-1.0
Table 1: Verbal subcategorization features

Figure 3: Entries of verbs in the PCFG lexicon. The last
two entries illustrate sparseness of the treebank lexicon.
and Manning, 2003)). These are relevant to producing _
a good PCFG model. An example is tveomfeature ~ 29092.0 ROOT Sfin.-.-.root
marked on ADJP-PRD (predicative adjective phrase) in the 14134.0 ~ S.fin.-.-.- NP-SBJ.nvd.base.-.-.- VPfin.-.-
rule below. The valu@d for this feature has the interpre- 13057.0 NP-SBJ.nvd.base.-.-.- PRP
tation that the bearer of the feature directly or indirectly 13050.0 PP.nvd.of.np IN.of NP.nvd.base.-.-.-.-
dominates VP. Similarly, thpar ent attribute on PP is  11226.0 S.fin.-.-.root NP-SBJ.nvd.base.-.- .-
tree-geometric contextual feature marking the upward con- VP.fin.-.- -PER-.stop

text. 10760.0 VP.to.-.- TO VP.base.-.-

ADIP- PRD > ADJP PP S Figure 4: Syntactic rule frequencies in the treebank PCFG

ADJP- PRD {vdonevd;} ->

*ADIP {} PP { parent=adjp;} S {}; 3. PCFG Compilation and Parsing

application

rkatreebank parsing applications, PCFGs are often created

Since the feature constraint grammar is based on a treebarnk ", ; s
incorporating features into context free grammar sym-

backbone, it has a large number of rules, and since the Y. Is (f | lei d .
formalism does not allow for factoring of constraints in an 2°' (for example,(Klein and Manning, 2003)). We use a

inheritance hierarchy, the rules have redundant patterns 6net?od which compilgs a frbequl?r:jcy tabble foIrDa_ PCFG fzrggé
feature constraints. This has some disadvantages in grarHﬁle eature annotated treebank database (Privman, )-

mar development, since there is no concise localization of°" each symbol, a list of attributes to be incorporated into

a given constraint. At the same time, the development envit-he symbol is stipulated. For instance, it may be stipulated

ronment proves to be a comfortable one, because the tregq-ac} \ép mcnl))rpprates thiaitt”\t/);’té’g or n&ggd S!Aash,

bank nearly eliminates the issue of ambiguity. This allows2nd that \(/jer ﬁlncr?rpodra; » viorman ]d. zrg'

the computational linguist to concentrate on correct &nalygr"‘"_n reads the shared forest structu_res produced by con-
ses while developing the constraint grammar. We envisiorstraint solving, and collects frequencies of occurrendes o

this setup as a simple and easily deployable platform fOl,ocal_ tree configurations, including context free sy.mbols
augmenting existing treebanks with features, creatinig lex and incorporated features. In cases where constraint solv-

cal resources, and parsing.

ing introduced ambiguity, frequencies are split by a non-
The design for the grammar is largely motivated by thet

probabilistic version of the inside-outside algorithne(th-
. N X . io algorithm). The result is a rule frequency table and fre-
PCFG compilation application described in the next sec
tion. This has consequences for the complexity of th

guency lexicon which can be used by a probabilistic parser.
. q:igures 3 and 4 illustrate entries in the PCFG lexicon and

feature analyses—notably, only atomic-valued features argrammar respectively
employed. It is clear that a grammar at this limited IeveIPCFGs derived in this way can be used by a parser to con-

of complexity misses linguistically real phenomena, andstruct maximal probability (Viterbi) parses. We evaludie t

th‘!s should be regarded asan .ar_)proxn”n_at!on._The amis t(?uality of the PCFG extracted from the transformed tree-
strike a balance between linguistic sophistication and—combank using standamhRSEVAL measures. We obtain max-
putational and mathematical simplicity and tractability. imum probability (Viterbi) parses for all sentences in the
Figures 1 and 2 show sample trees in the transformed tregtandard test section of the Penn Treebank (Section 23), us-
bank. The node labels and tree shape are as in the treebaiyg the parser Bitpar (Schmid, 2004). Table 2 shows the
except for simple transformations related to empty catetabeled bracketing scores for an optimal combination of
gories. The additional information consists of the atomic-features incorporated in the PCFG symbols. The labeled
valued features which annotate each node in a tree. Thgracketing scores are comparable to state-of-the-arianle
feature values make explicit certain information which is calized grammars. Figure 5 shows an example viterbi parse
implicit in the treebank. Importantly, features are markedusing the PCFG. Incorporating different features into the
on lexical items—for instance a valence feature is markepCFG changes the labeled bracketing score of the PCFG;
on verbs. This is the basis for the procedure for compil-recall that our framework allows us to stipulate which fea-
ing PCFG lexicons that have these features on lexical enures from the feature constraint grammar are to be incorpo-
tries (described if3.) and for re-estimating better parame- rated into the symbols of the PCFG. To illustrate this point,
ter values for them (described§#.). consider features on verbs and nouns related to valence. In
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Figure 2: Prepositional complements of nouns are markechemoundiscounts(nval=p) along with the preposition
(nvalperp=for)

