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Abstract
Active learning (AL) is getting more and more popular as a methodology to considerably reduce the annotation effort when building
training material for statistical learning methods for various NLP tasks. A crucial issue rarely addressed, however, is when to actually
stop the annotation process to profit from the savings in efforts. This question is tightly related to estimating the classifier performance
after a certain amount of data has already been annotated. While learningcurves are the default means to monitor the progress of the
annotation process in terms of classifier performance, this requires a labeled gold standard which – in realistic annotation settings, at least
– is often unavailable. We here propose a method for committee-based ALto approximate the progression of the learning curve based on
the disagreement among the committee members. This method relies on a separate, unlabeled corpus and is thus well suited for situations
where a labeled gold standard is not available or would be too expensive toobtain. Considering named entity recognition as a test case
we provide empirical evidence that this approach works well under simulation as well as under real-world annotation conditions.

1. Introduction
State-of-the-art NLP components are increasingly based on
supervised machine learning methods. This raises the need
for large amounts of training data. While for the general
language English newspaper domain syntactic (Marcus et
al., 1993), semantic (Palmer et al., 2005; Pustejovsky et al.,
2003), and even discourse (Carlson et al., 2003; Miltsakaki
et al., 2008) annotations are increasingly made available,
any language, domain, or genre shift pushes the severe bur-
den on developers of NLP systems to supply comparably
sized high-quality annotations. Even inner-domain shifts,
such as, e.g., moving from hematology (Ohta et al., 2002)
to the genetics of cancer (Kulick et al., 2004) within the
field of molecular biology may have drastic consequences
in the sense that entirely new meta data sets have to pro-
duced by annotation teams. Thus, reducing the human ef-
forts for the creation of adequate training material is a major
challenge.
Active learning(AL) copes with this problem as it intel-
ligently selects the data to be labeled. It is a sampling
strategy where the learner has control over the training ma-
terial to be manually annotated by selecting those exam-
ples which are of high utility for the learning process. AL
has been successfully applied to speed up the annotation
process for many NLP tasks without sacrificing annotation
quality (Engelson and Dagan, 1996; Ngai and Yarowsky,
2000; Hwa, 2001; Tomanek et al., 2007a).
Once we decide to use AL for meta-data annotation and a
reasonable, stable level of annotation quality is reached –
after having run through only a fraction of the documents
compared with the traditional annotation approach where
a randomly and independently selected amount of docu-
ments is sequentially annotated – an obvious question turns
up: When do we stop the annotation process to cash in the
time savings? Stopping after a certain amount of time has
elapsed or a certain amount of data has been annotated is
clearly not the best choice since such criteria, easily appli-
cable though, do not take into account how well a classifier

