
UnsuParse: Unsupervised Parsing with unsupervised Part of Speech tagging

Christian Hänig, Stefan Bordag, Uwe Quasthoff
University of Leipzig, Natural Language Processing Dpt.

Johannisgasse 26, D-04081 Leipzig
chr_haenig@yahoo.de, {sbordag, quasthoff}@informatik.uni-leipzig.de

Abstract

Based on simple methods such as observing word and part of speech tag co-occurrence and clustering, we generate syntactic parses of
sentences in an entirely unsupervised and self-inducing manner. The parser learns the structure of the language in question based on
measuring ‘breaking points’ within sentences. The learning process is divided into two phases, learning and application of learned
knowledge. The basic learning works in an iterative manner which results in a hierarchical constituent representation of the sentence.
Part-of-Speech tags are used to circumvent the data sparseness problem for rare words. The algorithm is applied on untagged data, on
manually assigned tags and on tags produced by an unsupervised part of speech tagger. The results are unsurpassed by any self-induced
parser and challenge the quality of trained parsers with respect to finding certain structures such as noun phrases.

1. Introduction
Recently, unsupervised (also called knowledge-free)
methods for acquiring language specific knowledge out of
a raw text corpus began to receive more attention.
Examples for unsupervised algorithms include simulating
semantic relatedness of words by comparing
co-occurrence vectors (Curran 03, Sahlgren 06, Bordag
07), dividing word forms into morphs (Kurimo 07), word
sense induction and disambiguation, or part of speech
tagging (Biemann 06). Usually such algorithms do not
achieve the same quality as semi-supervised machine
learning algorithms trained from manually annotated data.
However, in situations where precision is less important
compared to the cost of producing manually annotated
data or where coverage is more important than precision,
unsupervised algorithms represent a viable, cheap and fast
source of knowledge. In some cases they achieve similar
(Kurimo 07) or even better results than traditional
machine learning algorithms when used in real-world
applications (Bod 07).
Currently there are several approaches to induce syntactic
(and in most cases semantic) structure from a given raw
corpus in an unsupervised manner (grammar inference).
One approach is to compare all sentences with each other
and hypothesize matching sequences as being
constituents such as in the alignment based learning (ABL)
(Zaanen 01) or the syntagmatic paradigmatic model (SPM)
(Dennis & Harrington 01). This approach has obvious
time-complexity problems, which perhaps are solvable by
use of heuristics.
Another approach is to measure the in- and outgoing path
density of word (or morpheme) sequences within a set of
sentences, see the ADIOS system (Solan 06), or the nearly
equivalent SOG system (Schwiebert and Rolshoven 06).
Here, a graph is built by taking words as nodes and
connecting them if they appear in a sequence. Both
systems represent an elegant combination of learning
syntagmatic and paradigmatic relations in a unified way.
For both, but especially for ADIOS the evaluations are

more expressive, but a standardized evaluation instance
such as the Morpho Challenge for the unsupervised
morpheme segmentation task (Kurimo 07) is still missing.
There is one independent evaluation, comparing ADIOS
with Emile (Adrianns and Veervoort 02) and ABL on a
small corpus containing 7k sentences (Cramer 07).
According to this evaluation, all three systems are not able
to infer structure and only ABL is better then the random
baseline. However, this evaluation also shows that data
sparseness is the main problem for these algorithms, but
fails to test these algorithms on significantly larger
corpora. It stands to reason, whether grammar inference is
possible on a corpus as small as that.
A different approach is the Incremental Parsing (Seginer
2007). It uses common cover links similar to dependency
links. It does not use POS-tags for parsing.
There is also the Constituent-Context Model (CCM)
(Klein & Manning 2002), which uses the assumption that
constituents appear in constituent context along with a
variant that models simple head-outward dependency
over word classes including valence (DMV) (Klein 05).
This algorithms makes use of the fact that especially long
constituents often have short equivalents (pro-forms)
appearing in similar contexts. Incidentally, a very similar
idea is used to compare compounds with paraphrases of
these compounds (Holz & Biemann 08).
Finally, there is a simpler all-subtrees approach (Bod 06a),
which is also partly based on earlier work (Klein &
Manning 02). It operates by generating all possible binary
trees for each encountered sentence. Parsing a new
sentence consists of computing the most probable parse
from the accumulated frequencies of observed subtrees
with respect to the currently observed combination of
words or part of speech tags. Problems with this approach
again concern mainly computational complexity – but to
such a degree that it appears to be impossible to extend the
same approach to more than binary subtrees. This
algorithm is the first to be systematically compared with
traditional machine learning methods.
However, it is still hard to tell how the various approaches
would perform when compared directly with each other.