the grammar version whose scores are reported in Table Zhe effect of including specific prepositions on these cat-
features incorporated on verb and noun categories do nagories may be to make the grammar too sparse, resulting
include the specific preposition for prepositional subgate in the reduction of the labeled bracketing score seen in Ta-
rization frames. In another version of the grammar, we in-ble 3. Nevertheless, including these features is intergsti
clude specific prepositions from the prepositional complefrom the point of view of creation of lexical resources, ginc
ment into the verbal and nominal subcategorization frameit enriches the lexical information that is represented.
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Figure 5: A viterbi parse tree generated by the PCFG.

this paper| Schmid(2006) adverbs (sentential, nominal, verbal adverbs), and valenc

Labeled Recall 86.5 86.3 and prepositional preferences of nouns. However, since
Labeled Precisiory  86.7 86.9 these parameters are tied to particular words, they are not
Labeled F-score 86.6 86.6 well estimated in a treebank PCFG. In order to have a large-

scale lexicon with an accurate representation of suchiprefe

ences, itis necessary to learn parameters from data of much

Table 2: Labeled bracketing evaluation, Penn Treebank S€targer magnitude than available treebanks. We have experi-

tion 23. mented with learning these parameters over a large unanno-
Prepositions] Prepositions tated corpus using an unsupervised training method based
on verbs on nouns on the inside-outside algorithm. The inside-outside algo-
Labeled Recall 86.11 8508 rithm iteratively re-estimates the parameters of a PCFG,
Labeled Precisior 86.50 86.3 given unannotated data. We used a modified version of the
Labeled F-score 86.31 86.14 inside-outside procedure, in which values of lexical param

eters are re-estimated from unannotated data, but values of
syntactic parameters originally learnt from the treebaek a
Table 3: Labeled bracketing evaluation, for PCFGs withretained in each iteration.

prepositions incorporated in verbal and nominal categorie

Penn Treebank section 23.

4.1. Smoothing the treebank model

Since not all features are incorporated in the PCFG, a PCFG

parse tree does not reflect a full analysis according to tht-al-he initial model used for the re-estlmatlon proce_dure IS a
feature grammar. However, as a result of the alignment be§moothed treebank model. A smoothing scheme is required

tween the PCFG and the constraint grammar, constraint§ c(;rdersto aIIoca:? frr]equency to comp|nart]|ons ofbwoltids q
can be solved in the maximal probability tree identified2Nd POS tags which are not present in the treebank an

by the Viterbi algorithm, or in the sequence &fhighest- also to all pogsib[e incorporations of a part-of-speechgPO
probability trees. This will eliminate trees which are not tag. Othelrw!sei if the treebarr:k.mo.gel has'(zjero fr'equer:ccy
consistent with the feature grammar, and annotate othelf]%r some lexical parameter, the inside-outside estimate fo

with a complete set of feature values. This results in fealnat parameter V\(ould also bg zero, and new lexical entries
ture trees like 1 and 2 for novel sentences would never be induced. Given an unsmoothed treebank

modelty, the smoothed treebank modés$ obtained as fol-
4. Re-estimating Lexical Parameters of the lows. First a POS tagger is run on the unsupervised corpus
C, and tokens of words and POS tags are tabulated to ob-
PCFG tain a frequency table(w, 7). Each frequency(w, 1) is
The PCFG trained over the transformed treebank has paplit among possible incorporations proportion to a ra-
rameters related to lexical properties of words such as suliio of marginal frequencies ity, as in equation 1w is the
categorization features on verbs, attachment prefereince word,  is the part-of-speech tag, ands the sequence of
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incorporated features on the tag. 6. Subcategorization Acquisition

to(T,¢) We focus on the task of learning the subcategorization
g(w,7,0) = to(7) 9(w,7) (1) frames of verbs using the interleaved inside-outside re-
. _ ) . estimation process frof#.2.. The subcategorization frame
Then the smoothed modeis defined as an interpolation of (sP of verbs is a parameter of our PCFG — verbal tags in

