
Workshop Program

 9:30 Welcome
10:00 Invited Talk: Creation and Management of Accurately Annotated Corpora

Yuji Matsumoto
11:00 Coffee break

11:30 Automatic Phonetic Transcription of Large Speech Corpora
Christophe Van Bael, Lou Boves, Henk van den Heuvel, Helmer Strik

12:15 Annotation of Grammatemes in the Prague Dependency Treebank 2.0
Magda Razímová, Zdenk Zabokrtsky

13:00 Lunch break
14:30 Invited Talk: Tagset Design for High Accuracy POS Tagging and Automatically Building

Mapping between Arbitrary Tagsets
Dan Tufis

15:30 Constraint-Based Extract Alignment for Black-Box Evaluation of Extractive
Summarization Methods
Jorge Marques Pelizzoni, Thiago Ianez Carbone, Lucia Helena Machado Rino

16:30 Coffee break

17:00 Semi-Automatic Phonological Annotations of Speech by Grammatical Inference
Robert Kelly and Julie Carson-Berndsen

17:45 Invited Talk: Toward a ‘Science’ of Annotation: Experiences from OntoNotes
Eduard Hovy

18:15 Panel Discussion

Workshop Organisers

Eric Atwell, University of Leeds, UK
Nancy Ide, Vassar College, USA

Program Committee

Eric Atwell, University of Leeds (UK)
Nigel Collier, National Institute of Informatics (Japan)

Atsushi Fujii, University of Tsukuba (Japan)
Rebecca Hwa, University of Pittsburgh (USA)

Nancy Ide, Vassar College (USA)
David Lewis, David D. Lewis Consulting USA)

Miles Osborne, University of Edinburgh (UK)
Anoop Sarkar, Simon Fraser University (CA)

Mark Steedman, University of Edinburgh (UK)
Takenobu Tokunaga, Tokyo Institute of Technology (Japan)

Kiyotaka Uchimoto, National Institute of Information and Communications Technology (Japan)

Table of Contents

Creation and Management of Accurately Annotated Corpora

Yuji Matsumoto... 1

Tagset Design for High Accuracy POS Tagging and Automatically Building
Mapping between Arbitrary Tagsets
Dan Tufis .. 2

Toward a ‘Science’ of Annotation: Experiences from OntoNotes
Eduard Hovy... 3

Automatic Phonetic Transcription of Large Speech Corpora
Christophe Van Bael, Lou Boves, Henk van den Heuvel, Helmer Strik... 4

Annotation of Grammatemes in the Prague Dependency Treebank 2.0
Magda Razímová, Zdenk Zabokrtsky ... 12

Constraint-Based Extract Alignment for Black-Box Evaluation of Extractive Summarization
Methods

Jorge Marques Pelizzoni, Thiago Ianez Carbone, Lucia Helena Machado Rino............................ 20

Semi-Automatic Phonological Annotations of Speech by Grammatical Inference

Robert Kelly, Julie Carson-Berndsen .. 28

Creation and Management of Accurately Annotated Corpora

Yuji Matsumoto

Graduate School of Information Science
Nara Institute of Science and Tachnology

8916-5 Takayama, Ikoma, Nara 630-0192 Japan
matsu@is.naist.jp

Recent progress in natural language processing has
achieved implementation of highly accurate language pro-
cessing tools such as Part-of-speech tagging, phrase and
named entity chunking, and syntactic parsing, which are
now used in various natural language processing applica-
tion. Large scale annotated corpora are very important not
only for linguistic research but also for improving accuracy
of practical language processing tools, since most of the
state-of-art practical NLP tools are machine learning-based
systems which require large-scale and accurately annotated
corpora. On the other hand, it is well-known that even a
widely used annotated corpus such as Penn Treebank still
includes a number of annotation errors. To realize highly
accurate annotated corpora, it is indispensable to have a
supporting environment for maintaining annotated corpora
and for finding and correcting errors hauting in automati-
cally or manually annotated corpora.

This talk presents our activities of machine learning-based
development of natural language processing tools and our
language resource management systems.

In the last decade, machine learning and corpus-based nat-
ural language processing methods have made remarkable
progress, and we are now aware of good methodologies for
developing pretty accurate NLP tools. Corpus-based NLP
systems have an advantage over handcrafted systems in that
they are easily adaptable to new domains as well as new
languages, provided an annotated corpus is available. Com-
pared with the ramarkable pregress in machine learning
methodologies, deployment of annotated corpora in vari-
ous domains and languages is very slow. Even for the most
studied English language, we have very limited number of
linguistically annotated corpora. While Penn Treebank is
the most widely used annotated English corpus, its size and
domain are quite limited and the improvement is very slow.
Therefore, it is quite important not only to develop sophis-
ticated corpus-based natural language processing tools but
also to develop an environment or methodologies to create
and manage accurately annotated language resources.

This talk will cover two main topics: The first is our ac-
tivities on development of Natural Language Processing
tools and resources, and the second is about the systems
for maintaining natural language resources.

In the first part, I will introduce our activities on the devel-
opment of machine learning-based NLP tools, such as seg-
mentation and POS taggers, a general purpose chunker and

its application to base phrase, Named Entity and unknown
word chunking, and dependency parsers. We have been de-
veloping those systems for Japanese, Chinese and English.
I will also introduce and compare various machine learn-
ing techniques used in the systems. I will also briefly talk
about our recent application of machine learning technique
to anaphora resolution. In parallel with those tools, we have
been developing lexicons of three languages with the help
of unknown word identification program. I will mention
this activity as well.

In the second half of the talk, I will introduce two sys-
tems for natural language resource management: ChaKi
and Cradle.

ChaKi is an annotated corpus management system. It cur-
rently deals with POS-tagged and dependency analyzed
corpora. The main characteristics of the system are sum-
marized as follows: (1) Coordination between annotated
corpora and lexicon: The words in annotated corpora are
represented as pointers to entries in the lexicon. This helps
to keep consistency between the corpora and the lexicon.
(2) Variation of annotation: POS tags, base phrase chunks
and syntactic dependency structures (dependency between
words or chunks) are handled. Multi-word expressions can
be defined in the lexicon together with their constituents.
(3) Search: Three modes of search are possible, string
search, word search, and dependency structure search. (4)
Browsing: KWIC presentation of retrieved sentences and a
dependency structure tree browser are provided. (5) Error
correction: Segmentation, word information, and depen-
dency structure errors correction is supported on the sys-
tem. (6) Statistic calculation: Basic statistic calculations
such as word frequencies and collocation counts in fixed
size windows are provided. (7) Multilinguality: The sys-
tem is designed as language independent, and now handles
Japanese, Chinese and English corpora.

Cradle is a lexicon management system. It currently keeps
a lexicon for Part-of-speech tagging and maintain lexical
information such as POS lables, information on inflection
types, and constitutent structure information for a word if it
is a compound or a multi-word expression.

Finally, I will talk about our future plan and use of those
systems for development of large scale corpus and lexicon.

1

Tagset Design for High Accuracy POS Tagging and Automatically Building
Mapping between Arbitrary Tagsets

Dan Tufis

Research Institute for Artificial Intelligence
Romanian Academy

13, Calea 13 Septembrie, 050711, Bucharest
tufis@racai.ro

The paper discusses various issues related to tagset design for maximizing the accuracy of subsequent tagging
processes. It will review the tiered tagging design approach as well as some new developments. Tiered tagging is based
on a methodology that tries to compromise the natural users’ desire to have their texts tagged with as much informative
tags as possible (therefore very large tagsets) with the requirement of having enough annotated data needed to build a
reliable statistical language model. The methodology involves the use of a reduced hidden corpus tagset, automatically
constructed from the large targeted lexical tagset, and a procedure to map back the reduced tagset into the large one in the
final annotated text. The two tagsets (the lexical and corpus tagsets) are related by a subsumption relation.

When the reduction of the cardinality of the large tagset is information lossless (redundancy elimination) the mapping
from the reduced tagset to the initial one is deterministic and is simply ensured by a lookup of a dictionary.

For tagset reduction with information loss, in spite of a much significant reduction of the tagsets, the recovering of the
left out morpho-lexical information, although to a large extent deterministic, requires additional preprocessing to solve
some non-deterministic cases. In the previous version of the tiered tagging approach we used several hand-crafted rules
(regular expressions defined over the reduced tagset, with a span of ±4 tags around the ambiguously mapped tags).
Recently we developed a new version of the tiered tagging where the need for the expert introspection in writing the rules
was eliminated by a fully automatic procedure. The mapping is ensured by a supervised ME algorithm.

Another issue we will discuss refers to automatic construction of mappings for two completely unrelated tagsets so
that one could turn the POS annotation of one text from one tagset into another tagset. While in the tiered tagging the
mapping from the reduced tagset to the large tagset was inherently 1-n, here the mapping may be (and usually is) of the
n-m type. There are several ways to solve this problem. We will analyze in some details our solution, which is called
cross-tagging. Essentially, from two different texts tagged with two unrelated tagsets, be they GS-A(Tagset1) and GS-
B(Tagset2) the cross-tagging procedure, builds a statistical mix language model MLM (Tagset1, Tagset2). This language
model is used by a statistical tagger (in our case a second order HMM, but any tagger would do) to retag GS-A and GS-B
both with their initial tagsets and with the other tagsets. The result of the cross-tagging is many-folded interesting to look
at:

• The mapping between Tagset1 and Tagset2 is a very useful resource, the analysis of which may highlight the
adequacy of morpho-syntactic distinctions made by one tagset or another; the mapping is a list of equivalence
probabitilies: {P(Ti

Tagset1|Tj
Tagset2), P(Ti

Tagset2|Tj
Tagset1)}.

• The cross-tagging annotations GS-A(Tagset2) and GS-B(Tagset1) are more accurate than the annotations obtained
by direct tagging (the usual approach)

• By double-cross-tagging of GS-A and GS-B, GS-A*(Tagset1) and GS-B*(Tagset2), one can clearly identify (and
correct) errors in the initial annotation of the reference texts.

We performed experiments on two English texts annotated with the Multext-East tagset and Penn-tagset respectively.
The reference texts were “1984” and “Semcor”. By cross-tagging, we produced new annotations: 1984(Penn) and
Semcor(Multext-East). By double-cross-tagging we obtained improved versions of the initial tagging: 1984++(Multext-
East) and Semcor++(Penn). For instance between the initial Semcor(Penn) and Semcor++(Penn) there were more than
80,000 differences, out of which the vast majority represented tagging errors in Semcor(Penn). The cross-tagged and
double-cross-tagged corpora are public.

2

Toward a ‘Science’ of Annotation: Experiences from OntoNotes

Eduard Hovy

Information Sciences Institute
Marina Del Rey, California

hovy@isi.edu

As machine learning algorithms and their application for NLP become better understood, attention turns toward the
production of annotated corpora to which they can be applied. Numerous phenomena present themselves for annotation,
including aspects in lexical semantics, discourse, pragmatics, and dialogue. But several questions immediately must be
answered:

1. How does one obtain a balanced corpus to annotate? What is a balanced corpus?

2. How does one decide which aspects to annotate? How does one adequately express the theory behind the
phenomena in simple annotation steps?

3. Which annotators does one hire? How does one ensure that they are adequately trained?

4. How does one establish a simple, fast, and trustworthy annotation procedure? What interfaces does one build? How
does one ensure that the interfaces do not affect the annotation results?

5. How does evaluate the results? What are the appropriate agreement measures? At which cutoff points should one
re-do the annotations? How does one ensure improvement?

6. How should one formulate and store the results? How does one ensure compatibility with other existing resources?
How does one make results available for best impact?

7. How does one report the annotation effort and results? How does one actually get a paper on this work published at
an important conference? What should the paper contain?

Despite their being so basic, there is almost no established procedure or standard set of answers to these questions
today. In this talk I discuss some of these aspects, pointing to the lessons learned in the ongoing OntoNotes project (joint
with BBN, the University of Colorado (PropBank), the University of Pennsylvania (Treebank), and ISI).

3

Automatic Phonetic Transcription of Large Speech Corpora

Christophe Van Bael, Lou Boves, Henk van den Heuvel, Helmer Strik

Centre for Language and Speech Technology (CLST)
Radboud University Nijmegen, the Netherlands
[c.v.bael,l.boves,h.v.d.heuvel,w.strik]@let.ru.nl

Abstract
This study is aimed at investigating whether automatic phonetic transcription procedures can approximate manual transcriptions
typically delivered with contemporary large speech corpora. To this end, ten automatic procedures were used to generate a broad
phonetic transcription of well-prepared speech (read-aloud texts) and spontaneous speech (telephone dialogues) from the Spoken
Dutch Corpus. The resulting transcriptions were compared to manually verified phonetic transcriptions from the same corpus.

Most transcription procedures were based on lexical pronunciation variation modelling. The use of signal-based pronunciation
variants prevented the approximation of the manually verified phonetic transcriptions. The use of knowledge-based pronunciation
variants did not give optimal results either. A canonical transcription that, through the use of decision trees and a small sample of
manually verified phonetic transcriptions, was modelled towards the target transcription, performed best. The number and the nature
of the remaining disagreements with the reference transcriptions compared to inter-labeller disagreements reported in the literature.

1. Introduction
In the last decades we have witnessed the development

of large multi-purpose speech corpora such as TIMIT
(1990), Switchboard (Godfrey et al., 1992), Verbmobil
(Hess et al., 1995), the Spoken Dutch Corpus (Oostdijk,
2002) and the Corpus of Spontaneous Japanese (Maekawa,
2003). In particular a good phonetic transcription increases
the value of such corpora for scientific research and for the
development of applications such as automatic speech
recognition (ASR).

For some purposes (e.g. basic ASR development), a
canonical phonetic representation of speech can be
sufficient (Van Bael et al., 2006). However, for other
purposes, such as linguistic research, a more accurate
annotation of the signal is needed. For this reason, some
corpora come with a manual transcription of the data
(Hess et al., 1995; Greenberg et al., 1996; Oostdijk, 2002).