1109

In this work we take the same evaluation route as taken by
Rens Bod and compare our algorithm to his and to those
based on machine learning.
The algorithm in this work approaches the goal of
learning syntactic structure from a different direction.
Observations of significant co-occurrences of word forms
or part of speech tags allow determining word pairs in a
sentence that appear to have a constituent boundary
between them or inversely appear to represent a
constituent, or, in other words, belong together. Using this
information, an iterative learning process combines such
words pairs for further iterations until each sentence is a
single constituent. This algorithm also takes
non-contiguous dependencies into account. It can be
applied either on the observed word forms directly, or on
part of speech tags. We test the performance of the
algorithm both on manually annotated part of speech tags,
as well as on automatically acquired ones. We show that
such algorithms are indeed easily extensible to be used
with unsupervised part of speech taggers (as claimed in
(Bod 06b)), but we also show that the resulting
performance does not yet compete with using the same
approach on manually acquired part of speech tags. We do
show, however, that the existence of any part of speech
tags dramatically increases the performance. This is
because POS tags allow to avoid the data sparseness, or
rather move it to the POS tagger (or inducer). As in ABL,
we do not come up with an explicit grammar. Instead, our
algorithm also produces a bracketed version of the corpus.
Compared to the evaluation of ADIOS given in (Cramer
07) our algorithm significantly outperforms the random
branching baseline.
The following Section 2 describes in more detail the
assumptions that are made for the underlying constituent
detection algorithm. Section 3 describes the iterative
learning algorithm and how the resulting parser uses the
acquired syntactic knowledge. Finally, in Section 4
experimental results are presented and compared to other
related work.

2. Constituent detection
One assumption our constituent detection algorithm
unsuParse is based on states that a word within a
constituent prefers a certain position. Note that this does
not state general restrictions on word order. We use two
special cases where the word prefers either the first, or the
last position of a sentence. These two positions are
obviously constituent boundaries. For a given corpus, the
variable a represents the statistical significance of having
observed a word A at the end of sentences (marked with
the symbol $) An times,:

(),$Asiga nA=
On the contrary, a second variable b represents the
significance of having observed a different word B at the
beginning of sentences marked with the symbol ^) Bn
times:

()Bsigb nB ,^=

The variables a and b are then compared with c, which is
the statistical significance of having observed the word A

and then the word B (next to each other in this order) ABn
times:

()BAsigc nAB ,=

Significance for all variables is computed by using the
log-likelihood significance measure which takes the four
parameters corpus size n , frequency An of term A,
frequency Bn of term B and frequency ABn of
co-occurrence and returns a value corresponding to the
significance of the observed ABn -fold joint
co-occurrence of A and B to be not random events. In this
setup, values over a threshold such as roughly 5 can be
assumed to be significant with an error probability of
2.5%.
Comparing a and b with c is done by defining the
separation value),(BAsep of any two words A and B in a
sentence:

2
),(

c

ba
BAsep

⋅=

The motivation behind this is the following. As long as we
do not yet know the boundary of constituents, we can
begin by assuming that sentence boundaries are
constituent boundaries. The variable a is larger than c (and
hence, the quotient 1>c

a) if the word A occurs more
significantly at the end of a sentence as compared to
occurring before B. Additionally, the variable b is larger
than c (and correspondingly the quotient 1>c

b) if the
word B occurs more significantly at the beginning of a
sentence as compared to occurring after A. When A
occurs in front of B and the product of both quotients is
larger than one, then obviously this is a very atypical
combination for A and B and the words A and B represent
the end of an old and the beginning of a new constituent,
respectively. In other words, in this case there is a
constituent border between A and B.
The resulting basic algorithm for learning parse trees then
proceeds by iteratively picking the smallest separation
value and merging the two corresponding words into a
new node and treating this node as a new constituent in
the further iterations. The following example illustrates
typical values and the resulting bracketing.