g andt, for Iexicz_il parameters as shown in 2, with syntactiCi' pcEG are followed by an incorporation sequence that
parameters copied from. denotes theF for the verb.
t(w, 7,0) = (1 — Ar)to(w, 7,0) + Arg(w,7,0) (2)  Lexicalresources containing accurate and probabiligtie v
o ) _ ) bal subcategorization information are important for vari-
4.2. Re-estimation using Inside-Outside ous tasks like parsing, machine translation, etc. Creation
Starting with the smoothed treebank modednd corpus of a resource containing such information from large cor-
C, two procedures are carried out. The first procedurgora has received much attention in the community, with
is the standard iterative inside-outside procedure (Ladli a (Brent, 1991), (Ushioda et al., 1993), and (Manning, 1993)
Young, 1990). The second procedure has a frequency trankeing early attempts at extracting frames from raw data.
formation step interleaved between the inside-outside it{Briscoe and Carroll, 1997) induce 163 pre-defined frame
erations. In this transformation, lexical parameters fromtypes, using apriori information about probabilities ofpa
the re-estimated model and the original treebank modeicular frame types to filter the induced frames while (Ko-
are linearly combined to give a transformed lexicon usedhonen, 2002) uses Levin classes to get better back-off esti
in the next iteration. The values of syntactic parametersnates for hypothesis selection at the filtering stage. An ap-
used in each iteration are taken directly from the treebankroach similar to ours is used in (Carroll and Rooth, 1998)
model. The lexical transformation is expressed in Equatiowith a hand-written, head-lexicalised CFG and a raw cor-
3, whered; refer to the transformed model for iteratian pus to iteratively estimate the distribution of subcatégmr
_ tion frames for particular predicates. Schulte im Walde
di(w,7,0) = (1= Ar )t w, 7, 0) + Arui(w, m0) - (3) (2002) also uses a head-lexicalised grammar for German
t is the smoothed treebank lexical model ancefers to  to extract distributions for a large number of verbs from
models estimated from the corpas The term¢;(w, 7, ¢) a German newspaper corpus. There has also been work
is obtained by scaling the corpus frequencies;iw, T, ¢) to extract formalism-specific lexical resources from tree-

asin4. bank data, for example (Chen and Vijay-Shankar, 2000) for
G, 71) = t(7,1) ci(w, T, 0). 4) LTAG, (Clark et al., 2002) for CCG, (Tsuruoka and Tsuiji,
ci(T, ) 2004) for HPSG.

Ar,. Is a parameter with < A., < 1 which may depend ]
on the tag and incorporation. The transformation preserve&1. Evaluation
the marginal tag and incorporation frequencies seen in thin order to evaluate the models obtained from the inside-

treebank model. outside procedures, we focus on the task of detecting the
. subcategorization frames ofovel verbs (i.e. verbs that
5. Experimental setup have not been seen in the treebank). We first obtain

The treebank PCFG is trained over sections 0-22 of thenaximum-probability (viterbi) parses of all sentences in
transformed Penn Treebank (minus approximately 7000estset | (described i§5.) using the re-estimated models.
sentences held out for testing). The corpus used for reAll tokens of the test verbs and their pre-terminal symbols
estimation is approximately 4 million words of unannotatedare extracted from the viterbi parses. The pre-terminatsym
Wall Street Journal text (year 1997), with sentence lengttbol of verbs consists of a part-of-speech tag and an incor-
restricted to less than 25 words. The re-estimation was caporation sequence encoding tre This tagsFsequence is
ried out over a cluster of computers using Bitpar (Schmidcompared to a gold standard, and is scored correct if the two
2004) for inside-outside estimation. The parameten  match exactly. Part-of-speech errors are scored as iratprre
Equation 3was setto 0.5 for alland., giving equal weight  even if thesris correct. The gold standard is obtained from
to the treebank and the re-estimated lexicons. Startirmg fro the transformed Penn-treebank trees. The incorporation se
a smoothed treebank gramntawe separately ran 6 iter- quence on verbs consists of 3 features (together referred
ations of the interleaved estimation procedure, and 4 iterto as the subcategorization frame), as describegRit.:
ations of standard inside-outside estimation. This gave u¥al (valence)\Vsel (type of clause for for clausal com-
two series of models corresponding to the two proceduresplements) andbj (subject of the clausal complements).
We constructed a test set from the Penn treebank to evalu-