Despite efforts to improve the workflow of human
experts, however, the human transcription process remains
tedious and expensive (Cucchiarini, 1993). This explains
why ‘only’ 4 hours of Switchboard speech were
phonetically transcribed as an afterthought, and why the
phonetic transcription of ‘only’ 1 million words of the 9-
million-word Spoken Dutch Corpus was manually
verified. Both for Switchboard and the Spoken Dutch
Corpus, transcription costs were restricted by presenting
trained students with an example transcription. The
students were asked to verify this transcription rather than
to transcribe from scratch (Greenberg et al. 1996; Goddijn
& Binnenpoorte, 2003). Although such a check-and-correct
procedure is very attractive in terms of cost reduction, it has
been suggested that it may bias the resulting transcriptions
towards the example transcription (Binnenpoorte, 2006). In
addition, the costs involved in such a procedure are still
quite substantial. Demuynck et al. (2002) reported that the
manual verification process took 15 minutes for one minute
of speech recorded in formal lectures and 40 minutes for
one minute of spontaneous speech.

Several studies already reported the benefits of
automatic phonetic transcriptions for ASR (e.g. Riley,
1999; Yang & Martens, 2000; Wester, 2003; Saraçlar &
Khundanpur, 2004; Tjalve & Huckvale, 2005) and for
speech synthesis (e.g. Bellegarda, 2005; Jande, 2005,

Wang et al. 2005). In these studies, the phonetic
transcriptions were used as tools to improve the
performance of a specific system. Hence, they were not
evaluated in terms of their similarity with manually
verified broad phonetic transcriptions. Only a small
number of studies evaluated automatic phonetic
transcriptions in terms of their resemblance to manual
transcriptions (e.g. Wesenick, & Kipp, 1996; Kipp, et al.
1997; Demuynck et al. 2004). These studies, however,
reported the use and evaluation of only one or a limited
number of similar procedures at a time. To our
knowledge, no study has compared the performance of
established automatic transcription procedures in terms of
their ability to approximate manual transcriptions. We are
also not aware of attempts to study the potential synergy of
the combinatory use of existing transcription procedures.

The aim of this paper is to compare the performance of
existing transcription procedures and to investigate
whether combinations of these procedures lead to a better
performance so that it will eventually be possible to
minimise (or even eliminate) human labour in the
phonetic transcription of large speech corpora, without
reducing the quality of the transcriptions. Since
transcriptions in large speech corpora are often designed
to suit multiple purposes, our transcriptions are also
intended to be multi-applicable rather than particularly
suitable for one specific application such as ASR.
Therefore, we will evaluate the transcriptions in terms of
their similarity to a reference transcription, rather than in
terms of a particular speech application. Because we want
to approximate manually verified transcriptions, we will
also discuss the characteristics of manual phonetic
transcriptions obtained through verification of example
transcriptions. Most of the procedures discussed in this
article require a continuous speech recogniser to select the
best fitting lexical pronunciation variant. The major
difference between these procedures is the manner in
which the lexical pronunciation variants were generated.

In order to ensure the applicability of the transcription
procedure in situations where only limited resources are
available, all procedures are designed to minimise human
effort. Most procedures are based on the use of a standard
continuous speech recogniser, an algorithm to align
phonetic transcriptions, an orthographically transcribed

4

corpus, a lexicon with a canonical transcription of all
words, and a manually verified transcription of a relatively
small sample of the corpus. The manual transcriptions are
required to tune the automatic transcription procedures
and to evaluate their performance. Some procedures also
require a list of phonological processes describing
pronunciation variation in the language at hand. Human
intervention and labour, if required at all, is limited to the
compilation of such a list of phonological processes.

This paper is organised as follows. In Section 2, we
introduce the corpus material used in our study. Section 3
sketches the various transcription procedures. Section 4
presents the validation of the corresponding transcriptions.
In Section 5 the results are discussed, and in Section 6
general conclusions are formulated.

2. Material

2.1. Speech Material
The speech material was extracted from the Northern

Dutch part of the Spoken Dutch Corpus (Oostdijk, 2002).
In order not to restrict our study to one particular speech
style, we selected read speech (RS) as well as spontaneous
telephone dialogues (TD).

The RS was recorded at 16kHz with high-quality
table-top microphones for the compilation of a library for
the blind. The TD, comprising much more spontaneous
speech, were recorded at 8kHz through a telephone
platform. As part of the orthographic transcription process
all speech material was manually segmented into chunks
of approximately 3 seconds. The transcribers were
instructed to put chunk boundaries in naturally occurring
pauses; only if speech stretched for substantially longer
than 3 seconds they had to put chunk boundaries between
two words with minimal cross-word co-articulation. The
experiments in this study have taken chunks as basic
fragments. In order to be able to focus on phonetic
transcription proper, we excluded speech chunks that,
according to the orthographic transcription, contained
salient non-speech sounds, broken words, unintelligible
speech, overlapping and foreign speech.

The statistics of the data are presented in Table 1. The
data from each speech style were divided into a training set,
a development set, and an evaluation set. All data sets were
mutually exclusive but they comprised similar material.

Table 1: Statistics of the phonetic transcriptions.

2.2. Canonical Lexicon
We used a comprehensive multi-purpose in-house

lexicon that was compiled by merging various existing
electronic lexical resources. The pronunciation forms in
this lexicon reflected the pronunciation of words as
carefully pronounced in isolation according to the
obligatory word-internal phonological processes of Dutch

(Booij, 1999). Each lexical entry was represented by just
one standard broad phonetic transcription. Information
about syllabification and syllabic stress was ignored in
order to ensure the applicability of the transcription
procedures to languages lacking a lexicon with such
specific linguistic information.

2.3. Reference Transcription (RT)
Since we aimed at approximating the manually

verified phonetic transcriptions of the Spoken Dutch
Corpus, we used these transcriptions as Reference
Transcriptions (RT) to tune (development set) and
evaluate (evaluation set) our transcription procedures. The
RTs were generated in three steps. First, a canonical
transcription was generated through a lexicon-lookup
procedure in a canonical lexicon. Subsequently, two
phonological processes of Dutch, voice assimilation and
degemination, were applied to the phones at word
boundaries. This was justified by previous research
indicating that these processes apply on more than 87% of
the word boundaries where they can actually apply
(Binnenpoorte & Cucchiarini, 2003). The enhanced
transcriptions were verified and corrected by trained
students. The transcribers acted according to a strict
protocol instructing them to change the canonical example
transcription only if they were certain that the example
transcription did not correspond to the speech signal. The
use of an example transcription resulted in reasonably
consistent phonetic transcriptions, but the constraints
imposed on the human transcribers also implied the risk of
biasing the resulting transcriptions towards the canonical
example transcription (Binnenpoorte, 2006).

2.4. Continuous Speech Recogniser (CSR)
Except for the canonical transcriptions, all automatic

phonetic transcriptions (APTs) were generated by means
of a continuous speech recogniser (CSR) based on Hidden
Markov Models and implemented with the HTK Toolkit
(Young et al., 2001). Our CSR used 39 gender- and
context independent, but speech style-specific acoustic
models with 128 Gaussian mixture components per state
(37 phone models, 1 model for silences of 30 ms or more
and 1 model for the optional silence between words).

The acoustic models were trained in three stages using
the CAN-PTs (cf. 3.1.1.1) of the training data. First, flat
start acoustic models with 32 Gaussian mixture
components were trained through 41 iterative alignments.
Subsequently, these models were used to obtain more
realistic segmentations of the speech material. These
segmentations were then used to bootstrap a new set of
acoustic models, which were retrained (through 55
iterations) to acoustic models with 128 Gaussian mixture
components per state.

2.5. Algorithm for Dynamic Alignment of
Phonetic Transcriptions (ADAPT)

ADAPT (Elffers et al., 2005) is a dynamic
programming algorithm designed to align strings of
phonetic symbols according to the articulatory distance
between the individual symbols. In this study, ADAPT
was used to align phonetic transcriptions for the
generation of lexical pronunciation variants, and to assess
the quality of the automatic phonetic transcriptions
through their alignment with a reference transcription.

 Transcription sets
Speech style Training Development Evaluation

words 532,451 7,940 7,940
RS

hh:mm:ss 44:55:59 0:40:10 0:41:39
words 263,501 6,953 6,955

TD
hh:mm:ss 18:20:05 0:30:02 0:29:50

5

3. Methodology
In Section 3.1, we introduce ten automatic

transcription procedures to generate low-cost APTs.
Section 3.2 describes the evaluation procedure with which
the APTs and, consequently, the procedures were
assessed.

3.1. Generation of phonetic transcriptions with
different transcription procedures

Figure 1 shows ten APTs. The procedures from which
they result can be divided into two categories: two
procedures that did not rely on the use of a lexicon with
multiple pronunciation variants per word, and eight
procedures that did rely on the use of a multiple
pronunciation lexicon in combination with a CSR. The
latter procedures can be further categorised according to
the way the pronunciation variants were generated. These
variants were either based on knowledge from the
literature, they were obtained by combining canonical,
data-driven and knowledge-based transcriptions, or they
were generated with decision trees trained on the
alignment of the APTs and the RT of the development
data. Most of the procedures required several parameters
to be tuned to better approximate the RT of the
development data. The optimal parameter settings were
subsequently applied for the transcription of the data in
the evaluation set.

Figure 1: 10 different automatic phonetic transcriptions.

3.1.1. Transcription procedures without a multiple
pronunciation lexicon

3.1.1.1. Canonical transcription (CAN-PT)
The canonical transcriptions (CAN-PTs) were

generated through a lexicon look-up procedure. Cross-
word assimilation and degemination were not modelled.
Canonical transcriptions are easy to obtain, since many
corpora feature an orthographic transcription and a
canonical lexicon of the words in the corpus.

3.1.1.2. Data-driven transcription (DD-PT)
The data-driven transcriptions (DD-PTs) were based

on the acoustic data. The DD-PTs were generated through
constrained phone recognition; a CSR segmented and
labelled the speech signal using its acoustic models and a
4-gram phonotactic model trained with the reference
transcriptions of the development data in order to
approximate human transcription behaviour. Transcription
experiments with the data in the development set indicated
that for both speech styles 4-gram models outperformed 2-
gram, 3-gram, 5-gram and 6-gram models.

3.1.2. Transcription procedures with a multiple
pronunciation lexicon

The transcription procedures described in this section
differ in the way pronunciation variants were generated.
The variants were always listed in speech style-specific
multiple pronunciation lexicons. For every word, the best
matching variant was selected through the use of a CSR
that chose the best matching pronunciation variant from
the lexicon given the orthography, the acoustic signal and
a set of acoustic models. The development set was used to
optimise various parameters in the individual procedures
in order to optimise the selection of the lexical
pronunciation variants of the words in the evaluation set.

3.1.2.1. Knowledge-based transcription (KB-PT)
In particular ASR research often draws on the

literature for the extraction of linguistic knowledge with
which lexical pronunciation variants can be generated
(Kessens et al., 1999; Strik, 2001). We generated so-called
knowledge-based transcriptions (KB-PTs) in three steps.

First, a list of 20 prominent phonological processes
was compiled from the linguistic literature on the
phonology of Dutch (Booij, 1999). These processes were
implemented as context-dependent rewrite rules modelling
both within-word and cross-word contexts in which
phones from a CAN-PT can be deleted, inserted or
substituted with another phone. Most of the processes
identified by Booij (1999) can be described in terms of
phonetic symbols or articulatory features. However, some
of the processes can only be described with information
about the prosodic or syllabic structure of words. Most of
these processes were reformulated in terms of phonetic
symbols and features, since we wanted to exclude non-
segmental information (see Section 2.2). The rules were
implemented conservatively to minimise the risk of over-
generation. The resulting rule set comprised some rules
specific for particular words in Dutch, and general
phonological rules describing progressive and regressive
voice assimilation, nasal assimilation, syllable-final
devoicing of obstruents, t-deletion, n-deletion, r-deletion,
schwa deletion, schwa epenthesis, palatalisation and
degemination. The reduction and the deletion of full
vowels, two prominent processes in Dutch, could not be
easily formulated without the explicit use of syllabic and
prosodic information.

In the second step, the phonological rewrite rules were
ordered and used to generate optional pronunciation
variants from the CAN-PTs of the speech chunks. The
rules applied to the chunks rather than to the words in
isolation to account for cross-word phenomena. The rules
only applied once, and their order of application was
manually optimised. Informal analysis of the resulting
pronunciation variants suggested that few - if any -
implausible variants were generated, and that no obvious
variants were missing. It may well be, however, that two-
level rules (Koskenniemi, 1983) or an iterative application
of the rewrite rules is needed for the transcription of other
languages.

In the third step of the procedure, chunk-level
pronunciation variants were listed. Since the literature did
not provide numeric information on the frequency of
phonological processes, the pronunciation variants did not
have prior probabilities. The optimal knowledge-based
transcription (KB-PT) was identified through forced
recognition.

no mult. pron. lex mult. pron. lex

comb. lex D-trees 1 CAN-PT

 []d 1-5

2 DD-PT 3 KB-PT

4 CAN/DD-PT 5 KB/DD-PT

6

3.1.2.2. Combined transcriptions (CAN/DD-PT, KB/DD-
PT)

After having generated the CAN-PTs, DD-PTs and
KB-PTs, these transcriptions were combined to obtain
new transcriptions. This time lexical pronunciation
variants were generated through the alignment of two
APTs at a time. Since the KB-PTs were based on the
CAN-PTs, we only combined the CAN-PT with the DD-
PT (CAN/DD-PT) and the KB-PT with the DD-PT
(KB/DD-PT). Figure 2 illustrates how different
pronunciation variants were generated through the
alignment of the phones in the CAN-PT and the DD-PT.

Figure 2: Generation of pronunciation variants through the
alignment of two phonetic transcriptions.

The combination of APTs emerging from different

transcription procedures was aimed at providing our CSR
with additional linguistically plausible pronunciation
variants for the words in the orthography. After all,
canonical transcriptions do not model pronunciation
variation, and our KB transcriptions only modelled the
pronunciation variation that was manually implemented in
the form of phonological rewrite rules. The DD-PTs,
however, were based directly on the speech signal.
Therefore, they had the potential of better representing the
actual speech signal, at the risk of being linguistically less
plausible than CAN-PTs or KB-PTs. It was reasonable to
expect that the combination of the different transcription
procedures would alleviate the disadvantages and
reinforce the advantages of the individual procedures.

3.1.2.3. Phonetic transcription with decision trees
The use of DD transcription procedures can result in

too many, too few or very unlikely lexical pronunciation
variants (Wester, 2003). In ASR research, the use of
decision trees defining plausible alternatives for a phone
given its context phones has often reduced the number of
unlikely pronunciation variants and optimised the number
of plausible pronunciation variants in recognition lexicons
(Riley, 1999; Wester, 2003). We generated decision trees
with the C4.5 algorithm (Quinlan, 1993), provided with
the Weka package (Witten & Frank, 2005). The procedure
pursued to successively improve the CAN-PTs, DD-PTs,
KB-PTs, CAN/DD-PTs and KB/DD-PTs comprised four
steps.