trained on the annotated data really performs. An optimal
stopping condition for any annotation would be to locate
that point in time when no further improvement in terms
of classifier performance can be achieved by additional an-
notations. Since learning curves show the classifier perfor-
mance at different time steps, i.e., for different amounts of
annotated training examples, we can observe that progres-
sion. Given this observation data we may stop the annota-
tion process when the learning curve completely converges
and is not ascending any more.
In most real-world annotation scenarios, however, such a
well-defined stopping point based on the convergence of
classifier performance does not exist. Instead, additional
annotations often result in slight improvements of the clas-
sifier’s performance. Accordingly, one should rather con-
sider thetrade-off between further annotation efforts and
gains in classifier performance to decide whether additional
annotations are worth the effort for targeted application.
This trade-off can be read from the learning curve which,
unfortunately, will not always be available. Re-sampling
strategies, e.g., cross-validation or bootstrapping, usually
applied to estimate classifier performance, assume inde-
pendently and identically distributed (i.i.d.) examples to
sample from. But examples selected by means of AL do
not meet this requirement. So, to estimate classifier perfor-
mance a separately annotated gold standard with i.i.d. ex-
amples is often used to obtain a learning curve for AL. Yet,
this solution comes with expensive extra annotation work.
We present an approach to approximate the progression of
the learning curve without the need for a labeled gold stan-
dard. We situate our discussion in the context of a simula-
tion and a real-world annotation scenario and will find out
that the second scenario imposes some restrictions on the
configuration of the approach. The paper is structured as
follows: In Section 2., we describe our approach in detail.
Other work on stopping conditions for AL-based annota-
tion is discussed in Section 3. Experimental results for the
task of named entity recognition are presented in Section 4.
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2. Approximating the Learning Curve
Given the idea that from the learning curve one can read
the trade-off between annotation effort and classifier per-
formance gain, we here propose an approach to approxi-
mate the progression of the learning curve which comes at
no extra annotation costs. This approach is designed for
use in committee-based AL (Seung et al., 1992). A com-
mittee consists ofk classifiers of the same type trained on
different subsets of the already labeled (training) data. Each
committee member then makes its predictions on the pool
of unlabeled examples, and those examples on which the
committee members express the highest disagreement are
considered most informative for learning and are thus se-
lected for manual annotation.
To calculate the disagreement among the committee mem-
bers several metrics have been proposed including the vote
entropy (Engelson and Dagan, 1996) as possibly the most
well-known one. Our approach to approximating the learn-
ing curve is based on the disagreement within a committee.
However, it is independent of the actual metric used to cal-
culate the disagreement. Although in our experiments we
considered the NLP task of named entity recognition (NER)
only, our approach is not limited to this scenario and can be
expected to be applicable to other tasks as well.
In Tomanek et al. (2007a) we introduced theselection
agreement(SA) curve – the average agreement amongst the
selected examples plotted over time. When the SA values
are close to ‘1’, the committee members almost perfectly
agree. So, any further AL iteration would resemble a ran-
dom selection. Experiments have shown that at the point
where the SA curve converges on values close to ‘1’ the
respective learning curve converges on its maximum value
as well so that further annotations would have (almost) no
impact on the classifier performance. As a result, we con-
cluded that we can derive, from the SA curve, the point
where the classifier performance is not increased any more
by further annotation efforts. Hence, when this curve ap-
proaches values of ‘1’ it can be interpreted as a stopping
signal for annotation.
However, this positive finding is due to an inherent feature
of AL simulations. In typical simulation settings, the pool
of annotation items is of a very limited size – normally only
a few thousand examples. This is so because for simula-
tions, a pre-annotated corpus is used and the manual anno-
tation is simulated by just moving selected examples from
the pool to the training set unveiling the labels. As a con-
sequence, the total number of positive and hard examples,
which are preferentially selected by AL, is rather limited.
In the NER scenario, examples to be selected are complete
sentences. Sentences containing (many) entity mentions
can be considered as “positive” ones. Especially when very
infrequent entity classes are to be annotated, a corpus will
consist of a large proportion of “negative” examples which
contain no entity mentions at all. In our experiments, we
observed that sentences which contained many and com-
plex entity mentions were already selected in early AL iter-
ations. Thus, the more AL iterations are run, the less hard
and positive examples are left in the pool. As a conse-
quence, only in early iterations, AL really has choices to
select useful examples.

The SA curve is directly affected by thissimulation effect
and thus cannot be used as a reliable approximation of the
learning curve in a real-world annotation scenario where
the pool will be much larger and much more diverse. In
such a setting there will always be useful (and, by this,
hard) examples which AL may find, thus keeping the se-
lection agreement constantly high.
The solution we propose is to calculate the average agree-
ment for each AL iteration on a separatevalidation set
which should reflect the real data distribution and must
not be used in the annotation process itself. As for most
NLP tasks there is no limit to unlabeled data and no an-
notations are required, the validation set comes at no extra
costs. Plotted over time we get thevalidation set agree-
ment(VSA) curve. This curve is based on the same data in
each AL iteration making the agreement values compara-
ble between different AL iterations. Since the examples of
the validation set are not used in the annotation process we
can further guarantee that this curve is only affected by the
benefit the selected and labeled examples have on training
a classifier. Now, from a VSA curve which is only slightly
ascending between selected measurement points we can in-
fer that the respective learning curve has only a low slope
at these positions, too. Although interpreting the actual
agreement values of the VSA curve is still problematic, its
progression behavior can be used to estimate whether fur-
ther annotation is worth the human labeling effort. In Sec-
tion 4., we will provide empirical evidence that the VSA
curve is indeed an adequate approximation of the progres-
sion of the learning curve and that the SA curve fails in the
real-world annotation scenario where examples are selected
from a much larger pool.