• Input sentence: Ich kaufe mir das Auto (engl. I buy
[me] the car)

• Separation values: Ich 0.02 kaufe 2.01 mir 1.57 das
0.04 Auto

• Iteration steps:
o [Ich 0.02 kaufe] 2.01 mir 1.57 das 0.04 Auto
o [Ich 0.02 kaufe] 2.01 mir 1.57 [das 0.04 Auto]
o [Ich 0.02 kaufe] 2.01 [mir 1.57 [das 0.04 Auto]]

• Resulting Bracketing: [Ich kaufe] [mir [das Auto]]

3. Extensions
This basic separation value (in Table 1 referenced to as
‘unsuParse on words’) already detects intuitive
constituent boundaries and is especially good at finding
noun phrases. However, it has the following weakness: It
is only reliable if both words A and B are sufficiently
frequent to get reliable values for the co-occurrence
measure. This is not the case in the following two cases:

1110

1. NPs of the type Det-Adj-N with a very low frequent
Adj are not recognized. The same applies more
generally to very low frequent words within a
constituent.

2. On the contrary but due to the same reason, some
very frequent word combinations such as “and in”,
belonging to different phrases, will not be separated.

Therefore several enhancements are introduced, but only
briefly described at this point. The complete algorithm
with all enhancements is referred to as ‘unsuParse on
unsuPOS tags’ in Table 1.

3.1. Dealing with rare words: larger windows
For the first problem there are two solutions. The first
solution is to skip these low frequent words, or
equivalently, to enlarge window size and analyze the
separation value for more distant words. For example
when computing separation values between C and D in
the sequence A B C D, then in the basic version only the
pair C D is considered. Instead, it makes sense to consider
the pairs A D and B D additionally.
In this reformulation, all pairings of words from the left
and right side of a possible constituent border within a
sentence are taken into account that have at least one word
next to the position i. Given a position i between two
words ni and ni+1 within a sentence of length m, the new
separation value sep(i) is than the minimum of the
separation values of all pairs of words where the one word
is anything from n0 to ni and the other word from ni+1 to
nm:

() ()
















=

+=
=

+=
=

),(min,),(minmin)(

...11

...0 kj

mik

ijkj

ik

ij
nnsepnnsepisep

This allows the algorithm to cope with several of the
aforementioned problems such as atypical adjectives
breaking up noun phrases, because it can take long
distance dependencies into account. Hence, in the
example sentence ‘I want to buy a fast and costly car’ the
new algorithm is still able to detect the noun phrase ‘a fast
and costly car’.

3.2. Using POS tags and positional preferences
A solution that more generally takes care of the frequency
distortion problems is to use POS tags. In the case of a
rare word, it can be replaced by its POS tag to get more
reliable statistical information. Especially with nouns and
adjectives it is the case that most nouns are too infrequent
for reliable statistics. However, when they are all
summarized into a single tag, such as “NN”, this tag
becomes a very frequent chunk whose distributional
properties can then be analyzed properly in a statistically
based method.
The combination of POS information with already
acquired knowledge about constituents allows to compute
a preference value to each POS tag. Hence, the value
pref(A) expresses the preference of A to be the first
element in a constituent:

lfApref −= 2)(

where f is the number of constituents with A at the first
position and l the number of constituents with A at the last
position. Hence, pref(A) becomes large if A prefers the
front position of newly found constituents and small in the
opposite case. Hence the reformulation of the basic
separation value

2)(

)(
),(

c

ba

Apref

Bpref
BAsep

⋅=

takes the knowledge already learned at any point of the
learning process into account when learning further rules.

3.3. Iterative learning in two phases
A third enhancement is to make rule learning iterative and
to split learning into two phases. In each iteration the
entire corpus is processed and for each sentence only the
best merge of two words or phrases is accepted and
treated as a new constituent in the following iteration.
However, forcedly joining two constituents in a sentence
where the separation value has a large value results in
frequent mistakes.
Therefore we split the learning into a safe and an unsafe
learning phase and into a parsing phase. In the first
learning phase in each iteration a frequency ranking of
hypothesized new constituents is used to cut off probably
correct from probably incorrect ones. This phase ends
once no more constituents can be found. This means that
either the corresponding separation values are above a
threshold or the frequency of the hypothesized
constituents is too low. The unsafe learning then proceeds
by combining all remaining constituents of each sentence
hierarchically according to the separation values.
Parsing sentences works in a very straightforward way by
finding the most significant constituents first.
Significance of constituents is derived from the learning
phase in that the earlier a constituent was learned, the
more significant it is.
Additionally, if a very significant constituent contains
another one then that subtree is flattened into a ternary (or
more) tree. For example in “We have a pretty house”
normally it would first find “pretty house” due to the
highly significant constituent akin to ADJ NN. Then it
would find the constituent that essentially says DET NP.
However, both constituent types were learned early and
hence, the resulting bracketing is “We have [a pretty
house]”
Finally, specific patterns are used to find phrases that
belong together. For example if the analysis is “[Mr.
Peters] [his [pretty pet]] …” then the first phrase should
be bracketed together with the second phrase. Such cases
are recognized by means of the following method. Once
both noun phrases were found, the last word of the first
phrase is checked, whether it occurs significantly often
next to the first word of the second phrase or with the
entire phrase. The same is done checking, whether the
first word of the second phrase co-occurs significantly
often with the last word of the first phrase. If any of these