First, the APT (each of the aforementioned
transcriptions consecutively) and the RT of the
development data were aligned. Second, all the phones
and their context phones in the APT were enumerated.
The size of these “phonetic windows” was limited to three
phones: the core phone, one preceding and one succeeding
phone. The correspondences of the phones in the APT and
the RT and the frequencies of these correspondences were
used to estimate:

P (RT_phone|APT_phone,APT_context_phones) (1)

i.e. the probability of a phone in the reference

transcription given a particular phonetic window in the
APT. In the third step of the procedure, the resulting
decision trees were used to generate likely pronunciation
variants for the APT of the unseen evaluation data. The
decision trees were now used to predict:

P(pron_variants|APT_phone,APT_context_phones) (2)

i.e. the probability of a phone with optional

pronunciation variants given a particular phonetic window
in the APT. All pronunciation variants with a probability
lower than 0.1 were ignored in order to reduce the number
of pronunciation variants and, more importantly, to prune
unlikely pronunciation variants originating from
idiosyncrasies in the original APT.

In the fourth and final step of the procedure, the
pronunciation variants were listed in a multiple
pronunciation lexicon. The probabilities of the variants
were normalised so that the probabilities of all variants of
a word added up to 1. Finally, our CSR selected the most
likely pronunciation variant for every word in the
orthography. The consecutive application of decision tree
expansion to the CAN-PTs, DD-PTs, KB-PTs, CAN/DD-
PTs and KB/DD-PTs resulted in five new transcriptions
hereafter referred to as [CAN-PT]d, [DD-PT]d, [KB-PT]d,
[CAN/DD-PT]d and [KB/DD-PT]d.

3.2. Evaluation of the phonetic transcriptions and
the transcription procedures

The APTs of the data in the evaluation sets were
evaluated in terms of their deviations from the human RT.
The comparison was conducted with ADAPT (Elffers et
al., 2005). The disagreement metric was formalised as:

(3)

i.e. the sum of all phone substitutions (Sub), deletions
(Del) and insertions (Ins) divided by the total number of
phones in the reference transcription (N). A smaller
deviation from the reference transcription indicated a
‘better’ transcription. A detailed analysis of the number
and the nature of the deviations allowed us to
systematically investigate the magnitude and the nature of
the improvements and deteriorations triggered by the use
of the different transcription procedures.

100% *
N

InsDelSub
ntdisagreeme 







 ++
=

CAN-PT: d @ A p @ l t a r t
 +
DD-PT: d - A b @ l t a - t

Multiple pronunciation variants in CAN/DD-PT :
 d @ A p @ l t a r t
 d A p @ l t a r t
 d @ A b @ l t a r t
 d A b @ l t a r t
 d @ A p @ l t a t
 d A p @ l t a t
 d @ A b @ l t a t
 d A b @ l t a t

7

4. Results
The figures in Table 2 describe the disagreements

between the APTs and the RTs of the evaluation data.
From top to bottom and from left to right we see the
disagreement scores (%dis) between the different APTs
and the RTs of the telephone dialogues and the read
speech. In addition, the statistics of the substitutions (sub),
deletions (del) and insertions (ins) are presented to
provide basic insight in the nature of the disagreements.

Table 2: Comparison of APTs and human RTs. Fewer
disagreements indicate better APTs.

The proportions of disagreements observed in the

CAN-PTs and the KB-PTs were significantly different
from each other (p < .01). The CAN-PT of the read speech
was more similar to the RT than the KB-PT (∆ = 6.3%
rel.) while the opposite held for the telephone dialogues (∆
= 5.9% rel.). The proportion of substitutions was about
equal for the CAN-PTs and the KB-PTs. Most mismatches
in the CAN-PTs were due to substitutions and insertions.
There were more deletions than insertions in the KB-PT of
the read speech, but there were fewer deletions than
insertions in the KB-PT of the telephone dialogues.
Detailed analysis of the aligned transcriptions showed that
most frequent mismatches in the CAN-PTs and the KB-
PTs of the two speech styles were due to voiced/unvoiced
classifications of obstruents, and insertions of schwa and
various consonants (in particular /r/, /t/ and /n/). Most
substitutions and deletions (about 62-75% for the various
transcriptions) occurred at word boundaries, but the
absolute numbers in the KB-PTs were lower due to cross-
word pronunciation modelling.

The disagreement scores obtained for the DD-PTs
were much higher than the scores for the CAN-PTs and
the KB-PTs. This holds for both speech styles. Most
discrepancies between the DD-PTs and the RTs were
substitutions and deletions. When compared to the CAN-
PTs and the KB-PTs, in particular the high proportion of
deletions and the wide variety of substitutions were
striking. Not only did we observe consonant substitutions
due to voicing, we also observed various consonant
substitutions due to place of articulation, and vowel
substitutions with schwa (and vice versa).

The proportion of disagreements in the CAN/DD-PTs
and the KB/DD-PTs was lower than in the DD-PTs, but
the individual CAN-PTs and KB-PTs resembled the RT
better than the CAN/DD-PTs and the KB/DD-PTs. The
CAN/DD-PTs and the KB/DD-PTs comprised twice as
many substitutions and even more deletions than the
CAN-PTs and the KB-PTs. Whereas the increased number
of deletions in the CAN/DD-PT of the telephone
dialogues coincided with a - be it moderate - decrease of
insertion errors, the CAN/DD-PT of the read speech
showed even more insertions than the CAN-PT.

Decision trees were applied to the ten aforementioned
APTs (5 procedures x 2 speech styles). In nine out of ten
cases, the application of decision trees improved the
original transcriptions; only the [DD-PT]d of the telephone
dialogues comprised more disagreements than the original
DD-PT. The magnitude of the improvements differed
substantially, though. The differences were negligible for
the DD-PTs, somewhat larger for the APTs emerging
from the combined procedures, and most outspoken for
the CAN-PTs and KB-PTs. For both speech styles, the
[CAN-PT]d proved most similar to the RT. The [KB-PTs]d

were slightly worse. The [CAN-PTs]d comprised on
average 20.5% fewer mismatches with the RTs than the
original CAN-PTs, which is a significant improvement at
a 99% confidence level. Likewise, we observed on
average 14.1% fewer mismatches in the [KB-PTs]d than in
the original KB-PTs (p <.01).

5. Discussion

5.1. Reflections on the evaluation procedure
In this study, the reference transcriptions were based

on example transcriptions. Previous studies have shown
that the use of an example transcription for verification
speeds up the transcription process (relative to manual
transcription from scratch), but that it also tempts human
experts into adhering to the example transcription, despite
contradicting acoustic cues in the speech signal.
Demuynck et al. (2004), for example, reported cases
where human experts preferred not to change the example
transcription in the presence of contradicting acoustic
cues, and cases where human experts approved phones in
the example transcription that had no trace in the signal.

This observation is important for our study, since our
RTs may have been biased towards the canonical example
transcription they were based on. Considering that both
the RTs and the KB-PTs were based on the CAN-PTs, the
quality assessment of the CAN-PTs and the KB-PTs may
have been positively biased. Consequently, the assessment
of the DD-PTs may have been negatively biased, since the
DD-PTs were based on the signal. Their assessment may
have suffered from the human tendency to accept the
canonical example transcription irrespective of the
information in the acoustic signal (most probably because
the human transcribers were instructed to change the
example transcription only in case of obvious
discrepancies).

In corpus creation projects, however, manually
verified phonetic transcriptions are often preferred over
automatic phonetic transcriptions. Therefore, in the light
of the phonetic transcription of large speech corpora, our
automatic procedures were tuned towards and evaluated in
terms of this type of transcription.

telephone dialogues read speech comparison
with RT subs del ins %dis subs dels ins %dis

CAN-PT 9.1 1.1 8.1 18.3 6.3 1.2 2.6 10.1
DD-PT 26.0 18.0 3.8 47.8 16.1 7.4 3.6 27.0

KB-PT 9.0 2.5 5.8 17.3 6.3 3.1 1.5 10.9

CAN/DD-PT 21.5 6.2 7.1 34.7 13.1 2.0 4.8 19.9
KB/ DD-PT 20.5 7.8 5.4 33.7 12.8 3.1 3.6 19.5

[CAN-PT]d 7.1 3.3 4.2 14.6 4.8 1.6 1.7 8.1
[DD-PT]d 26.0 18.6 3.8 48.3 15.7 7.4 3.5 26.7
[KB-PT]d 7.1 3.5 4.2 14.8 5.0 3.2 1.2 9.4
[CAN/DD-PT]d 20.1 7.2 5.5 32.8 12.0 2.3 4.3 18.5
[KB/ DD-PT]d 19.3 9.4 4.5 33.1 11.6 3.1 3.1 17.8

8

5.2. On the suitability of low-cost automatic
transcription procedures for the phonetic
transcription of large speech corpora

5.2.1. Canonical transcription
The quality of the CAN-PT of the telephone dialogues

(18% disagreement) already compared favourably to
human inter-labeller disagreement scores reported in the
literature. Greenberg et al. (1996), for example, reported
25 to 20% disagreements between manual transcriptions
of American English telephone conversations, and Kipp et
al. (1997) reported 21.2 to 17.4% inter-labeller
disagreements between manual transcriptions of German
spontaneous speech. Binnenpoorte (2006), however,
reported better results: from 14 to 11.4% disagreements
between manual transcriptions of Dutch spontaneous
speech. The proportion disagreement between the CAN-
PT and the human RT (10.1% disagreement) of the read
speech was not yet at the same level as human inter-
labeller disagreement scores reported in the literature.
Kipp et al. (1996) reported 6.9 to 5.6% disagreements
between human transcriptions of German read speech, and
Binnenpoorte (2006) reported 6.2 to 3.7% disagreements
between human transcriptions of Dutch read speech.

The apparent contradiction that the quality of the
CAN-PT of the telephone dialogues already compared
well to published human inter-labeller disagreement
scores, whereas the CAN-PT of the read speech did not,
may be explained by the different degrees of spontaneity
in the speech samples. There is a higher chance for human
inter-labeller disagreement in transcriptions of
spontaneous than of well-prepared speech, since human
transcribers have to transcribe or verify more phonological
processes as speech becomes more spontaneous
(Binnenpoorte et al. 2003). Nevertheless, considering the
trade-off between overall transcription quality and the
time and expenses involved in the human transcription
and verification process, and considering the similarities
with previously published human inter-labeller
disagreement scores, we can conclude that the CAN-PTs
were of a satisfactory quality. However, the high
proportion of substitutions and insertions at word
boundaries still implied the necessity of pronunciation
variation modelling to better resemble the RT.

5.2.2. Data-driven transcription
Constrained phone recognition proved suboptimal for

the generation of the targeted type of transcriptions. The
high number and the wide variety of substitutions suggest
that the use of a phonotactic model did not sufficiently
tune our CSR towards the RT. The high number of
deletions implies that, in spite of extensive tuning of the
phone insertion penalty, our CSR had too large a
preference for transcriptions containing fewer symbols.
An informal inspection of the DD-PTs revealed that many
deletions were unlikely, thus ruling out the possibility that
the CSR analysed the signal more accurately than the
human experts did. Kessens & Strik (2004) observed that
the use of shorter acoustic models (e.g. using 20 ms
models instead of 30 ms models) may reduce this
tendency for deletions, but the diverse nature of the
deletions in our study makes a substantial reduction of
deletions through the mere use of different acoustic
models rather unlikely.

5.2.3. Knowledge-based transcription
The use of linguistic knowledge to model

pronunciation variation at the lexical level improved the
quality of the transcription of the telephone dialogues, but
it deteriorated the transcription of the read speech. This
was probably due to the different degree of spontaneity in
the two speech styles; the availability of pronunciation
variants is probably more beneficial for the transcription
of spontaneous speech, since more spontaneous speech
comprises more pronunciation variation than well-
prepared speech (Goddijn & Binnenpoorte, 2003). Most
probably, the CSR preferred non-canonical variants in the
read speech where the human transcribers adhered to the
canonical example.

The knowledge-based recognition lexicon of the
telephone dialogues comprised on average 1.39
pronunciation variants per lexeme, the lexicon of the read
speech 1.47 variants per lexeme. The higher average
number of pronunciation variants in the read speech
lexicon is not contradictory, since the pronunciation
variants of both speech styles were based on the canonical
transcription, and not on the actual speech signal (which
would, most probably, have highlighted more
pronunciation variation in the telephone dialogues than in
the read speech). Moreover, since the words in the
telephone dialogues were shorter than the words in the
read speech (an average of 3.3 vs. 4.1 canonical phones
per word in the telephone dialogues and the read speech,
resp.), the canonical transcription of the telephone
dialogues was less susceptible to the application of rewrite
rules than the CAN-PT of the read speech.

In order to estimate the possible impact of the
application of KB rewrite rules on the CAN-PTs, we
computed the maximum and minimum accuracy that
could be obtained with the two KB recognition lexicons.
For every chunk, every combination of the pronunciations
of the words was consecutively aligned with the RT, and
the highest and the lowest disagreement measures were
retained. We found that the KB recognition lexicon of the
telephone dialogues was able to provide KB-PTs of which
22.6 to 13.2% phones differed from the RT. The KB
lexicon of the read speech was able to provide KB-PTs of
which 16.3 to 7.4% phones differed from the RT. The
eventual quality of the KB-PTs (17.3% and 10.9%
disagreement for the telephone dialogues and the read
speech, respectively) shows that there was still room for
improvement, but that the acoustic models of our CSR
often opted for suboptimal transcriptions. In this respect,
the use of acoustic models trained on a KB-PT instead of a
CAN-PT might have improved the selection of
pronunciation variants.

5.2.4. Combined transcriptions
The blend of DD pronunciation variants with

canonical or KB variants into CAN/DD and KB/DD
lexicons allowed our CSR to better approximate human
transcription behaviour than through constrained phone
recognition alone, but the combination of the procedures
did not outperform the canonical lexicon-lookup and the
KB transcription procedure. The DD-PT benefited from
the blend with the canonical and the KB pronunciation
variants, while the influence of DD pronunciation variants
increased the number of discrepancies between the
resulting transcriptions and the RTs (as compared to the
original CAN-PTs and KB-PTs).