3. Related Work
While there is a large body of work on AL proper, there are
only few papers reporting on stopping criteria or methods to
monitor the progress of AL-driven annotations. Schohn and
Cohn (2000) consider an AL approach for Support Vector
Machines (SVM) where examples are selected according to
their proximity to the hyperplane. They propose to stop the
annotation process when, in the current AL iteration, none
of the unlabeled examples are closer to the hyperplane than
the support vectors. While this approach is restricted to AL
for SVMs, Vlachos (2008) presents a stopping criterion for
uncertainty-based AL (Cohn et al., 1996) in general. The
confidence of the classifier at the current AL iteration is
estimated on a large, separate validation set. The author re-
ports that such a confidence curve follows a rise-peak-drop
pattern: It rises in the beginning, then reaches its maxi-
mum values, and after that it constantly drops. The stopping
condition is then defined as the point when the confidence
curve starts dropping, i.e., the point when the learning curve
has converged. This approach is similar to ours in that it
employs the usefulness measure of the AL selection and in
that it applies a separate validation set to calculate the con-
fidence curve on. However, while it provides an exactstop-
ping condition, it cannot provide a means to estimate the
progression of the learning curve. This is equally important
since, in practice, one might want to stop the annotation be-
fore such a final stopping condition is met, e.g., when the
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trade-off between additional annotation costs and gain in
classifier performance is falling below some threshold.
For uncertainty-based AL, further stopping criteria employ-
ing a confidence estimate of the current classifier were pro-
posed by Zhu et al. (2008). The first one is based on an
uncertainty measurement on all unlabeled examples of a
pool, the second one uses the prediction accuracy on the
selected examples, and the final one builds on the classi-
fier’s expected error on all unlabeled examples. Since these
approaches are not based on a separate validation set we as-
sume that their reported success rates are largely due to the
simulation effect, i.e., the limited number of ‘hard’ exam-
ples in a simulation data set. Whereas the first and the third
criterion could also be applied in a separate, unlabeled val-
idation set to avoid this shortcoming, the second one would
require an annotated validation set – not really an advantage
over plotting a learning curve. Further on, Zhu et al. use
their approaches as stopping condition by comparing the re-
spective values against afixedthreshold. We find this prob-
lematic because a priori chosen or heuristically determined
values are highly task- and data-dependent. In a real-world
annotation scenario it is almost impossible to adequately
define such values in advance.
While all the above-mentioned approaches focus on single-
classifier AL strategies, ours is tailored to committee-based
AL.

4. Experiments
To empirically test whether our proposed approach works
well as an approximation of the learning curves we ran sev-
eral experiments both in a pure simulation mode, where the
manual annotation was simulated by unveiling the labels
already assigned in the simulation corpus, and in a real-
world scenario where human annotators were asked to an-
notate the sentences selected by AL. For both scenarios the
selection agreement (SA) and the validation set agreement
(VSA) was calculated for each AL iteration.

4.1. Experimental Settings
For our experiments on approximating the learning curves
for AL-based selection, we chose named entity recognition
(NER) as the annotation task in focus. We employed the
committee-based AL approach described in Tomanek et al.
(2007a). The committee consists ofk = 3 Maximum En-
tropy (ME) classifiers (Berger et al., 1996). In each AL iter-
ation, each classifier is trained on a randomly1 drawn (sam-
pling without replacement) subsetL′ ⊂ L with |L′| = 2

3
,

L being the set of all examples seen so far. Disagreement is
measured by vote entropy (Engelson and Dagan, 1996). In
our NER scenario, complete sentences are selected by AL.
While we made use of ME classifiers during the selection,
we employed a NE tagger based on Conditional Random
Fields (CRFs) (Lafferty et al., 2001) during evaluation time
to determine the learning curves. We have already shown
that in this scenario, ME classifiers perform equally well for
AL-driven selectionas CRFs when using the same features.

