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Abstract
Spectral clustering is a powerful clustering method for document data set. However, spectral clustering needs to solve an eigenvalue
problem of the matrix converted from the similarity matrix corresponding to the data set. Therefore, it is not practical to use spectral
clustering for a large data set. To overcome this problem, we propose the method to reduce the similarity matrix size. First, using
k-means, we obtain a clustering result for the given data set. From each cluster, we pick up some data, which are near to the central of
the cluster. We take these data as one data. We call these data set as “committee.” Data except for committees remain one data. For these
data, we construct the similarity matrix. Definitely, the size of this similarity matrix is reduced so much that we can perform spectral
clustering using the reduced similarity matrix

1. Introduction
In this paper, we proposed the method to reduce the sim-
ilarity matrix size in order to use spectral clustering for a
large data set.
Document clustering is the task of dividing a document’s
data set into groups based on document similarity. This
is the basic intelligent procedure, and is important in text
mining systems (Michael W. Berry, 2003). As the specific
application, relevant feedback in IR, where retrieved docu-
ments are clustered, is actively researched (Hearst and Ped-
ersen, 1996) (Kummamuru et al., 2004) etc.
Spectral clustering is a powerful clustering method using
partitioning of a graph (Ding et al., 2001). It uses an object
function to find the optimal partition of the graph. The op-
timal solution of the object function corresponds to a solu-
tion of an eigenvalue problem. Using this solution, spectral
clustering generates the final clustering result for the given
data set.
Spectral clustering is actually powerful, but needs to solve
the eigenvalue problem of the Laplacian matrix converted
from the similarity matrix corresponding to the given data
set. Therefore, we cannot use spectral clustering for a large
document data set (Dhillon et al., 2005)(Liu et al., 2007). In
this paper, we propose the method to reduce the similarity
matrix size.
First, using k-means, we obtain a clustering result for the
given data set. From each cluster, we pick up some data,
which are near to the central of the cluster. We take these
data as one data. We call these data set as “committee” ac-
cording to the paper (Pantel and Lin, 2002). Data except for
committees remain one data. For these data, we construct
the similarity matrix. Definitely, the size of this similar-
ity matrix is reduced so much that we can perform spectral
clustering using the reduced similarity matrix
Note that our method needs a reasonably accurate cluster-
ing result to reduce the similarity matrix size. Therefore,
the final clustering result generated by spectral clustering
must be improved from the initial clustering result. That is,
our method is regarded as the method to improve the given
clustering result.
In the experiment, we used seven document data sets to

evaluate our method. We compared our method with k-
means and spectral clustering, Mcut. The experiment
showed our method improves the clustering result gener-
ated by k-means.
In future we will investigate the proper reduction degree,
and improve the similarity definition.

2. Spectral clustering
In spectral clustering the data set is represented as a graph.
Each data point is represented as a vertex in the graph. If
the similarity between data � and � is non-zero, the edge
between � and � is drawn and the similarity is used as the
weight of the edge. From this graph, clustering can be seen
to correspond to the segmentation of the graph into a num-
ber of subgraphs by cutting the edges. The preferable cut-
ting is such that the sum of the weights of the edges in the
subgraph is large and the sum of weights of the cut edges
is small. To find the ideal cut, the object function is used.
The spectral clustering method finds the desirable cut by
using the fact that an optimum solution of the object func-
tion corresponds to the solution of an eigenvalue problem.
Different object functions are proposed. In this paper, we
use the object function of Mcut (Ding et al., 2001).
First, we define the similarity �������� between the sub-
graph �and �as follows:

�������� �	 �����


The function 	 ����� is the sum of the weights of the
edges between � and �. We define 	 ��� as 	 �����.
The object function of Mcut is the following:
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The clustering task is to find� and� to minimize the above
equation.
Note that the spectral clustering method divides the data set
into two groups. If the number of clusters is larger than
two, the above procedure is iterated recursively.
The minimization problem of Eq. 1 is equivalent to the
problem of finding the n dimensional discrete vector � to
minimize the following equation:
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where 	 is the similarity matrix of data, 
 � �����	��
and � � ��� �� � � � � ��� . Each element in the vector � is �
or ��, where
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and � � �����. If the �-th element of the vector � is � (or
��), the �-th data element belongs to the cluster � (or �).
We can solve Eq. 2 by converting the discrete vector � to
the continuous vector �. Finally, we can obtain an approxi-
mate solution to Eq. 2 by solving the following eigenvalue
problem:

�� �
����	
������ � �� (3)

We obtain the eigenvector �, that is, the Fielder vector, cor-
responding to the second minimum eigenvalue by solving
the eigenvalue problem represented by Eq. 3. We can ob-
tain the solution � to Eq. 2 from � � 
�����. By the sign
of the �-th value of �, we can judge whether the �-th data
element belongs to cluster � or �.
Note that Eq. 1 is the object function when the number of
clusters is two. The object function used in NMF is the
following general object function for � clusters.
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where is ��� the complement of ��. The smaller ����� is,
the better it is.

3. Reduction of the similarity matrix size
Suppose � is divided into cluster � and � by a spectral
clustering method. Note that the value of Eq. 1 for this
segmentation is minimum.
Now, we translate a subset �� � � into one data ��.

�� � ���� ��� � � � � ��� � �

First, we define the similarity between �� and data � � ��	1

as follows:

������� �� �
��
���
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Next, we define the similarity between �� and �� as follows:
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Using Eq. 5 and Eq. 6, we can translate the set �� into one
data ��. As the result, we obtain the new data set � � �

1��� means the complement set of � �.