9

5.2.5. Phonetic transcription with decision trees
Contrary to our expectations, the [DD-PT]d of the

telephone dialogues comprised more (though not
significantly more, p > .1) mismatches than the original
DD-PT. The [DD-PT]d of the read speech was only
slightly (again, not significantly, p > .1) better than the
original DD-PT. This was probably due to the increased
confusability in the recognition lexicons. The size of the
lexicons had grown to an average of 9.5 variants per word
in the recognition lexicon for the telephone dialogues, and
an average number of 3.5 variants per word in the lexicon
for the read speech. Note that, contrary to the
pronunciation variants in the KB recognition lexicons, the
pronunciation variants in the [DD-PT]d lexicons were
based on the speech signal rather than on the application
of phonological rewrite rules on the CAN-PT. This
resulted, in particular for the [DD-PTs]d of the more
spontaneous telephone dialogues, in more discrepancies
with the RTs, all of which were modelled in the decision
trees. Even after pruning unlikely pronunciation variants
from the decision trees, the decision trees apparently still
comprised enough pronunciation variants to pollute the
recognition lexicon.

The small improvements obtained through the use of
decision trees for the enhancement of the CAN/DD-PTs
and the KB/DD-PTs, as well as the large improvements
obtained through the use of decision trees for the
enhancement of the CAN-PTs and the KB-PTs can be
explained through the same line of reasoning. The
numerous discrepancies between the CAN/DD-PTs and
the KB/DD-PTs and the RTs yielded numerous
pronunciation variants in the resulting recognition
lexicons (though less than in the DD-PT lexicons). The
higher similarity between the original [CAN-PT]d, the
[KB-PTs]d and the RTs, led to fewer branches in the
decision trees and fewer pronunciation variants in the
resulting recognition lexicons. Moreover, the
corresponding lexical probabilities were intrinsically more
robust than the probabilities in the DD lexicons
comprising more pronunciation variants per lexeme. Since
the [CAN-PTs]d were better than the [KB-PTs]d of both
speech styles, and since informal inspection of the rules
seems to suggest that the KB-PTs and the [KB-PTs]d

could not be drastically improved through the modelling
of vowel reduction and vowel deletion, we conclude that
prior knowledge about the phonological processes of a
language, and the subsequent implementation of
knowledge-based phonological rules are not necessary to
approximate the quality of manually verified phonetic
transcriptions of large speech corpora. Instead, the use of
decision trees and a small sample of manually verified
phonetic transcriptions suffice to make canonical
transcriptions approximate human transcription behaviour.

5.3. What about the remaining discrepancies?
The number of remaining discrepancies in the [CAN-

PTs]d of the telephone dialogues (14.6% disagreement)
and the read speech (8.1% disagreement) was only slightly
higher than human inter-labeller disagreement scores
reported in the literature. Recall that Binnenpoorte (2006)
reported human inter-labeller disagreements between 14
and 11.4% on transcriptions of Dutch spontaneous speech,
and between 6.2 and 3.7% disagreements on transcriptions
of Dutch read speech. A closer look at the 20 most

frequent dissimilarities distinguishing the [CAN-PTs]d

from the human RTs, shows a comparable number of
insertions and deletions, and a set of substitutions in
which the mismatches between voiced and voiceless
phones were dominant. Similar differences were observed
between manual transcriptions that were based on the
same example transcription (Binnenpoorte et al., 2003).
The remaining mismatches can be largely attributed to the
very nature of human transcription behaviour. Varying
disagreement scores like the ones reported in
Binnenpoorte et al. (2003) seem to suggest that it is
intrinsically very hard, if not impossible, to model the
often whimsical human transcription behaviour with one
automatic transcription procedure. Therefore, we are
inclined to believe that we should not try to further model
the inconsistencies in manual transcriptions of speech, and
we conclude that we found a very quick, simple and cheap
transcription procedure approximating human
transcription behaviour for the transcription of large
speech samples. Our procedure uniformly applies to well-
prepared and spontaneous speech.

6. Conclusions
The aim of our study was to find an automatic

transcription procedure to substitute human efforts in the
phonetic transcription of large speech corpora whilst
ensuring high transcription quality. To this end, ten
automatic transcription procedures were used to generate a
phonetic transcription of spontaneous speech (telephone
dialogues) and well-prepared speech (read-aloud texts).
The resulting transcriptions were compared to a manually
verified phonetic transcription, since this kind of
transcription is often preferred in corpus design projects.

An analysis of the discrepancies between the different
transcriptions and the reference transcription showed that
purely data-driven transcription procedures or procedures
partially relying on data-driven input could not
approximate the human reference transcription. Much
better results were obtained by implementing
phonological knowledge from the linguistic literature. The
best results, however, were obtained by expanding
canonical transcriptions with decision trees trained on the
alignment of canonical transcriptions and manually
verified phonetic transcriptions. In fact, our results show
that an orthographic transcription, a canonical lexicon, a
small sample of manually verified phonetic transcriptions,
software for the implementation of decision trees and a
standard continuous speech recogniser are sufficient to
approximate human transcription quality in projects aimed
at generating broad phonetic transcriptions of large speech
corpora.

Our procedures uniformly applied to well-prepared
and spontaneous speech. Hence, we believe that the
performance of our procedures will generalise to other
speech corpora, provided that the emerging automatic
phonetic transcriptions are evaluated in terms of a similar
reference transcription, viz. a manually verified automatic
phonetic transcription of speech.

Acknowledgement
The work of Christophe Van Bael was funded by the
Speech Technology Foundation (Stichting
Spraaktechnologie, Utrecht, The Netherlands).

10

References
Bellegarda, J.R. (2005). Unsupervised, language-independent

grapheme-to-phoneme conversion by latent analogy. In:
Speech Communication, vol. 46/2, pp. 140-152.

Binnenpoorte, C., Goddijn, S.M.A., Cucchiarini, C. (2003).
How to Improve Human and Machine Transcriptions of
Spontaneous Speech. In: Proceedings of ISCA/IEEE
Workshop on Spontaneous Speech Processing and
Recognition (SSPR), Tokyo, Japan, pp. 147-150.

Binnenpoorte, D., Cucchiarini, C. (2003). Phonetic
Transcription of Large Speech Corpora: How to boost
efficiency without affecting quality. In: Proceedings of
ICPhS, Barcelona, Spain, pp. 2981-2984.

Binnenpoorte, D., (2006). Phonetic transcription of large
speech corpora. Ph.D. thesis, Radboud University
Nijmegen, the Netherlands.

Booij, G. (1999). The phonology of Dutch. Oxford University
Press, New York.

Cucchiarini C. (1993). Phonetic transcription: a
methodological and empirical study. Ph.D. thesis,
University of Nijmegen.

Demuynck, K., Laureys, T., Gillis, S. (2002). Automatic
generation of phonetic transcriptions for large speech
corpora. In: Proceedings of International Conference on
Spoken Language Processing (ICSLP), Denver, USA, pp.
333-336.

Demuynck. K., Laureys, T., Wambacq, P., Van Compernolle,
D. (2004). Automatic phonemic labeling and segmentation
of spoken Dutch. In: Proceedings of LREC, Lisbon,
Portugal, pp. 61-64.

Elffers, B, Van Bael, C., Strik, H. (2005). ADAPT: Algorithm
for Dynamic Alignment of Phonetic Transcriptions.
Internal report, CLST, Radboud University Nijmegen.
http://lands.let.ru.nl/literature/elffers.2005.1.pdf.

Godfrey, J., Holliman, E. and McDaniel, J. (1992)
SWITCHBOARD: Telephone speech corpus for research
and development. Proceedings of the IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP), San Francisco, USA, pp. 517-520.

Goddijn, S.M.A. & Binnenpoorte, D. (2003). Assessing
Manually Corrected Broad Phonetic Transcriptions in the
Spoken Dutch Corpus. In: Proceedings of ICPhS,
Barcelona, Spain, pp. 1361-1364.

Greenberg, S., Hollenback, J. and Ellis, D. (1996). Insights
into spoken language gleaned from phonetic transcription
of the Switchboard corpus. In: Proceedings of the
International Conference on Spoken Language Processing
(ICSLP), Philadelphia, USA.

Hess, W., Kohler, K.J., Tillman, H.-G. (1995) The Phondat-
Verbmobil speech corpus. In: Proceedings of Eurospeech,
Madrid, Spain, pp. 863-866.

Jande, P.A. (2005). Inducing Decision Tree Pronunciation
Variation Models from Annotated Speech Data. In:
Proceedings of Interspeech, Lisbon, Portugal, pp. 1945-
1948.

Kessens, J.M., Wester, M., Strik, H. (1999). Improving the
performance of a Dutch CSR by modelling within-word
and cross-word pronunciation variation. In: Speech
Communication, vol. 29, pp. 193-207.

Kessens, J.M., Strik, H. (2004). On automatic phonetic
transcription quality: lower word error rates do not
guarantee better transcriptions. In: Computer, Speech and
Language, vol. 18(2), pp. 123-141.

Kipp, A., Wesenick, M.-B., Schiel F. (1996) Automatic
detection and segmentation of pronunciation variants in
German speech corpora. In: Proceedings of ICSLP,
Philadelphia, USA, pp. 106-109.

Kipp, A., Wesenick, M.-B., Schiel F. (1997). Pronunciation
modelling applied to automatic segmentation of
spontaneous speech. In: Proceedings of Eurospeech,
Rhodes, Greece, pp. 1023-1026.

Koskenniemi, K. (1983) Two-level morphology: A general
computational model of word-form recognition and
production. Tech. Rep. Publication No. 11, Dept. of
General Linguistics, University of Helsinki.

Maekawa, K. (2003). Corpus of Spontaneous Japanese: Its
design and evaluation. In: Proceedings of ISCA/IEEE
Workshop on Spontaneous Speech Processing and
Recognition (SSPR), Tokyo, Japan.

Oostdijk N. (2002). The design of the Spoken Dutch Corpus.
In: Peters P., Collins P., Smith A. (Eds.) New Frontiers of
Corpus Research. Rodopi, Amsterdam, pp. 105-112.

Quinlan, J. R. (1993). C4.5: Programs for Machine
Learning. San Mateo: Morgan Kaufmann.

Riley, M., Byrne, W., Finke, M., Khudanpur, S., Ljolje A,
McDonough, J., Nock, H., Saraçlar, M., Wooters, C.,
Zavaliagkos, G. (1999). Stochastic pronunciation
modelling from hand-labelled phonetic corpora. In: Speech
Communication, vol. 29, pp. 209-224.

Saraçlar, M., Khundanpur, S (2004). Pronunciation change in
conversational speech and its implications for automatic
speech recognition. In: Computer, Speech and Language,
vol. 18, pp. 375-395.

Strik, H. (2001). Pronunciation adaptation at the lexical level.
In: Proceedings of the ISCA Tutorial & Research
Workshop (ITRW) 'Adaptation Methods for Speech
Recognition', Sophia-Antipolis, France, pp. 123-131.

TIMIT Acoustic-Phonetic Continuous Speech Corpus (1990).
National Institute of Standards and Technology Speech
Disc 1-1.1, NTIS Order No. PB91-505065, 1990.

Tjalve, M., Huckvale, M., (2005). Pronunciation variation
modelling using accent features. In: Proceedings of
Interspeech, Lisbon, Portugal, pp.1341-1344.

Van Bael, C., Van den Heuvel, H., Strik, H. (2006).
Validation of phonetic transcriptions in the context of
automatic speech recognition. Submitted to: Language
Resources and Evaluation.

Wang, L., Zhao, Y., Chu, M., Soong, F., Cao, Z. (2005).
Phonetic transcription verification with generalised
posterior probability. In: Proceedings of Interspeech,
Lisbon, pp. 1949-1953.

Wesenick, M.-B., Kipp, A. (1996) Estimating the quality of
phonetic transcriptions and segmentations of speech
signals. In: Proceedings of ICSLP, Philadelphia, USA, pp.
129-132.

Wester, M. (2003). Pronunciation modeling for ASR -
knowledge-based and data-derived methods. In: Computer
Speech & Language, vol. 17/1, pp. 69-85.

Witten, I.H., Frank, E. (2005). Data Mining: Practical
machine learning tools and techniques, 2nd Edition,
Morgan Kaufmann, San Francisco, USA.

Yang, Q., Martens, J.-P., (2000). Data-driven lexical
modelling of pronunciation variations for ASR. In:
Proceedings of ICSLP, Beijing, China, pp. 417-420.

Young, S., Evermann, G., Kershaw, D., Moore, G., Odell, J.,
Ollason, D., Valtchev, V., Woodland, P. (2001). The HTK
book (for HTK version 3.1), Cambridge University
Engineering Department.

11

Annotation of Grammatemes in the Prague Dependency Treebank 2.0

Magda Razı́mová, Zdeněk Žabokrtský

Institute of Formal and Applied Linguistics, Charles University, Prague
Malostranské náměstı́ 25, Prague 1, 118 00, Czech Republic

{razimova,zabokrtsky}@ufal.mff.cuni.cz

Abstract
In this paper we report our work on the system of grammatemes (mostly semantically-oriented counterparts of morphological categories
such as number, degree of comparison, or tense), the concept of which was introduced in Functional Generative Description, and has been
recently further elaborated in the layered annotation scenario of the Prague Dependency Treebank 2.0. We present also a hierarchical
typology of tectogrammatical nodes, which is used as a formal means for ensuring presence or absence of respective grammatemes.