1The random selection of the training material for the classi-
fiers explains why our agreement curves sometimes have outliers:
A suboptimally sampled committee results in suboptimal classi-
fiers and thus in high agreement values.

scenario corpus seed pool gold
simulation CONLL 20 14,000 3,453
simulation PBVAR 20 10,020 1,114
real annotation CDANTIGEN 853 ≈ 2 m 2,165
real annotation CYTOREC 256 ≈ 2 m 2,165

Table 1: Corpora used for the experiments (size of seed set,
pool, and gold standard in the number of sentences)

This effect is truly beneficial, especially for real-world an-
notation projects, due to much lower training times and, by
this, shorter annotator idle times (Tomanek et al., 2007a).
For the AL simulation, we employed two simulation cor-
pora: The CONLL corpus, based on the English data set
of the CoNLL-2003 shared task (Tjong Kim Sang and De
Meulder, 2003), which consists of newspaper articles an-
notated with respect to person, location, and organisation
entities. This pool consists of about 14,000 sentences. As
validation set and as gold standard for plotting the learning
curve we used CoNLL’s evaluation corpus which sums up
to 3,453 sentences. The PBVAR corpus consists of biomed-
ical abstracts and was derived from the PENNBIOIE corpus
(Kulick et al., 2004) by keeping only those annotations re-
lated to variation event mentions. We have randomly split
this corpus into a pool set and a validation/gold set. In our
simulations, 20 sentences were selected in each AL itera-
tion and the simulations were started with a random seed
set of 20 sentences. Our results are averaged over three in-
dependent runs.
For the real-world annotation scenario, we considered two
sub-corpora from the entity annotations described in (Hahn
et al., 2008): The cytokine and growth factor receptors
corpus (CYTOREC) is annotated with various entity sub-
classes of special receptor entities, while the antigens cor-
pus (CDANTIGEN) contains annotations of various im-
munologically relevant antigen entities. For both annota-
tion projects, the pool from which AL selected the exam-
ples to be labeled consisted of approximately 2 million sen-
tences taken from PUBMED2 abstracts, the validation set
and gold standard was composed of 2,165 sentences. In
each AL iteration, 30 sentences were selected for manual
annotation. The corresponding seed sets were considerably
larger than in our simulations and were assembled by the
heuristic described by Tomanek et al. (2007b). Table 1
summarizes the corpora used for our experiments.

4.2. Results

Figures 1 and 2 display the learning and agreement curves
for the CONLL and the PBVAR corpus, respectively. The
learning curves are depicted for both AL (solid line) and
random selection (dashed line) revealing the increase in an-
notation efficiency when AL is used to select the examples
to be annotated. As for the agreement curves, we plot both
the exact agreement values (dots) and a curve obtained by
local polynomial regression fitting (solid line).
On the CONLL corpus, the learning curve converges on
its maximum f-score (≈ 84%) after about 125,000 tokens.
This is reflected by the SA curve which is not ascending any

2http://www.ncbi.nlm.nih.gov/
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Figure 1: Learning curves (solid line: AL selection, dashedline: random selection) and agreement curves for CONLL

0 50000 100000 150000

0.
60

0.
70

0.
80

learning curve

tokens

f−
sc

or
e

0 50000 100000 150000

0.
99

3
0.

99
5

0.
99

7

validation set agreement curve

tokens

ag
re

em
en

t

0 50000 100000 150000
0.

92
0.

96
1.

00

selection agreement curve

tokens

ag
re

em
en

t

Figure 2: Learning curves (solid line: AL selection, dashedline: random selection) and agreement curves for PBVAR

more at about the same number of tokens. A similar pattern
is depicted in the VSA curve though it provides an even
clearer picture of the progression of the learning curve. Itis
only slightly ascending after about 50,000 tokens, i.e., ata
time when the slope of the learning curve already becomes
very low. From both the learning and the VSA curve we
can read that after 50,000 tokens any additional annotation
is very costly compared to its benefits in terms of increased
classifier performance.

On the PBVAR corpus, the maximal f-score (≈ 80%) is
reached after approximately 50,000 tokens, then there is
a small decline which after about 100,000 tokens stabi-
lizes at the maximum value. The SA curve reached values
around ‘1’ after about100, 000 tokens, but is misleading
here since it does not reflect that the learning curve had
already reached a maximum before. The VSA curve, how-
ever, more comprehensively approximates the behavior of
the learning curve. It has a clear bend after some 50,000
tokens and converges after approximately 100,000 tokens.