1111

conditions is met, the two phrases are found to belong
together.
Clearly, the most important enhancement is to apply the
entire algorithm not on the words directly, but on their
part of speech tags, instead. This allows the algorithm to
have a clearer view on the structure of the sentence
without being hampered too much by specific typical uses
of certain words. This also circumvents the data
sparseness problem, because even very rare words are
subsumed under word classes such as nouns, adjectives or
adverbs (assuming that the tagging is correct).

Algorithm Precision Recall F

CCM 0.481 0.855 0.616

DMV 0.384 0.695 0.495

DMV+CCM 0.496 0.897 0.639

U-DOP 0.512 0.905 0.654

U-DOP* 0.638

UML-DOP 0.652
unsuParse on
Negra tags

0.769 0.539 0.634

Baseline 0.279 0.496 0.357

upper bound 0.563 1.000 0.721

Incremental
Parsing

0.510 0.698 0.590

unsuParse on
words

0.337 0.628 0.439

unsuParse on
unsuPOS tags

0.612 0.591 0.602

Table 1: The upper part shows grammar inference
algorithms based on manually annotated POS tags,
whereas the lower part shows algorithms applied on
words directly or on automatically induced POS tags.
CCM is the Constituent-Context Model (Klein and
Manning 02), the three variants of DOP represent the all
subtree approach (Bod 06a) and Incremental Parsing is
the algorithm from Seginer (Seginer 07). Our algorithm
unsuParse is applied either on the NEGRA tags or on
induced tags using the unsuPOS algorithm (Biemann 06).

4. Evaluation and Conclusions
In order to assess the quality of the parses generated by
the complete algorithm, several evaluations were run and
a few examples are given.
In line with the evaluation in (Klein and Manning 2004),
the algorithm was tested on a subset of the NEGRA
Corpus (Skut et al. 98) containing all sentences with at
most 10 words (referred to as NEGRA10). Using the same
measures as in (Klein and Manning 2004), which
essentially means counting brackets matching with the
gold standard, allows to compare our algorithm with other
existing algorithms. Other algorithms tested with this
method include CCM (Klein and Manning 02), DMV
(Klein 05), Incremental Parsing (Seginer 2007) and
several variants of the U-DOP algorithm (Bod 06a). The

results are shown in Table 1 with values for other
algorithms taken from the respective publications.
The evaluated solutions are divided into two groups – first
those that use manually annotated part of speech tags (and
thus are not fully unsupervised) and those that are applied
either on the words directly or on part of speech tags
acquired from an unsupervised part of speech tagger, such
as unsuPOS (Biemann 06). Additionally, a baseline is
given which shows the performance of an algorithm that
finds constituents randomly (i.e. the separation values are
produced by a random number generator). An upper
bound is provided which shows the maximum achievable
performance when using binary trees (relevant for
U-DOP).
Since unsuParse is not restricted to binary trees, it is
unsurprising that it has the highest precision out of all
compared algorithms. However, despite being able to
account for distant dependencies, the restriction to
contiguous constituents and other effects, such as typical
prepositions reduces recall significantly. Nevertheless, the
performance of this computationally less demanding
algorithm compares very well with other approaches and
among the fully unsupervised implementations it is
currently the best.
Another evaluation run on more complex sentences
underlines this. The results of an evaluation using all
sentences of the NEGRA Corpus with at most 40 words
(referred to as NEGRA40) and, as above, the same
measures as in (Klein and Manning 2004) are shown in
Table 2. While the results of testing on NEGRA10 are
closer to each other, this experiment shows a bigger
difference compared to Incremental Parsing. However,
the performance of both algorithms decreases
significantly for long sentences.