1. Introduction
Human language, as an extremely complex system, has
to be described in a modular way. Many linguistic theo-
ries attempt to reach the modularity by decomposing lan-
guage description into a set of layers, usually linearly or-
dered along an abstraction axis (from text/sound to seman-
tics/pragmatics). One of the common features of such ap-
proaches is that word forms occurring in the original sur-
face expression are substituted (for the sake of higher ab-
straction) with their lemmas at the higher layer(s). Obvi-
ously, the inflectional information contained in the word
forms is not present in the lemmas. Some information is
‘lost’ deliberately and without any harm, since it is only im-
posed by government (such as case for nouns) or agreement
(congruent categories such as person for verbs or gender
for adjectives). However, the other part of the inflectional
information (such as number for nouns, degree for adjec-
tives or tense for verbs) is semantically indispensable and
must be represented by some means, otherwise the sentence
representation becomes deficient (naturally, the represen-
tations of sentence pairs such as ‘Peter met his youngest
brother’ and ‘Peter meets his young brothers’ must not be
identical at any level of abstraction). At the tectogram-
matical layer of Functional Generative Description (FGD,
(Sgall, 1967), (Sgall et al., 1986)), which we use as the
theoretical basis of our work, these means are called gram-
matemes.1
The theoretical framework of FGD has been implemented
in the Prague Dependency Treebank 2.0 project (PDT 2.0,
(Hajičová et al., 2001)), which aims at a complex annota-
tion of large amount of Czech newspaper texts. Although
grammatemes are present in the FGD for decades, in the
context of PDT they were paid for a long time a con-
siderably less attention, compared e.g. to valency, topic-
focus articulation, or coreference. However, in our opinion
grammatemes will play a crucial role in NLP applications
of FGD and PDT (e.g., machine translation is impossible
without realizing the differences in the above pair of exam-

1Just for curiosity: almost the same term ‘grammemes’ is
used for the same notion in the Meaning-Text Theory (Mel’čuk,
1988), although to a large extent the two approaches were created
independently.

ple sentences). That is why we decided to further elabo-
rate the system of grammatemes and to implement it in the
PDT 2.0 data. This paper outlines some of the results of
more than two years of the work on this topic.
The paper is structured as follows: after introducing the ba-
sic properties of the PDT 2.0 with focus on the tectogram-
matical layer in Section 2., we will describe the classifica-
tion of t-layer nodes in Section 3., enumerate and exemplify
the individual grammatemes and their values in Section 4.
After outlining the basic facts about the (mostly automatic)
annotation procedure in Section 5. we will add some final
remarks in Section 6.

2. Sentence Representation
in the Prague Dependency Treebank 2.0

In the Prague Dependency Treebank annotation scenario,
three layers of annotation are added to Czech sentences (see
Figure 1 (a)):2

• morphological layer (m-layer), on which each token is
lemmatized and POS-tagged,

• analytical layer (a-layer), on which a sentence is rep-
resented as a rooted ordered tree with labeled nodes
and edges, corresponding to the surface-syntactic re-
lations; one a-layer node corresponds to exactly one
m-layer token,

• tectogrammatical layer (t-layer), which will be briefly
described later in this section.

The full version of the PDT 2.0 data consists of 7,129 man-
ually annotated textual documents, containing altogether
116,065 sentences with 1,960,657 tokens (word forms and
punctuation marks). All these documents are annotated at
the m-layer. 75 % of the m-layer data are annotated at the
a-layer (5,338 documents, 87,980 sentences, 1,504,847 to-
kens). 59 % of the a-layer data are annotated also at the
t-layer (i.e. 44 % of the m-layer data; 3,168 documents,

2Technically, there is also one more layer below these three
layers which is called w-layer (word layer); on this layer the orig-
inal raw-text is only segmented into documents, paragraphs and
tokens and all these units are enriched with identifiers.

12

_

.

_

. . .

.
_
 . .

. . .

_ . _

_
 . .

. . .

_

.

_

.

_

. . .

_ .

_

_
 .dispmod: .verbmod:

. . .tense:

_

.

t-mf930713-044-p16s1
root

standardní
t EFF
adj.denot
pos neg0

#PersPron
t ACT
n.pron.def.pers
anim sg 2 polite

pokládat inter
f PRED
v decl disp0 ind
proc it0 res0 sim

#Benef
t BEN nr
qcomplex

#Neg
f RHEM
atom

lze
f PAT
v decl disp0 ind
proc it0 res0 sim

vláda
c ADDR
n.denot
fem sg

Mečiar
f APP
n.denot
anim sg
person_name

co
t PAT
n.pron.indef
neut negat sg 3

téměř
f EXT basic
adv.denot.ngrad.nneg

#Cor
t ACT
qcomplex

dohodnout_se
f ACT
v decl nil nil
cpl it0 res0 nil

rozumný
f MANN
adj.denot
pos neg0

(a) (b)

Figure 1: (a) PDT 2.0 annotation layers (and the layer interlinking) illustrated (in a simplified fashion) on the sentence
Byl by šel do lesa. ([He] would have gone into forest.), (b) tectogrammatical representation of the sentence: Pokládáte za
standardnı́, když se s Mečiarovou vládou nelze téměř na ničem rozumně dohodnout? (Do you find it standard if almost
nothing can be reasonably agreed on with Mečiar’s government?)

49,442 sentences, 833,357 tokens).3 The annotation at the
t-layer started in 2000 and was divided into four areas:

a. building the dependency tree structure of the sentence
including labeling of dependency relations and va-
lency annotation,

b. topic / focus annotation,

c. annotation of coreference (i.e. relations between
nodes referring to the same entity),

d. annotation of grammatemes and related attributes, the
description of which is the main objective of this pa-
per.

After the annotation of data had finished in 2004, an exten-
sive cross-layer checking took over a year. The CD-ROM
including the final annotation of PDT 2.0-data, a detailed
documentation as well as software tools is to be publicly
released by Linguistic Data Consortium in 2006.4

3The previous version of the treebank, PDT 1.0, was smaller
and contained only m-layer and a-layer annotation (Hajič et al.,
2001).

4See http://ufal.mff.cuni.cz/pdt2.0/

At the t-layer, the sentence is represented as a dependency
tree structure built of nodes and edges (see Figure 1 (b)).
Tectogrammatical nodes (t-nodes) represent auto-semantic
words (including pronouns and numerals) while functional
words such as prepositions have no node in the tree (with
some exception of technical nature: e.g. coordinating con-
junctions used for representation of coordination construc-
tions are present in the tree structure). Each t-node is a com-
plex data structure – it can be viewed as a set of attribute-
value pairs, or even as a typed feature structure as used
in unification grammars such as HPSG (Pollard and Sag,
1994).

For the purpose of our contribution, the most impor-
tant attributes are the attribute t-lemma (tectogrammatical
lemma), attribute functor, grammatemes and the classify-
ing attributes nodetype and sempos. The annotation of
attributes t-lemma and functor belongs to the area marked
above as (a); these attributes will be introduced in the next
paragraphs. Grammatemes and the attributes nodetype and
sempos – all of them coming under the area (d) – will
be characterized from the standpoint of annotation in Sec-
tion 3. (The annotation of attributes belonging to the areas

13

(b) and (c) goes beyond the scope of this paper.)
The attribute t-lemma contains the lexical value of the t-
node, or an ‘artificial’ lemma. The lexical value of the t-
node is mostly a sequence of graphemes corresponding to
the ‘normalized’ form of the represented word (i.e. infini-
tive for verbs or nominative form for nouns). In some cases,
the t-lemma corresponds to the basic word from which the
represented word was derived, e.g. in Figure 1 (b), the pos-
sessive adjective Mečiarova (Mečiar’s) is represented by
the t-lemma Mečiar, or the adverb rozumně (reasonably)
is represented by the adjectival t-lemma rozumný (reason-
able). The artificial t-lemma appears at t-nodes that have
no counterpart in the surface sentence structure (e.g. the t-
lemma #Gen at a verbal complementation not occurring in
the surface structure because of its semantic generality), or
it corresponds to personal pronouns, no matter whether ex-
pressed on the surface or not (e.g. the t-lemma #PersPron
at the t-node in Figure 1 (b)). The dependency relation be-
tween the t-node in question and its parent t-node is stored
in the attribute functor, e.g. functor EFF at the t-node with
t-lemma standardnı́ (standard), which plays the role of an
effect of the predicate in the sentence displayed in Figure 1
(b).

3. Two-level Typing
of Tectogrammatical Nodes

While the attributes t-lemma and functor are attached to
each t-node of the tectogrammatical tree, grammatemes are
relevant only for some of them. The reason for this differ-
ence consists in the fact that only some words represented
by t-nodes bear morphological meanings.

3.1. Types of Tectogrammatical Nodes
To differentiate t-nodes that bear morphological meanings
from those without such meanings, a classification of t-
nodes was necessary. Based on the information captured by
the above mentioned attributes t-lemma and functor, eight
types of t-nodes were distinguished. The appurtenance of
the t-node to one of the types is stored in the attribute node-
type.5

• Complex nodes (nodetype=‘complex’) as the most im-
portant node type should be named in the first place:
since they represent nouns, adjectives, verbs, adverbs
and also pronouns and numerals (i.e. words express-
ing morphological meanings), they are the only ones
with which grammatemes are to be assigned.

The other seven types of t-nodes and the corresponding val-
ues of the attribute nodetype are as follows:
• The root of the tectogrammatical tree

(nodetype=‘root’) is a technical t-node the child
t-node of which is the governing t-node of the
sentence structure.

• Atomic nodes (nodetype=‘atom’) are t-nodes with
functors RHEM, MOD etc. – they represent rhematiz-
ers, modal modifications etc.

5Some of the nodetype values are present in Figure 1 (b).
If none of the nodetype values is indicated with the t-node, the
nodetype is ‘complex’.

• Roots of coordination and apposition constructions
(nodetype=‘coap’) contain the t-lemma of the coordi-
nating conjunction or an artificial t-lemma of a punc-
tuation symbol (e.g. #Comma).

• Parts of foreign phrases (nodetype=‘fphr’) are com-
ponents of phrases that do not follow rules of Czech
grammar (labeled by a special functor FPHR in the
tree).

• Dependent parts of phrasemes (nodetype=‘dphr’)
represent words that constitute a single lexical unit
with their parent t-node (labeled by a special functor
DPHR in the tree); the meaning of this unit does not
follow from the meanings of its component parts.

• Roots of foreign and identification phrases
(nodetype=‘list’) are nodes with special artificial
t-lemmas (#Forn and #Idph), which play the role
of a parent of a foreign phrase (i.e. of nodes with
nodetype=‘fphr’ – see above) or the role of a parent of
a phrase having a function of a proper name.

• So called quasi-complex nodes (nodetype= ‘qcom-
plex’) stand mostly for obligatory verbal complemen-
tations that are not present in the surface sentence
structure (i.e. they have the same functors as complex
nodes but, unlike them, quasi-complex t-nodes have
artificial t-lemmas, e.g. #Gen).

3.2. Semantic Parts of Speech

Not all morphological meanings (chosen as tectogrammat-
ically pertinent) are relevant for all complex t-nodes (cf.,
for example, the category of tense at nouns or the degree of
comparison at verbs). As we did not want to introduce any
‘negative’ value to identify the non-presence of the given
morphological meaning at a t-node (i.e., if all grammatemes
would be annotated at each complex t-node, the negative
value would be filled in at the irrelevant ones), the attribute
sempos for sorting the t-nodes according to morphological
meanings they bear had to be introduced into the attribute
system.
The groups into which the complex t-nodes were further
divided are called semantic parts of speech. According
to basic onomasiological categories of substance, qual-
ity, event and circumstance (Dokulil, 1962), four seman-
tic parts of speech were distinguished: semantic nouns, se-
mantic adjectives, semantic verbs and semantic adverbs.
These groups are not identical with the ‘traditional’ parts
of speech: while ten traditional parts of speech are dis-
cerned in Czech and the appurtenance of the word to one
of them is captured by a morphological tag (i.e. by an at-
tribute of m-layer in the PDT 2.0), the ‘only’ four semantic
parts of speech are categories of the t-layer and are captured
by the attribute sempos (values n, adj, v and adv). The re-
lations between semantic and traditional parts of speech are
demonstrated in Figure 2. We would like to illustrate them
on the example of semantic adjectives in more detail.
The following groups traditionally belonging to different
parts of speech count among the semantic adjectives: (i)
traditional adjectives, (ii) deadjectival adverbs, (iii) adjecti-
val pronouns, and (iv) adjectival numerals.

14

Figure 2: Relations of traditional parts of speech to their se-
mantic counterparts. Arrows in bold denote a prototypical
relation, thin arrows indicate the distribution of pronouns
and numerals into semantic parts of speech and dotted ar-
rows stand for the classification according to derivational
relations.

(i) Traditional adjectives, e.g. standardnı́ (standard) in Fig-
ure 1 (b), are mostly regarded as semantic adjectives (with
the already mentioned exception of possessive adjectives
converted to nouns).
(ii) At the t-layer, deadjectival adverbs, e.g. rozumně (rea-
sonably) in Figure 1 (b), are represented by the t-lemma of
the corresponding adjective, here by the t-lemma rozumný
(reasonable). In this way, a derivational relation is fol-
lowed: the word is represented by its basic word. Other
types of derivational relations analyzed in PDT 2.0 will be
introduced in the next sections.
(iii) and (iv) Since there are no groups such as ‘seman-
tic pronouns’ or ‘semantic numerals’ at the t-layer, these
words were distributed into semantic nouns and adjectives
according to their function they fill in the sentence. While
pronouns and numerals filling typical positions of nouns
(such as agent or patient) belong to semantic nouns, pro-
nouns and numerals playing an adjectival role are classified
as semantic adjectives. For examples of nominal usage of
the pronoun který (which) and of the numeral sto (hundred)
see sentences (1), and (2) respectively:

(1) Kurz, který.n jsem si vybral, je špatný.
The course that I have chosen is bad.

(2) Už vedl sto.n kurzů.
He has already taught one hundred courses.

For examples of adjectival usage of the pronoun který
(which) and of the numeral tři (three) see sentences (3), and
(4) respectively:

(3) Který.adj kurz si mám vybrat?
Which course should I choose?

(4) Vyučuje tři.adj kurzy.
He teaches three courses.

The subgroups of semantic adjectives presented above are
viewed as constituting the inner structure of this class. Also
the classes of semantic nouns and semantic adverbs were
sub-classified in a similar way. (Semantic verbs cannot
be subdivided by the same principles as the other seman-
tic parts of speech.)6 The appurtenance of a t-node to a
concrete subgroup of semantic parts of speech is captured
as a detailed value of the attribute sempos (e.g. adj.denot
or adj.quant.def in Figure 3).

6The sub-classification of semantic verbs is one of our future
aims; properties of verbal systems in other languages (as studied
e.g. in (Bybee, 1985)) will be considered.

The t-node hierarchy including the detailed subclassifica-
tion of semantic adjectives is displayed in Figure 3.

4. Grammatemes and Their Values
There are 15 grammatemes at the t-layer of PDT 2.0. Gram-
matemes number, gender, person and politeness were as-
signed to t-nodes belonging to the subclasses of semantic
nouns. The grammatemes degcmp, negation, numertype
and indeftype were annotated with semantic nouns as well
as with semantic adjectives, the latter two of them also with
semantic adverbs. The other seven grammatemes belong to
semantic verbs: tense, aspect, verbmod, deontmod, disp-
mod, resultative, and iterativeness.
All the grammatemes will be explained and exemplified in
the following subsections one by one. A separate subsec-
tion is devoted to a more detailed discussion about pronom-
inal words.