Figures 3 and 4 display the learning and agreement curves
for our experiments in the real-world annotation scenario.
No learning curve for random selection is shown since only
AL selection was performed to avoid unnecessary human
efforts. Further, in this scenario, the agreement was not
calculated during the selection to keep selection time as

short as possible but was calculated afterwards for this ex-
periment.3 On both corpora, agreement as well as learning
curves start with the complete seed set (256 sentences, with
about 10,00 tokens for CYTOREC and 853 sentences, with
some 35,000 tokens for CDANTIGEN).
On the CDANTIGEN corpus, after80, 000 tokens being an-
notated the learning curve has not completely converged
but additional annotations do not pay off either. The VSA
curve mirrors this behavior since it keeps on ascending with
a low slope, though the SA curve remains quite obscure,
here. A similar behavior can be observed for the CYTOREC

corpus. The learning curve is only slightly ascending after
about 65,000 tokens have been annotated. This is nicely
mirrored by the VSA curve. Again, the SA curve is almost
impossible to interpret: Though its slope decreases a bit
after roughly 40,000 tokens, it keeps ascending thereafter.
Both SA curves exhibit an oscillating behavior that does not
contain any clue to guide stopping decisions.
We have seen that in the simulation scenario the two agree-
ment curves (SA and VSA) share a similar curve progres-
sion due to the simulation effect (cf. Figure 1 for the

3Due to the randomness when sampling the committee (see
above), we averaged over three runs where we calculated the
agreement curves. After every fifth AL iteration (i.e., 150 sen-
tences selected) we calculated both the SA and the VSA curves.

1322



10000 30000 50000 70000

0.
4

0.
6

0.
8

learning curve

tokens

f−
sc

or
e

10000 30000 50000 70000

0.
99

0
0.

99
4

0.
99

8

validation set agreement curve

tokens
ag

re
em

en
t

10000 30000 50000 70000

0.
78

0.
82

0.
86

0.
90

selection agreement curve

tokens

ag
re

em
en

t

Figure 3: Learning curve (AL selection) and agreement curves for CYTOREC
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Figure 4: Learning curve (AL selection) and agreement curves for CDANTIGEN

CONLL corpus). But even in the simulation scenario the
SA curve might be problematic and hence misleading as
can be concluded from our experiments on the PBVAR cor-
pus. In the real-world annotation scenario these SA curves
are clueless to approximate the progression of the learning
curve. However, our experiments suggest (see Figures 3
and 4) that the VSA curve is a good estimator for the pro-
gression of the learning curve and also works in practice,
while the SA curve fails as a reliable predictor in our real-
world annotation scenario. Still, even the more predictive
VSA curves merelyguidebut do notfinalizestopping deci-
sions. So it is left to the annotation manager’s over-all as-
sessment to balance the trade-off between annotation costs
and expectable quality gains for the learner.

5. Conclusions
In this paper, we discussed an approach to approximate the
progression of the learning curve for AL-driven annotation.
Such an approximation can be used to estimate the rela-
tive quality gains of further annotation efforts. This might
render valuable decision support for the question when to
actually stop an annotation process, in practice, and is es-
pecially helpful when a learning curve is not available due
to the absence of a labeled gold standard.
We have deliberately refrained from defining a fixed stop-
ping condition for AL-driven annotations. In practice, fur-

ther annotation efforts will mostly result insome, although
mild, classifier improvement. Whether the respective gain
justifies the efforts (and costs) depends on the task at hand.
As far as the learning curve and its approximation is con-
cerned, the relative gains can be estimated. Such an ap-
proach might be more adequate for practical use cases
rather than a single-point stopping condition which does
not incorporate trade-off considerations of any sort.

Further, we have discussed that AL simulations are subject
to the simulation effect. From our experiments we con-
clude that approaches to monitor the progress (in whatever
manner) of AL-driven annotation should always be based
on a separate validation set instead of the material directly
involved in the AL training process. As the validation set
does not need to be labeled and for almost all NLP applica-
tions unlabeled material is available in virtually unlimited
volumes this approach comes at not extra costs.
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