Algorithm Precision Recall F

Incremental
Parsing

0.348 0.489 0.406

unsuParse on
unsuPOS tags

0.476 0.435 0.455

Table 2: Evaluation of the Incremental Parsing (Seginer
07) and our algorithm on long sentences.

Hence it can be said that unsuParse can be used to parse
longer, more natural sentences, but probably only the
lower parts of the resulting syntactic tree can be assumed
to be mostly correct, including specific noun, adjective
and verb phrases as well as simple combinations of
specific phrases. For many tasks, such as Information
Extraction or Named Entity recognition this might prove
to be helpful.
In order to assess the influence the various parts of the
algorithm we performed several tests where specific parts
of the algorithm were omitted. Specifically, we created
the following versions (and tested them on the NEGRA
tags):

• unsuParse : This is the full version of out
algorithm for reference.

• unsuParseNB : This is based only on the initially

1112

introduced variable c of the separation value. It
does not take a, b and positional preferences into
account and does not distinguish between safe
and unsafe learning.

• unsuParse safe learning : This is the full version
except that it does not apply the forced
combination of all remaining constituents
irrespective of the separation values (the unsafe
learning step).

• unsuParseNB safe learning : This is based only
on the c variable and the safe learning step
without the unsafe learning.

• unsuParseHybrid : This version is like the full
version until including the safe learning step.
Afterwards it proceeds by combining all
remaining constituents based only the variable c.

These experiments provide a number of surprising
insights. Apparently the variable c already suffices to
produce very competitive results, assuming POS tags
were used. The extensions prove to be useful, but their
effect is relatively small.
It is important to note that the highest F-score for a
subpart of the algorithm comes at a cost in Recall.
Essentially, the version “unsuParse safe learning” is
unable to completely parse sentences. Only the full
version “unsuParse” produces full parses.

Algorithm Precision Recall F

unsuParse 0.535 0.666 0.593

unsuParseNB 0.553 0.668 0.605
unsuParse safe
learning

0.769 0.539 0.634

unsuParseNB
safe learning

0.679 0.558 0.612

unsuParseHybrid 0.546 0.684 0.607

Table 3: Tests of various versions of the algorithm where
certain mechanisms were omitted.

It also seems that the influence of three variables and the
preference quotient improves the results during earlier
iterations. Simplifying the separation value to only
variable c improves the results after the complete learning
phase slightly. Combining those two separation values to
create a hybrid algorithm which first uses all variables and
changes to simple neighborhood co-occurrences after the
safe learning has almost no effect.

Examples
The following examples from Spanish, German, English
and French illustrate the performance of unsuParse:

Spanish:
[Todo ello , [de [conformidad con los]]
[principios que] siempre [hemos
apoyado]]

[Mi Grupo [ha hecho] importantes
[enmiendas [a los]] dos informes que [se

debaten] hoy]

German:
[[Die Titel] [Feldbergfestsieger [und
-siegerin]] werden [[in der
Dreikampf-Oberstufe] vergeben]]

[Das [von Seoul] finanzierte Projekt ist
[in der Anfangsphase]]

English:
[At [the beginning] , [the Mexican
attitude] was very macho]

[Barco said he will present [the
[proposed treaty]] to [the lawmakers]
[next week]]

[[Bondholders agreed] to reschedule [the
debt payments]]

French:
[[Lionnel Luca] est député [des
Alpes-Maritimes] (UMP)]

[Et , ajoute-t-on , “ [il est] [essentiel
[de respecter]] [les
engagements] du ministre ”]

However, it should be noted that a typical scenario for
such an algorithm is a language for which there is no
syntactic parser yet. This usually also means the absence
of a POS tagger. This is not contradiction to the
assumptions given in Section 3.2. It suffices to have
identical tags for words with similar syntactic features.
Some tagging weaker than POS tagging is sufficient. We
refer to (Biemann 06) for unsupervized POS tagging
which works without any prior knowledge about the
language under consideration.
More examples can be easily generated since the data
format used is the same as in the Leipzig Corpora
Collection which offers over a dozen different languages
(Biemann et al. 07). The entire Leipzig corpora collection
will soon be made available with such unsupervised
parses included. Finally, this is a very simple and easily
extensible approach and it provides insights into how
fully unsupervised methods for parsing can be further
developed.