4.1. Number

The grammateme number is the tectogrammatical counter-
part of the morphological category of number – the gram-
mateme values, sg (for singular) and pl (for plural), mostly
correspond to the values of this morphological category,
e.g. the noun vláda.sg (government) in Figure 1 (b) is
in singular while vlády.pl (governments) would be plural.
However, as the grammateme captures the ‘semantic’ num-
ber, its value differs from that of the morphological cate-
gory in some cases: e.g. while the morphological number
of pluralia tantum is always ‘plural’ (e.g. the Czech word
dveře, door), the tectogrammatical singular in a sentence
like (5) is discerned from the tectogrammatical plural in the
sentence (6) – at these nouns, the decision by an annotator
was necessary; if such a decision were not possible on the
basis of context (e.g. in the sentence (7)), a special value nr
(‘not recognized’) was assigned.

(5) Neotevı́rej tyto dveře.sg
Do not open this door.

(6) Šel dlouhou chodbou
He walked through a long corridor
a minul několikery dveře.pl
and passed several doors.

(7) Otevřel dveře.nr
He opened the door/doors.

4.2. Gender

In PDT 2.0, values of the grammateme gender correspond
to the morphological gender: anim (for masculine animate),
inan (for masculine inanimate), fem (for feminine), and
neut (for neuter).

4.3. Person and Politeness

The grammatemes person and politeness have been as-
signed to one subclass of semantic nouns that contains per-
sonal pronouns. These words are represented by the artifi-
cial t-lemma #PersPron at the t-layer (e.g. in the Figure 1
(b), where the t-node with the t-lemma #PersPron repre-
sents the actor that is not present in the surface sentence
structure). The values of the former grammateme (1, 2, 3)
distinguish among the 1st, 2nd and 3rd person pronouns;

15

Figure 3: Hierarchy of t-nodes. The first branching renders the nodetype distinctions. Then, only complex t-nodes are
further subdivided into four semantic parts of speech. Semantic nouns, semantic adjectives and semantic adverbs are further
subclassified. Due to space limitations, only the subclassification of semantic adjectives is displayed in detail. In the leaf
t-nodes of this subclassification, the values of attribute sempos is given on the second line and the list of grammatemes
associated with the given class follows on the third line in the boxes.

the values of the latter one (basic, polite) discern the com-
mon from the polite usage of 2nd person pronouns. The sur-
face pronoun is derived from the combination of t-lemma
and values of grammatemes number, gender, person and
politeness. E.g., the pronoun vy (you) in the sentence (8)
is derived from the tectogrammatical representation #Per-
sPron+pl+anim+2+basic in contrast to the same pronoun
in the sentence (9) that is derived from the representation
#PersPron+sg+anim+2+polite.

(8) Vy jste vybrali dobrý kurz.
‘You have chosen a good course’
(- said to a group of persons)

(9) Vy jste vybral dobrý kurz.
‘You have chosen a good course’
(- said politely to a single person)

4.4. Degree of Comparison

The grammateme degcmp corresponds to the morpholog-
ical category of degree of comparison. Besides the val-
ues pos (for positive), comp (comparative) and sup (su-
perlative), a special value acomp for comparative forms
of adjectives/adverbs without a comparative meaning (so
called ‘absolute comparative’, also ‘elative’) was estab-
lished. The common usage of comparative forms such as
Jan je staršı́.comp než ona (Jan is elder than her) was dis-
tinguished from the absolute usage e.g. in staršı́.acomp muž
(an elder man) by the manual annotation.

4.5. Types of Numeral and Pronominal Expressions

Neither the grammateme numertype nor indeftype have
a counterpart in the traditional set of morphological cate-
gories. They capture information on derivational relations
among numerals, and pronominal words respectively, ana-
lyzed at the t-layer: derived words are represented by the
t-lemma of its basic word and the feature that would be
lost by such a representation is captured by values of these
grammatemes. As all types of numerals are seen as deriva-
tions from the corresponding basic numeral and thus rep-
resented by its t-lemma, the grammateme numertype cap-
tures the type of the numeral in question. The surface nu-
meral is then derived from the t-lemma and the value of
this grammateme, e.g. the ordinal numeral třetı́ (the third)
is derived form the following tectogrammatical representa-
tion: t-lemma tři (three) + numertype=‘ord’ (for ordinal).
Besides the value ord, the value set of this grammateme
involves four other values: basic for basic numerals (tři
kurzy–three courses), frac for fractional numerals (třetina
kurzu–the third of the course), kind for numerals concerning
the number of kinds/sorts (trojı́ vı́no–three sorts of wine),
and set for numerals with meaning of the number of sets
(troje klı́če–three sets of keys).
In a similar vein, indefinite, negative, interrogative, and rel-
ative pronouns are represented by the t-lemma correspond-
ing to the relative pronoun – the specific semantic feature
is stored in the grammateme indeftype. Surface pronouns
are derived from the lemma and the value of this gram-
mateme: e.g. the indefinite pronoun někdo (somebody) and
the negative pronoun nikdo (nobody) are derived from the

16

following tectogrammatical representations: t-lemma kdo +
indeftype=‘indef’, and t-lemma kdo + indeftype=‘negat’ re-
spectively.7 Such representation of derivational relations
makes it possible to represent all these words by a very
small set of t-lemmas. The question of applying similar
principles to pronominal words in other languages will be
mentioned in Subsection 4.11.

4.6. Negation

Also the grammateme negation captures a lexical informa-
tion needed for derivation of surface forms: it enables to
represent both, the positive and the negative forms of adjec-
tives, adverbs and (temporarily, only a group of) nouns by
a single t-node with the same t-lemma – e.g. the adjective
standardnı́ (standard) in Figure 1 (b) as well as its negative
form nestandardnı́ (non-standard) are represented by the t-
node with t-lemma standardnı́ and the absence/presence of
negation is captured by the value of the grammateme: the
value neg0 was assigned to the t-node representing the pos-
itive form, the value neg1 to the t-node corresponding to
the negative form.8

4.7. Tense

The grammateme tense corresponds to the morphological
category of tense. The values sim (simultaneous with the
moment of speech/with other event), ant (anterior to the
moment of speech/to other event), and post (posterior to
the moment of speech/to other event)9 have been assigned
automatically.

4.8. Aspect

The grammateme aspect is the tectogrammatical counter-
part of the category of aspect. As there are verbs in Czech
that can express both, imperfective and perfective aspects
by the same forms (so called bi-aspectual verbs), manual
annotation was necessary to make a decision with these
verbs.

4.9. Verbal Modalities

There are three grammatemes concerning modality. The
grammateme verbmod captures if the represented verbal
form expresses the indicative (value ind), the imperative
(imp), or the conditional mood (cdn). Since modal verbs
do not have a t-node of their own at the t-layer (for expla-
nation see (Panevová et al., 1971)), the deontic modality ex-
pressed by these verbs is stored in the grammateme deont-

7A similar treatment of indefinite and negative pronouns as of
two subtypes of the same entity can be found in (Helbig, 2001).

8Unlike this representation, negative verbal forms (verbal
negation is expressed also by the prefix ne- in Czech) are repre-
sented by a sub-tree consisting of a t-node with a verbal t-lemma
the child of which is a t-node with the artificial t-lemma #Neg;
cf. the representation of the negated verb nelze ((it) can not be)
by two t-nodes, with the t-lemmas lze ((it) can be) and #Neg, in
Figure 1 (b). The explanation can be found in (Hajičová, 1975).

9As the class of semantic verbs has not been sub-classified yet
and all verbal grammatemes were annotated with each verbal t-
node, a special value nil was inserted into the value system for
cases when the represented word does not express a feature cap-
tured by the grammateme (cf. the value of grammateme tense at
a t-node representing an infinitive form).

mod, e.g. the predicate of the sentence Už může odejı́t (He
can already leave) is represented by a t-node with t-lemma
odejı́t (to leave) and the modality is stored as the value poss
(for possibilitive) in the grammateme deontmod. The last
of the modality grammatemes, the grammateme dispmod,
concerns the so-called dispositional modality. This type of
modality is represented by a special syntactic construction
involving a ‘reflexive-passive’ verb construction, a dative
form of a noun/personal pronoun playing the role of agent,
and a modal adverb, e.g. the sentence (10):

(10) Studentům se ta kniha čte dobře.
Lit. To students the book reads well.
It is easy for the students to read the book.

4.10. Resultative and Iterativeness

While the grammateme resultative (values res1, res0) re-
flects the fact whether the event is/is not presented as a
resultant state, the last verbal grammateme iterativeness
indicates whether the event is/is not viewed as a repeated
(multiplied) action (values it1, it0).

4.11. Pronominal Words at the T-layer

In this chapter, we would like to provide a deeper view into
the principles of representation of pronominal words at the
t-layer of PDT 2.0, and then to outline how this representa-
tion can be applied to such words in English or German.
As already mentioned above, pronouns are represented by
a minimal set of t-lemmas at the t-layer. Personal pro-
nouns by a single (artificial) t-lemma #PersPron; gram-
matemes assigned to the t-nodes of personal pronouns were
presented in the previous chapter. Indefinite, negative, in-

T-lemma: kdo co kter ý jak ý

indefype:
relat kdo co který, jaký

jenž
indef1 někdo něco některý nějaký
indef2 kdosi cosi kterýsi jakýsi

kdos cos
indef3 kdokoli cokoli kterýkoli jakýkoli

kdokoliv cokoliv kterýkoliv jakýkoliv
indef4 ledakdo ledaco leckterý lecjaký

leckdo lecco ledakterý ledajaký
indef5 kdekdo kdeco kdekterý kdejaký
indef6 kdovı́kdo kdovı́co kdovı́který kdovı́jaký

málokdo máloco málokterý všelijaký
inter kdo co který jaký

kdopak copak kterýpak jakýpak
negat nikdo nic žádný nijaký
total1 všechen všechno - -

vše
total2 - - každý -

Table 1: The indeftype grammateme has actually eleven
values (1st column in the table). It makes it possible to rep-
resent all semantic variants of pronouns kdo (somebody), co
(something), který (that) and jaký (what) (in the 2nd, 3rd,
4th and 5th column) by only four t-lemmas at the t-layer.

17

terrogative and relative pronouns are all represented by a
t-lemma corresponding to the relative pronoun. In this way,
only four lemmas – i.e. kdo (somebody), co (something),
který (which) and jaký (what) – are sufficient to represent
all Czech pronouns of named types at the t-layer. The pro-
nouns with corresponding values of the grammateme in-
deftype are displayed in Table 1.
Since the semantic features stored in the grammateme in-
deftype are expressed also by other words of pronomi-
nal character in Czech, e.g. by pronominal adverbs nikde
(nowhere) or nějak (somehow), or by an indefinite numeral
několik (a few), we can use this grammateme also for the
tectogrammatical representation of these words.10

As the groups of pronominal words are unproductive
classes with (at least to a certain extent) transparent deriva-
tional relations not only in Czech, but also in other lan-
guages, we believe that similar regularities to those cap-
tured in Czech by the indeftype grammateme can be found
also elsewhere. However, as it is obvious from the prelimi-
nary sketch of several English and German pronouns clas-
sified in Table 2,11 the application of our scheme to other
languages will not be straightforward and various subtle
differences have to be taken into account. For instance,
there is only one negative form nikdo corresponding to the
t-lemma kdo in Czech, therefore the present system pro-
vides no means for distinguishing German negative pro-
nouns niemand and niergendjemand. A new question arises
also in the case of English anybody when used in negative
clauses, which has no counterpart in Czech or German.

5. Implementation
The procedure for assigning grammatemes (and nodetype
and sempos) to nodes of tectogrammatical trees was im-
plemented in ntred12 environment for processing the PDT
data. Besides almost 2000 lines of Perl code, we formulated
a number of rules for grammateme assignment written in a
text file using a special economic notation (roughly 2000
lines again), and numerous lexical resources (e.g. special-
purpose list of verbs or adverbs). As we intensively used
all information available also at the two ‘lower’ levels of
the PDT (morphological and analytical), most of the an-
notation could have been done automatically with a highly
satisfactory precision.
It should be emphasized that the inter-layer links played a
key role in the procedure. As it is clear from Figure 1 (a),
it would not be possible to set e.g. the value of the number
grammateme of the (already lemmatized) t-node les (for-
est) without having the access to the morphological tag of
the corresponding m-layer unit in the given sentence, or

10The indeftype grammateme is applied to indefinite numer-
als together with the above-mentioned grammateme numertype
– thus only a single t-lemma kolik (how many) represent words of
different nature: e.g. několik át ý (not the first), kolikr át (how many
times) etc.

11We chose English and German, because, first, the two lan-
guages are the most familiar to the present authors, and sec-
ond, certain experiments concerning their t-layer have already
been performed, see e.g. (Cinková, 2004) or (Kučerová and
Žabokrtský, 2002).

12http://ufal.mff.cuni.cz/˜pajas

English English German German
T-lemma who what wer was

indefype:
relat who what wer was
indef1 somebody something jemand etwas
indef2 - - irgendjemand irgendetwas
indef3 whoever whatever - -
inter who what wer was
negat nobody nothing niemand nichts
total1 all everything alle alles
total2 each each jeder jedes

Table 2: Selected English and German pronouns prelimi-
narily classified according to the indeftype grammateme.

to find out that the verb jı́t (to go) is in conditional mood
(verbmod=cdn) without knowing that the corresponding a-
layer complex verb form subgraph contains the node by.
Due to the fact that a lot of effort had been spent on check-
ing and correcting of the inter-layer pointers in PDT 2.0,
finally we needed only around 5 man-months of human an-
notation for solving just the very specific issues (as men-
tioned at single grammatemes in the previous section).
Now we would like to show a fragment of the above men-
tioned rules. For a given t-node: if the lemma of the corre-
sponding m-node is který (which), the t-node itself is not in
the attributive syntactic position and participates in gram-
matical coreference (i.e., it forms a relative construction),
then sempos=n.pron.indef, indeftype=relat, and the values
of the grammatemes gender and number are inherited from
the coreference antecedent. This rule would be applied on
the sentence (1).
To further demonstrate that grammatemes are not just
dummy copies of what was already present in the morpho-
logical tag of the node, we give two examples:

• Deleted pronouns in subject positions (which must
be restored at the t-layer) might inherit their gender
and/or number from the agreement with the govern-
ing verb (possibly complex verbal form), or from an
adjective (if the governor was copula), or from its an-
tecedent (in the sense of textual coreference).

• Future verbal tense in Czech can be realized using
simple inflection (perfectives), or auxiliary verb (im-
perfectives), or prefixing (lexically limited).