ate the learning of the subcategorization frames of novelable 4 shows this error rate (i.e. the fraction of test items
verbs. First, we selected 117 verbs whose frequency imhich receive incorrect tag-incorporations in viterbiges)
Treebank sections 0-22 is between 10-20 (mid-frequencfor various models obtained using the interleaved and stan-
verbs). These verbs have appropriately varied subcategolard re-estimation proceduresgy is the model with the
rization frames. Prior to building the treebank PCFG, alltest data from Testset | merged in (to account for unknown
sentences containing occurrences of these verbs were helbrds) using the same smoothing scheme givefdii..,

out to form Testset | (1331 sentences). The effect of holdwith A = 0.001. This model has no verb specific informa-
ing out these sentences from the PCFG training data is tbon for the test verbs. For each test verb, it has a smoothed
make these 117 verbs novel (i.e. unseen in training). SF distribution proportional to thesr distribution for all
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Iteration: | Interleaved| Standard
Procedure| Procedure

to 33.36 33.36
1 24.40 28.69
2 23.45 25.56
3 23.05 27.86
4 22.89 28.41
5 22.81 -

6 22.83 -

Table 4: Subcategorization error for novel verbs.

tated data. We plan to use the framework to learn other
lexically dependent parameters such as the prepositibnal a
tachment preference of verbs and nouns, attachment pref-
erence (sentential, nominal, verbal) of adverbs, valefice o
nouns, etc. in order to create probabilistic lexicons use-
ful for parsing where this type of information about lexical
items is represented.

8. Distribution

The programs used to build the augmented treebank and
the treebank-aligned PCFG from the Penn treebank files,
and some of the resulting resources, are being distributed

) ) . _in a release with the following functionality and/or compo-
verbs of that tag. The baseline error is about 33.4%. Thigents. The software environment and/or additional reguire
means that there is enough information in the average disspftware or databases are listed in parentheses.

tribution of all verbs and in the syntax to correctly assign
the subcategorization frame to novel verbs about 66.6% of 1.
the time. For the models obtained using the interleaved re-
estimation, the error rate falls to the lowest value of 22481
for the model obtained in the 5th iteration : an absolute re-
duction of 10.55 points, and a percentage error-reducfion o
31.6%. The models obtained using standard re-estimation 3-
do not perform as well.

Amongst previous work oBF acquisition from corpora we
find that relatively few parsing-based evaluations are re-
ported. Since their goal is to build probabilisge dictio-
naries, these systems are evaluated either against gxistin
dictionaries, or on distributional similarity measuresod¥!

are evaluated on testsets lifjh-frequency verbs (unlike 5,
the present work), in order to gauge the effectiveness of the
acquisition strategy. (Briscoe and Carroll, 1997) report a
token-based evaluation for seven verb types— their system
gets an average recall of 80.9% for these verbs (which ap-
pear to be high-frequency verbs). This is slightly lowertha 6.
the present system (we have an overall accuracy of 83.16%
on all verbs (novel and non-novel), evaluated on a separate
test set consisting of 4300 sentences held out from the PTB)
However, for low frequency verbs (exemplard0) they

report that results are around chance. We believe that an""
evaluation over token occurrences is relevant to NLP tasks.
Table 5 shows the development of lexical entries for three 8.
representative test verbs in four iterations of the intesdel
procedure. The frequencies are scaled according to the for-
mulas in§4.2.; only the top fivesrs are shown. Absolute
frequencies in the unsupervised training sample are higher 9,
The first column is the smoothed treebank model with an
average distribution for these novel verbs. The column for
the model from the 4th iteration can be compared to the
last column, which shows lexical entries obtained from a 10.
treebank model which included these verbs (scaled.by
since\ in eq.3is0.5).

2.

7. Conclusions 11.

We have presented a framework that allows for augmen-
tation of a treebank with linguistically motivated featsire 12,
which also allows the building of a PCFG that can be fur-
ther used in applications for learning of lexical infornaeti

Regularize the treebank. (lisp, awk, PTBII mrg files)

Build feature constraint grammar from the output of 1.
(perl, lisp)

Map each regularized treebank ttée t b to a trivial
context free shared forest . cpf representing one
tree. (lisp)

4. Solve feature constraints in each context-free shared

forestti.cpf to produce a feature shared forest
ti.fpf. (yap-compiler, yap-parser, (Schmid, 2000))

Map feature shared forests to PCFG rules and lexical
entries with incorporated features. Parameter files for
several choices of incorporations are included. (yappf-
fun (Privman, 2003), java)

Adapt PCFG lexicon to a test corpus by tagging the
test corpus and smoothing the PCFG lexicon to in-
clude the word forms in the test corpus ((Schmid,
1994), perl).