5. References
Adriaans, Pieter W. and Mark R. Vervoort (2002): The

EMILE 4.1 grammar induction toolbox. In Proceedings
of the 6th International Colloquium on Grammar
Induction (ICGI), pages 293–295, Amsterdam, the
Netherlands

Biemann Chris (2006): Unsupervised Part-of-Speech
Tagging Employing Efficient Graph Clustering. In:
Proceedings of the COLING/ACL-06 Student
Research Workshop 2006, Sydney, Australia

1113

Biemann, Chris, Gerhard Heyer, Uwe Quasthoff and
Matthias Richter (2007): The Leipzig Corpora
Collection – Monolingual corpora of standard size. In:
Proceedings of Corpus Linguistics 2007, Birmingham,
UK

Bod, Rens (2006a): An All-Subtrees Approach to
Unsupervised Parsing. Proceedings ACL-COLING
2006, Sydney, Australia

Bod, Rens (2006b): Unsupervised Parsing with U-DOP.
In: Proceedings CoNLL 2006, New York, USA

Bod, Rens (2007): Is the End of Supervised Parsing in
Sight? In: Proceedings of the ACL 2007, Prague, Czech
Republic

Bordag, Stefan (2007): Elements of Knowledge-free and
Unsupervised Lexical Acquisition. Ph.D. thesis,
Natural Language Processing Department, University
of Leipzig, Germany

Cramer, Bart (2007): Limitations of Current Grammar
Induction Algorithms. In: Proceedings of the ACL
2007 Student Research Workshop, pages 43-48.

Curran, James Richard (2003): From Distributional to
Semantic Similarity. Ph.D. thesis, Institute for
Communicating and Collaborative Systems, School of
Informatics. University of Edinburgh, Edinburgh, UK.

Dennis, Simon and Michael Harrington (2001): The
Syntagmatic Paradigmatic Model: An distributed
instance-based model of sentence processing. The
Second Workshop on Natural Language Processing and
Neural Networks, Tokyo, Japan

Holz, Florian and Chris Biemann (2008): Unsupervised
and Knowledge-Free Learning of Compound Splits and
Periphrases. Proceedings of CicLING-08, Haifa, Israel

Klein, Dan and Christopher Manning (2002): A
Generative Constituent-Context Model for Improved
Grammar Induction, In: Proceedings of the ACL 2002.
Philadelphia, USA

Klein, Dan and Chris Manning (2004): Corpus-Based
Induction of Syntactic Structure: Models of
Dependency and Constituency, In Proceedings of the
ACL 2004, Barcelona, Spain

Klein, Dan. 2005. The Unsupervised Learning of
Language Structure. Ph.D. thesis, Stanford University,
Stanford, CA, USA

Kurimo, Mikko, Mathias Creutz and Ville Turunen (2007):
Overview of Morpho Challenge in CLEF 2007. In:
Working Notes for the CLEF 2007 Workshop.
Budapest, Hungary

Sahlgren, Magnus (2006). The Word-Space Model: Using
distributional analysis to represent syntagmatic and
paradigmatic relations between words in
highdimensional vector spaces. Ph.D. thesis, Swedish
Intitute of Computer Science, Stockholm, Sweden

Schwiebert, Stephan und Jürgen Rolshoven (2006): SOG:
Ein selbstorganisierender Graph zur Bildung von
Paradigmen. In: Rapp, Reinhard, Sedlmeier &
Zunker-Rapp: Perspectives on Cognition. A Festschrift
for Manfred Wettler. Lengerich: Pabst Science
Publishers

Seginer, Yoav (2007): Fast Unsupervised Incremental

Parsing. In: Proceedings of the ACL 2007, Prague,
Czech Republic

Skut, Wojciech, Thorsten Brants, Brigitte Krenn and Hans
Uszkoreit (1998): A linguistically interpreted corpus of
German newspaper text. In ESSLI 1998, Workshop on
Recent Advances in Corpus Annotation. Saarbrücken,
Germany

Solan Zach (2006): Unsupervised Learning of Natural
Languages, PhD thesis, School of Physics and
Astronomy, Tel-Aviv University, Israel

van Zaanen, Menno (2001): Bootstrapping Structure into
Language: Alignment-Based Learning, PhD thesis,
School of Computing, University of Leeds, UK

1114