The procedure was repeatedly tested on the PDT data,
which was extremely important for debugging and further
improvements of the procedure. Final version of the pro-
cedure was applied to all the available tectogrammatical
data (as for its size, recall the second paragraph in Sec-
tion 2.). This data, enriched with node classification and
grammateme annotation, will be included in PDT 2.0 dis-
tribution.
Due to the highly structured nature of the task, it is difficult
to present the results of the annotation procedure from the
quantitative viewpoint. However, at least the distribution of
the values of nodetype and sempos are shown in Tables 3
and 4.

18

complex 550947
root 49442
qcomplex 46015
coap 35747
atom 34035
fphr 4549
list 2512
dphr 1282

Table 3: Values of nodetype sorted according to the number
of occurences in the PDT 2.0 t-layer data.

n.denot 236926
adj.denot 100877
v 88037
n.pron.def.pers 32903
adj.quant.def 19441
n.denot.neg 18831
n.pron.indef 11343
adv.denot.ngrad.nneg 8947
n.quant.def 7994
adj.pron.def.demon 5746
n.pron.def.demon 4759
adj.pron.indef 3383
adv.pron.indef 3107
adv.pron.def 2928
adj.quant.grad 1865
adv.denot.grad.neg 1315
adv.denot.grad.nneg 1139
adv.denot.ngrad.neg 751
adj.quant.indef 655

Table 4: Detailed values of sempos sorted according to the
number of occurences in the PDT 2.0 t-layer data.

6. Conclusion
We believe that two important novel goals have been
achieved in the present enterprise:

• We proposed a formal classification of tectogrammat-
ical nodes and described its consequences on the sys-
tem of grammatemes, and thus the tectogrammatical
tree structures become formalizable e.g. by typed fea-
ture structures.

• We implemented an automatic and highly-complex
procedure for capturing the node classification, the
system of grammatemes and derivations, and verified
it on large-scale data, namely on the whole tectogram-
matical data of PDT 2.0. Thus the results of our work
will be soon publicly available.

In the paper we do not compare our achievements with re-
lated work, since we are simply not aware of a comparably
structured annotation on comparably large data in any other
publicly available treebank. For instance, to our knowledge
no other treebank attemps at reducing the (semantically re-
dundant) morphological attributes imposed only by agree-
ment, or at specifying verbal tense for a complex verb form
as for a whole, or at representing a noun (or a personal pro-
noun) and the corresponding possessive adjective (or pos-
sessive pronoun, respectively) in a unified fashion. How-

ever, from the theoretical viewpoint the presented model
bears some resemblances with the system of grammemes in
the deep-syntactic level of the already mentioned Meaning-
Text Theory (Mel’čuk, 1988).
In the near future, we plan to separate the grammatemes
that bear the derivational information (such as numertype)
from the grammatemes having their direct counterpart in
traditional morphological categories. The long-term aim is
to describe further types of derivation: we should concen-
trate on productive types of derivation (diminutive forma-
tion, formation of feminine counterparts of agentive nouns
etc.). The set of ‘derivational’ grammatemes will be ex-
tended in this way. The next issue is the problem of sub-
classification of semantic verbs. The challenging topic is
also the study of grammatemes in other languages.

Acknowledgements
The research reported in this paper was supported
by the projects 1ET101120503, GA-UK 352/2005 and
GD201/05/H014. We would also like to thank professors
Jarmila Panevová and Eva Hajičová for numerous com-
ments on the draft of the paper.

7. References
Joan L. Bybee. 1985. Morphology: A study of the relation

between meaning and form. Benjamins, Philadelphia.
Silvie Cinková. 2004. Manuál pro tektogramatickou ano-

taci angličtiny. Technical report, ÚFAL/CKL MFF UK.
Miloš Dokulil. 1962. Tvořenı́ slov v češtině I. Academia,

Prague.
Jan Hajič, Eva Hajičová, Petr Pajas, Jarmila Panevová, Petr

Sgall, and Barbora Vidová Hladká. 2001. Prague De-
pendency Treebank 1.0.

Eva Hajičová, Jan Hajič, Barbora Vidová-Hladká, Martin
Holub, Petr Pajas, Veronika Kolářová-Řeznı́čková, and
Petr Sgall. 2001. The Current Status of the Prague De-
pendency Treebank. In Proceedings of the 5th Interna-
tional Conference on Text, Speech and Dialogue, pages
11–20, Berlin, Heidelberg, New York. Springer-Verlag.

Eva Hajičová. 1975. Negace a presupozice ve významové
stavbě věty. Academia, Prague.

Hermann Helbig. 2001. Die semantische Struktur
natürlicher Sprache. Springer-Verlag, Berlin, Heidel-
berg, New York.

Ivona Kučerová and Zdeněk Žabokrtský. 2002. Trans-
forming Penn Treebank Phrase Trees into (Praguian)
Tectogrammatical Dependency Trees. Prague Bulletin
of Mathematical Linguistics, (78):77–94.

Igor A. Mel’čuk. 1988. Dependency Syntax: Theory and
Practice. State University of New York Press.

Jarmila Panevová, Eva Benešová, and Petr Sgall. 1971.
Čas a modalita v češtině. Univerzita Karlova, Prague.

Carl Pollard and Ivan A. Sag. 1994. Head-Driven Phrase
Structure Grammar. The University of Chicago Press,
Chicago.

Petr Sgall, Eva Hajičová, and Jarmila Panevová. 1986. The
Meaning of the Sentence in Its Semantic and Pragmatic
Aspects. D. Reidel Publishing Company, Dordrecht.

Petr Sgall. 1967. Generativnı́ popis jazyka a česká dekli-
nace. Academia, Prague.

19

Constraint-Based Extract Alignment for
Black-Box Evaluation of Extractive Summarization Methods

Jorge Marques Pelizzoni*, Thiago Ianez Carbonel†, Lucia Helena Machado Rino‡

*Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo
Cx. Postal 668 – CEP 13560-970 – São Carlos – SP – Brasil

†Departamento de Letras, ‡Departamento de Computação, Universidade Federal de São Carlos
Cx. Postal 676 – CEP 13565-905 – São Carlos – SP – Brasil

Jorge.Pelizzoni@loria.fr, thiagocarbonel@gmail.com, lucia@dc.ufscar.br

Abstract
The purely extractive approach to Automatic Summarization aims at producing condensed versions of source texts by selecting more
salient text spans and juxtaposing them. The resulting summaries, or rather, extracts may be seriously impaired with regard to textual-
ity and even grammaticality, which thus figure as possible criteria for the evaluation of extractive alignment systems. This work was
carried out in such an evaluation scenario, aiming at automating at least part of the task. By establishing an alignment between posi-
tions in abstracts and those in their respective sources, we allow extracts to “inherit” existent annotation of the sources for subsequent
analysis by evaluation tools. The main goal of this paper is to describe a constraint-based model for producing such alignments and its
efficient implementation, as well as report on a preliminary evaluation experiment yielding very promising results.

1. Introduction
Automatic Summarization (AS) aims at automatically

producing condensed, though still useful versions of
(source) texts. One of the most robust, domain-
independent and low-cost approaches to AS is the extrac-
tion-based one. Given a source text, purely extractive AS
systems/methods ⎯ the class of interest here ⎯ perform
a segmentation of the source, select the most salient seg-
ments and simply juxtapose them as output. The result is
called an extract. As extracts are obtained by verbatim
reuse of segments already present in the source texts, no
wonder extractive summarization usually risks producing
meaningless output, even when it actually succeeds in
identifying the most relevant fragments of a text. Textual-
ity is the feature at stake here and thus figures as a crite-
rion for the evaluation of extractive summarization arti-
facts. It is exactly in such an evaluation scenario that we
developed the work presented here.

This paper tackles the annotation of linguistic re-
sources of a rather unusual type, namely corpora of ex-
tracts, by establishing an alignment between each extract
and its respective source text, both viewed as sequences of
tokens. In fact, alignments themselves are our annotation
objects of interest here, each consisting of a correspon-
dence between (token) positions in an extract and posi-
tions in a source text. Not any correspondence, however:
whenever an extract token t1 is aligned with a source to-
ken t2, the real information being conveyed is that t1 is ⎯
or should be ⎯ actually t2 having “survived” an extractive
summarization process.

Though not so complex as compared to most language
processing tasks, extract alignment poses its difficulties,
especially if one takes into account that:
a) the units of extraction might not be exactly sentences,

but clauses or other syntactic constituents. See e.g.
(Mani & Maybury, 1999) for a survey on work involv-
ing various degrees of granularity in extractive AS;

b) in face of (a), the less trivial the segmentation grows,
the more prone extractive systems are to introduce er-
rors. Extracts might, therefore, contain incomplete and
even non-grammatical structures. For example, one of

the systems we experiment with extracted only the un-
derlined part from the sentence1 “A Russian Soyuz
spacecraft, carrying replacement personnel, reached
the International Space Station (ISS) two days after
leaving Earth.” This reused segment appears in the
produced extract in the guise of a self-contained sen-
tence, keeping its final comma and being simply jux-
taposed with the following reused segment: “Two of
the three astronauts that traveled in the Soyuz will
spend 175 days in the ISS.”;

c) the exact segmentation of the source text by the sum-
marizer is not known to the aligner. This condition is
especially interesting as it allows extractive systems to
be treated as black boxes.
The interest in extract alignment might not be obvious

at first. In fact, it directly depends on whether valuable
annotation is already available for the source corpus2
whose projection onto the extract corpus makes some task
easier, i.e. at least partially automatable. An alignment
provides exactly the means to project annotation auto-
matically, whenever it makes sense, and that is all.

The main purpose of this paper is to describe Suma-
lign, an automatic extract alignment system, as well as
provide evidence of its performance obtained in a prelimi-
nary experiment. As already mentioned, the scenario in
which Sumalign was born is the black-box evaluation of
extractive summarization methods. In specific, our current
focus is on coherence impairment due to anaphoric ex-
pressions rendered dangling after extraction. This is a
quite troublesome phenomenon in extractive AS and oc-
curs whenever an anaphoric text span is included in the
extract and its antecedent is not. Our source corpus is be-
ing annotated, among others, with respect to coreference
chains and dependencies, and we intend to use alignments
to project coreference chain annotation onto extracts and
identify malformations in the obtained projections auto-
matically. By means of Sumalign and other more trivial
tools, we must be able to automate most of the task.
Figure 1 exemplifies the application of Sumalign in our

1 All examples are in Portuguese in the original.
2 As opposed to extract corpus. A corpus of extracts presupposes
a corpus of source texts.

20

scenario. In this figure, source annotation states that “A
spaceship Soyuz” is the antecedent that allows the refer-
ence of “It” to be resolved. In turn, the alignment allows
detecting that the extract includes the latter while omitting
the former. By projecting the source annotation onto the
extract, it is possible to tell that the original dependency
link of “It” is now dangling.

Figure 1: Applying extract alignment

The system tackles extract alignment as an optimiza-

tion problem. As we shall discuss in Section 3, it is not
enough to constrain alignments to ensure token-equality3
between aligned positions and to preserve order. Given an
extract and its source, there may well be a set of alterna-
tive alignments satisfying these constraints while just a
few of them can be considered as correct output from an
aligner though. Fortunately, it was not difficult to con-
ceive a syntax-based penalty function that is likely to be
minimized only by the “correct” alignments in a set of
alternatives. Sumalign thus requires syntactically anno-
tated sources, but keeps its underlying model rather inde-
pendent of the grammatical framework of choice.

Sumalign employs Concurrent Constraint Program-
ming (CCP) as a means to tame search complexity, since
the problem could be expressed as a Constraint Satisfac-
tion Problem (CSP). Our preliminary experiment suggests
that Sumalign is a successful application of CCP, achiev-
ing outstanding performance and solving all instance
problems in (short) polynomial time, with no or very little
real resort to search, and with 100% precision.

The paper proceeds as follows. In Section 2, we briefly
review some CCP-related concepts in order to enable un-
derstanding how Sumalign works. Next we develop a for-
malization of the problem of extract alignment in Section
 3 and translate it into a constraint-based model in Section
 4, in which we also highlight some implementation de-
tails. Our preliminary evaluation experiment is described
and discussed in Section 5. Finally, we conclude in Sec-
tion 6.

2. Concurrent Constraint Programming
In this section we briefly review some concepts of

Concurrent Constraint Programming (CCP) in the sense
e.g. of Van Roy & Haridi (2004) and Schulte (2002), spe-
cifically as implemented by the Mozart system4 and the
Gecode5 C++ library. This programming paradigm is typi-
cally employed in the solution of optimization problems,
such as scheduling, timetabling and configuration. Com-

3 A position in an extract is token-equal to a position in its
source iff they are occupied by the same token.
4 http://www.mozart-oz.org
5 http://www.gecode.org

mon characteristics to these problems recommending a
constraint-based solution are the following:
a) lack of a polynomial-time algorithm that satisfactorily

solves them;
b) expressibility as a Constraint Satisfaction Problem

(CSP), i.e. as a finite set C of constraints (applications
of simple mathematical/logical predicates from a
rather restricted library) over a finite set of variables V
such that:
i. C must contain a basic constraint for each v V∈ ,

i.e. a statement of a finite domain containing all the
values admissible for v. Usually, the domains are
(finite) subsets of ` and 2` ⎯ i.e. the admissible
values are usually non-negative integers or sets
thereof;

ii. any assignment to the variables in V satisfying all
constrains in C is a valid solution to the problem.

Non-basic constraints, i.e. those involving two or
more variables, are usually simple arithmetic and set-
theoretic relations such as 2 1x y= + , w x y z= + +
and x A B∈ ∩ , where all x, y, w, z, A and B are vari-
ables.
Any such CSP formulation is said to be a model for
the problem at hand, and the task of building models is
known as modeling;

c) the enumeration of all possible candidate solu-
tions/assignments has exponential complexity;
whereas

d) the size of the CSP and the cost of building it from
input must have polynomial complexity.
Characteristics (a) and (c) are typical of search prob-

lems, i.e. those to which search-based solving (Russel &
Norvig, 1995; Rich & Knight, 1991) is the only currently
available approach. When characteristics (a) and (d) are
also present, CCP is eligible as a device to help tame
search complexity, i.e. avoid combinatorial explosion. The
really tricky thing about (a) is that it implies that, before
search may start, the CSP must be completely set up. In
specific, new variables/constraints cannot be cre-
ated/posed dynamically during search. This restriction
may render the paradigm simply inapplicable or bring
about rather complex modeling. Fortunately, neither has
been the case for extract alignment.