�� � ��	 . Let 	 � the similarity matrix of � �. The size of
	 � is �� �� � ��� �� ��� ��.

It is clear that the above similarity definition is exact. It
can be confirmed by applying the clustering result of � to
��. That is, if data � � � � �� belongs to the cluster �
according to the clustering result of�, we set the cluster of
data � as � in the clustering result of � �, And we set the
cluster of data �� as �. Computing the value of Eq. 1 for
this segmentation using	 �, it is same to the value of Eq. 1
for the clustering result of �.

The value of Eq. 1 for the clustering result of � is mini-
mum. Therefore, spectral clustering for 	 � generates the
same clustering result.

3.1. Construction of Committee by k-means

We need the collect clustering result of data set � to reduce
the similarity matrix size by the above method. However, it
is impossible to obtain the collect clustering result.

Here, we take notice that �� is a subset of �, and need not
to be �. What we requires for�� is that�� does not include
wrong data. We call this set �� as “committee” according
to (Pantel and Lin, 2002).

In this paper, we perform k-means first. From each cluster,
we pick up some data, which are near to the central of the
cluster. These picked up data is the committee. Specifically,
committee is made by picking up 80% data of the cluster in
this paper. However, this value is changeable.

3.2. Improved similarity definition using central point

After making committees, we construct the small similarity
matrix using Eq. 5 and Eq. 6. However, Eq. 5 and Eq. 6
cannot actually be used because Eq. 5 and Eq. 6 assume
that �� does not include wrong data, but this assumption is
wrong.

Therefore, instead of Eq. 5 and Eq. 6, we must use the more
practical similarity definition. Thus, we define them as fol-
lows:

������� �� 	 � � ������� �� (7)

where �� means the central point of ��.

������� ��� 	 ��� (8)

4. Experiment

To confirm the effectiveness of our method, we performs
our method for seven document data sets (tr12, tr31, mm,
la12, sports, ohscal, cacmcisi) provided in CLUTO site 2.
Table 1 shows information of these data set: the number
of data, the number of dimension, the number of non-zero
data and the number of clusters.

2http://glaros.dtc.umn.edu/gkhome/cluto/cluto/download
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Table 1: Data sets
data # of data # of # of

dimension clusters
tr12 313 5804 8
tr31 927 10128 7
mm 2521 126373 2
cacmcisi 4663 41681 2
la12 6279 31472 6
sports 8580 126373 7
ohscal 11162 11465 10

First we perform k-means for the data set. Using distance
between the central point of the cluster and data, we make a
committee from each cluster. Next, using Eq. 7 and Eq. 8,
we make the reduced similarity matrix. Finally, we perform
spectral clustering using the reduced similarity matrix to
obtain the final clustering result.

We evaluate our method by comparing it with k-means and
Mcut. In this paper,we used entropy and purity for cluster-
ing evaluation. It is natural that our method is worse than
Mcut. However, it is remarkable that our method is better
than k-means. The size of four data set (cacmcisi、la12、
sports、ohscal) are big, so we cannot perform the spectral
clustering, Mcut for these data sets.

This experiment showed that our method can improve the
clustering result generated by k-means.

Table 2: Result (Entropy)
data Mcut k-means our method
tr12 0.3800 0.4366 0.3840
tr31 0.2946 0.3419 0.3414
mm 0.9715 0.9847 0.9837
cacmcisi — 0.6768 0.6744
la12 — 0.4523 0.4575
sports — 0.3142 0.3049
ohscal — 0.5678 0.5722

Table 3: Result (Purity)
data Mcut k-means our method
tr12 0.7061 0.6550 0.6741
tr31 0.8037 0.7605 0.7702
mm 0.5799 0.5601 0.5688
cacmcisi — 0.6869 0.6869
la12 — 0.7015 0.7019
sports — 0.7735 0.7871
ohscal — 0.5434 0.5440

5. Discussions

In the paper, our method sets the reduction degree to be
80%. However, this value is changeable.

For the data set ‘mm’, we varied the reduction degree from
100% to 0%, in steps of 10%. The result is shown in Fig. 1
and Fig. 2.
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Figure 1: Entropy for the reduction degree
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Figure 2: Purity for the reduction degree

Theoretically, the larger the reduction degree is, the nearer
the result is to result of k-means. And the smaller the re-
duction degree is, the nearer the result is to result of Mcut.
Moreover, the change must be monotonous.

Curves of Fig. 1 and Fig. 2 are not exactly monotonous.
However they are likely to be monotonic. We can consider
two reasons that curves are not exactly monotonous. The
one is that our committee includes error, and another is that
the similarity definition is not proper.

In future we will investigate the proper reduction degree,
and improve the similarity definition.

Lastly, we note that viewing our method as method to
improve the given clustering result, “first validation” of
(Dhillon et al., 2002) and “Link based refinement” of (Ding
et al., 2001) are informative to refine our method.
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6. Conclusion
In this paper, we proposed the method to reduce the sim-
ilarity matrix size in order to use spectral clustering for a
large data set.
Our method needs a reasonably correct clustering result to
reduce the similarity matrix size. Thus, our method is re-
garded as the method to improve the given clustering re-
sult. The experiment using seven data sets showed that
our method improves the clustering result generated by k-
means.
In future we will investigate the proper reduction degree,
and improve the similarity definition.
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