PCFG Viterbi parsing with labeled bracket and va-
lence evaluation (bitpar (Schmid, 2004), evalb, perl)

Lexicon smoothing for modified inside-outside proce-
dure and re-estimation on unsupervised training cor-
pus (perl, bitpar).

Constraint grammar files that are the output of 3 for
trees in Treebank Il sections 0-15 whose index modulo
10is not 9.

PCFG grammar and lexicon files with incorporated
features for parsing sentences in PTB sections 0-22
with index 9 modulo 10.

Smoothed PCFG lexicon file with incorporated fea-
tures for parsing 4 million word WSJ corpus.

Re-estimated PCFG lexicon with incorporated fea-
tures for 4 million word WSJ corpus.

The framework can be applied to languages with existingrhe experiment is organized with a make file which al-

treebanks in order to obtain treebank-aligned resourags arows the experiment to be built from the treebank distribu-
to bootstrap induction of lexical information from unanno- tion. The modular components can be used in ways other
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t It1 It2 It3 It4 PTB

disagree VBP.n.-.-0.0014 | VBP.z.-.-2.01 | VBP.z.--2.20 | VBP.z.-.-2.22 | VBP.z.-.-2.23 | VBP.z.-.-1.0
VBP.t.-.- 0.0012 VBP.p.-.-0.98 | VBP.p.--1.17 | VBP.p.-.-1.20 | VBP.p.-.-1.22 || VBP.p.-.-1.0
VB.n.-.-0.0011 VB.p.-.- 0.64 VB.z.-.- 0.60 VB.z.-.- 0.61 VB.z.-.-0.61 VB.z.-.-1.0
VBP.aux.-.h 0.0009| VB.z.-.- 0.56 VB.p.-.- 0.54 VB.p.-.- 0.53 VB.p.-.- 0.53 VB.b.-.-1.0
VBP.b.-.- 0.0008 VBP.n.-.-0.27 | VBP.n.-.-0.27 | VBP.n.-.-0.25 | VBP.n.-.-0.24 || -

admit VB.n.-.- 0.0040 VB.n.-.- 2.06 VB.n.-.-2.12 VB.n.-.-2.13 VB.n.-.- 2.16 VB.n.-.-0.5
VB.z.-.- 0.0009 VBP.b.-.-1.27 | VBP.b.-.-1.49 | VBP.b.-.-1.48 | VBP.b.-.-1.48 || VBP.p.-.-0.5
VBP.n.-.- 0.0008 VB.b.-.- 0.63 VB.b.-.- 0.99 VB.p.-.- 0.32 VB.b.-.-0.76 VB.z.-.-0.5
VBP.t.-.- 0.0007 VBP.n.-.-0.44 | VB.p.-.-0.32 VBP.n.-.-0.31 | VB.z.-.-0.33 VBP.z.-.- 0.5
VB.t.-.- 0.0006 VB.z.-.- 0.33 VBP.n.-.-0.32 | VB.z.-.- 0.30 VB.p.-.- 0.32 -

decides VBZ.t.-.-0.0014 | VBZ.b.-.-1.28 | VBZ.s.e.to 1.14| VBZ.s.e.t0 1.16| VBZ.s.e.to 1.16|| VBZ.s.e.to 3.5
VBZ.n.-.- 0.0011 VBZ.s.e.t0 0.90| VBZ.b.-.-1.09 | VBZ.b.-.-1.04 | VBZ.b.--1.06 || VBZ.b.-.-1.5
VBZ.aux.-.h 0.0008| VBZ.z.-.-0.63 | VBZ.n.-.-0.37 | VBZ.n.-.-0.36 | VBZ.n.-~.-0.36 || VBZ.n.-.-0.5
VBZ.b.-.- 0.0006 VBZ.s.-.fin0.42| VBZ.z.--0.32 | VBZ.z.-.-0.35 | VBZ.z.-.-0.35 || VBZ.p.--0.5
VBZ.z.-.- 0.0005 VBZ.n.-.-0.36 | VBZ.p.-.-0.29 | VBZ.p.-.-0.28 | VBZ.p.-.-0.28 || -

Table 5: Lexical entries (top 5SFs) for three novel test verbs in successive iterations. Téguencies are scaled. The
last column shows the distribution of these verbs in a treklbadel where they were not held-out. The verb tags are VB
(base), VBP (non-3rd-person present tense) and VBZ (3rsbpgsresent tense). Interpretation of valences (thoseein th
column for the fourth iteration) are b (that-clause), nrisitive), p (prepositional), s.e.to (control) and z (ims@ive).
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