2.1. Constraint Propagation
CCP is a specialized search-based problem solving

technique that exploits the particular properties of a cer-
tain way of describing the problem ⎯ characteristics (a)
and (d) ⎯ so that (i) the description of the search space is
automatically derived from the CSP and (ii) the search
space is (re)active, automatically inferring corollaries
from what is known or assumed during search and using
them to eliminate part of the necessarily failed alternatives
without ever actually trying them out. This (re)active
character ⎯ termed constraint propagation ⎯ is a cen-
tral concept to CCP and is implemented by “giving life” to
the non-basic constraints of a CSP. That is, for every non-
basic constraint p[vi] (where p is a logic predicate; and
[vi], 1 , 2i n n≤ ≤ > , the vector of variables interrelated by
this application of p), a concurrent agent ⎯ termed
propagator ⎯ is created not only to signal inconsistence
of p[vi] against a complete determination of [vi], but also
to run a local inference procedure to maintain the consis-
tence of p[vi]. In other words, the propagator (i) reacts to

...

A spaceship Soyuz It
...

∅

21

new basic constraints for any vi, (ii) calculates corollaries
for the remaining vk, k i≠ , in the form of new basic con-
straints and (iii) broadcasts them to any other interested
propagators, probably triggering them into action for even
further propagation. The resulting chain reaction incre-
mentally narrows variable domains ⎯ and thus the range
of solution candidates ⎯ and might at times yield a solu-
tion with no resort to non-deterministic choice.

Take, for example, the CSP whose constraint set is
shown in Figure 2, in which lines 1 to 5 pose the starting
basic constraints for each variable and lines 6 to 9 contain
four non-basic constraints establishing the order:

a b c d e< < < < .
Small though it may be, this CSP lets nonetheless show
the exponential complexity of its search space, counting
on a number of solution candidates equal to:

() 2 4 4 3 2 192 2.86V

v V

dom v
∈

= × × × × = ≅∏ ,

where V = {a, b, c, d, e}, and dom(v) denotes the domain
in the starting basic constraint for variable v. It is worth
noticing that only one of those candidates is satisfactory,
namely {a = 4, b = 5, c = 6, d = 7, e = 10}.

1 a ∈ {4, 10}
2 b ∈ {2, 5, 8, 11}
3 c ∈ {3, 6, 9, 12}
4 d ∈ {1, 7, 13}
5 e ∈ {4, 10}
6 a < b
7 b < c
8 c < d
9 d < e

Figure 2: Basic (lines 1-5) and non-basic (6-9) constraints
in a sample CSP. Line numbers left for convenience

If solved with CCP, the above CSP will normally yield

four propagators, one for each non-basic constraint. The
local inference procedure of each x < y propagator is very
simple and, roughly speaking, proceeds as follows: given
the current basic constraints for x and y ⎯ x ∈ Xs and
y ∈ Ys ⎯ it infers and poses new basic constraints as fol-
lows:
 (){ }: maxx k k Xs k Ys∈ ∈ ∧ < ,

(){ }: miny k k Ys k Xs∈ ∈ ∧ > .
Naturally, such a propagator fails whenever it infers a
basic constraint of the form v∈∅ .

Even this very primitive, local inference mechanism is
capable of solving the CSP in Figure 2 deterministically as
a result of the collaboration between propagators. Figure 3
provides a simulation of how this might happen in the
form of a “decorated” table, each of whose cells contains
(the domain of) the basic constraint valid for a variable
(column) at a given moment in time (row). Moreover,
each vertical dotted line not only serves as a column sepa-
rator, but also refers to the propagator it crosses at the top.
Arrows and stars refer to propagator activity thus: an ar-
row from value k1 of variable x to value k2 of variable y
means that, at the given time, the propagator correspond-
ing to the dotted line crossed by the arrow uses current
minimum/maximum k1 to rule out value k2 from the do-
main of y. Stars just draw attention to the fact that dotted
lines are being crossed and thus mark which propagators
contribute at each time. For example, the leftmost arrow in

the first row reads thus: at t = 0, the a < b propagator uses
4, the current minimum value for a, to rule out 2 from the
domain of b.

Figure 3 only shows one of the possible ways propaga-
tion could be carried out for this CSP, as the scheduling of
propagators is usually non-deterministic. However, the
result of propagation is always deterministic, i.e. the same,
granted the strictly monotonic character of the corollaries
propagators contribute.

Figure 3: Simulating propagation for the CSP in Figure 2.
An arrow from x to y reads “boundary value x rules y out”

2.2. Propagation + Distribution = Completeness
Constraint propagation is not a complete solving

method. Its result is not necessarily the determination of
all the variables of the CSP. It may as well achieve failure
or a state of consistent stability in which, even though the
domains of the variables may have been narrowed, there
are still undetermined variables and no propagator can
contribute new information. The main reason for this is
that propagators perform local inference only and derive
simple corollaries. In specific, there is no superior entity
trying to derive theorems from their declarative semantics,
which is exactly what allows propagation to have poly-
nomial complexity and sanction the whole CCP paradigm.

 The counterpart of propagation that renders CCP
complete is termed distribution, which represents the
element of search and non-determinism in the paradigm.
Whenever consistent stability is achieved and not every
variable is determined, it is necessary to induce some in-
stability so as to restart propagation. That is the object of
any distribution step, which consists of elaborating an
artificial constraint C ⎯ said to be a distribution con-
straint ⎯ and forking search, assuming now C, now C¬ .
Recursively interleaving propagation and distribution con-
stitutes a complete and potentially efficient problem solv-
ing method. Naturally, some distribution constraints as-
sumed during search may lead to failure, and thus back-
tracking follows. For completeness therefore, all CCP
solutions must specify a distribution strategy, i.e. when
and how exactly to elaborate distribution constraints given
a situation of consistent stability

{4, 10} {2, 5, 8, 11} {3, 6, 9, 12} {1, 7, 13}t = 0

propagators
variables

{4, 10}

{4, 10} {5, 8, 11} {3, 6, 9, 12} {7} t = 1 {4, 10}

{4, 10} {5, 8, 11} {6} {7} t = 2 {10}

{4, 10} {5} {6} {7} t = 3 {10}

{4} {5} {6} {7} t = 4 {10}

active propagators

22

3. Formalizing Extract Alignment
In this section we formalize the problem at hand. The

constraint-based model we describe in the following sec-
tion closely implements this formalization, which can
therefore be regarded at once as a rationale for our model,
an opportunity to verify its adequacy and an aid to under-
stand it.

However painstaking an extraction method might be, it
is always possible to regard its task as simply deciding
what to omit from sources. In other words, every extract is
a source that has undergone a series of deletion opera-
tions. In specific, the original order between spared tokens
should be intact, as well as no new tokens are to be intro-
duced. This point of view strongly bears on the formaliza-
tion we develop here.

3.1. Text
Extracts and sources are objects of one same formal

type: text. For our purposes, it suffices to define a text
over an alphabet Σ as any function ƒ: P → Σ where P is a
finite subset of ` . This definition allows us to capture
the intuition that a text has a finite toset6 of positions (the
elements of P under the default order for `), each of
which is occupied by one single symbol/token (from Σ).
As usual, the type of the symbols in an alphabet (whether
character strings, numbers, etc.) is immaterial provided
they can be tested for equality. For example, the following
function:

{ }2 , 3 , 7 , 10a dollar a week→ → → →
is just one of the possible text objects that could be used to
represent the real text “a dollar a week”.

3.2. Extract and Alignment
Given two texts t1 and t2, t1 is said to be an extract of

t2 iff there exists ƒ: dom(t1) → dom(t2) ⎯ i.e. a function
mapping/aligning every position in the extract to/with
some position in the source ⎯ such that: :
a) for every position p ∈ dom(t1) in the extract,

t1(p) = t2(ƒ(p)). This ensures that the symbol occupy-
ing any given position in the abstract also occupies the
corresponding aligned position in the source. In other
words, token-equality is enforced between every ex-
tract position and its aligned source position.
It follows from this condition that ran(t1) ⊆ ran(t2),
where ran(ƒ) denotes the range of function ƒ, i.e. the
set {ƒ(x): x ∈ dom(ƒ)}. In our particular case, the im-
age of a text corresponds to the set of all symbols that
actually appear in the text. This result thus ensures that
all symbols appearing in an extract also appear in the
source;

b) for every p, q ∈ dom(t1), p < q → ƒ(p) < ƒ(q). This
ensures that the alignment preserves order and is an in-
jection, i.e. never two different positions in the abstract
are aligned with one same position in the source.
Any such ƒ is said to be an alignment of t1 in relation

to t2.

3.3. Deletion
Given a text t and a subset of its positions P ⊆ dom(t),

the deletion of P from t, denoted t » P, is itself a text de-
fined thus:

6 totally ordered set

()
()

» : dom() ran(),

» () ().

t P t P t

t P x t x

− →

=

3.4. Relabeling
Given two texts t1 and t2, t1 is said to be a relabeling

of t2 iff there is a bijective alignment of t1 in relation to t2.
This definition allows one to abstract away a mere dif-

ference in “labeling” of positions between two texts, i.e.
the exact numbers that are used to identify positions. In-
formally speaking, two texts are equivalent in every re-
spect possibly except their exact “labeling” iff one is a
relabeling of the other.

3.5. Completeness Theorem
A text t1 is an extract of t2 iff there is some subset of

positions P ⊆ dom(t2) such that t1 is a relabeling of t2 » P.
Informally speaking, t1 is an extract of t2 iff there is a

sequence of deletion operations that turn t2 into t1. This
theorem is important for completeness as our starting
definition of extract had no reference to the way extracts
are obtained. In specific, this theorem proves that, when-
ever a text can be obtained from another solely by dele-
tion, then there is necessarily a way of aligning them. The
following proof shows how exactly to do this.

Proof:
• left-to-right implication: if t1 is an extract of t2, then

there is an alignment ƒ of t1 in relation to t2. Letting
P = dom(t2) - ran(ƒ), we have dom(t2 » P) = ran(ƒ). It
follows that ƒ is also an alignment of t1 in relation to
t2 » P, and bijective at that, as every alignment is an in-
jection. Hence t1 is a relabeling of t2 » P;

• right-to-left implication: if there is some subset of
positions P ⊆ dom(t2) such that t1 is a relabeling of
t2 » P, then there is a bijective alignment ƒ of t1 in rela-
tion to t2 » P. This ƒ is also an alignment of t1 in rela-
tion to t2, hence t1 is an extract of t2.
As this theorem and its proof already suggests and

would be trivial to prove, each alignment is uniquely as-
sociated with a set of spared source positions ⎯ ran(ƒ) ⎯
and a set of deleted ones ⎯ P = dom(t2) - ran(ƒ). So to
speak, alignments tell the story of how the source was
shortened into the extract.

3.6. Rationale for Considering Source Structure
and Stipulating Penalties

As we shall see in Section 4, our definition of align-
ment is useful, having a direct effect on the design of our
constraint-based model. However, it is too relaxed to
characterize the output expected of an aligner fully. In
fact, assuming otherwise would imply accepting that the
different possible ways to shorten a source into one same
extract have the same meaning. Consider the following
example:

Source: “… Two of the three astronauts that traveled in
the Soyuz will spend 175 days in theA ISSB. The third one
is returning to Earth with the previous occupants of theC
ISSD. The Soyuz makes all trips to theE ISSF since the
disaster with the space shuttle Columbia in 2003. [end]”
Extract: “… Two of the three astronauts that traveled in
the Soyuz will spend 175 days in theX ISSY. [end]”

23

In the above excerpts, relevant positions are identified
with subscript capital letters (A to F, in the source, and X
and Y, in the extract) immediately following their respec-
tive tokens. As far as unrestrained deletion and alignment
are concerned, the extract above could be obtained in a
series of ways, since the pair (X,Y) may well be aligned
with six different pairs as given by:

 { } { }() { } { }() { }A B,D,F C D, F E, F× ∪ × ∪ .

However, it is clear that only the alignment of
(X,Y) with (A,B) ⎯ denoted (X,Y) ⇒ (A,B) ⎯ is accept-
able. A formal characterization is in order of what is
wrong with the other alignments. Let us start by noticing
that all of them would imply very strange behavior on the
part of an aligner. Take for instance the hypothesis
(X,Y) ⇒ (C,F). It would imply that, for some reason, the
aligner decided to delete the tokens at A and B, outputting
a sentence that finishes in an uncomplemented “in”, and
spare the tokens at C (an article, apropos) and F all by
themselves, omitting the whole rest of the sentences they
belong to. If we put ourselves in the place of the aligner
⎯ to which the extractive system is a black box and the
exact segmentation it performs on the source is unknown
⎯ we will perceive that any argument against such hy-
potheses requires knowledge of some structure in the
source.

In fact, an alignment implies the survival of much
more than mere tokens, namely the syntactic phrases they
compose. For example, we know that, if position C is pre-
sent in an extract, then at least part of that specific phrase
“the ISS” is also present. Moreover, if position D is not
present in turn, then there has been a violation of some
sort to the syntactic structure of the source. Therefore,
alignments also imply structural violations and, if we pro-
vide a formal counterpart to the syntactic structure of a
source, it will be possible to detect them.

Notwithstanding, we cannot simply constrain align-
ments not to commit any such violations, since extractive
systems might actually produce some malformed output as
exemplified in Section 1. The solution we adopted is to
penalize alignments for each violation they imply and
accept as output only the least penalized alignment(s) in a
set of alternative ones. We conceived a very simple pen-
alty scheme that seems to be sufficient, accumulating one
violation for each phrase missing its governor, i.e. each
implied phrase whose governor is not also implied. For
example, alignments splitting the phrase “the ISS”, such
as (X,Y) ⇒ (C,F), will count one violation for this, no
matter whether the grammatical framework of choice con-
siders determiner phrases as governing noun phrases or
vice-versa, because the governee inside “the ISS” misses a
governor. The same alignment separates “in” from “the”
and “ISS”. Any such alignment also incurs one more vio-
lation irrespective of which token is considered as the
head of “in the ISS”. If it is “in” (most standard hypothe-
sis), then, although “in” is not directly punished, the gov-
ernor in “the ISS” is, since it lacks a governor itself. If
“in” is a governee in “in the ISS”, then it lacks a governor
and is punished. In summary, alignments splitting “in the
ISS” in any way are penalized, and the least penalized
alignment is in effect (X,Y) ⇒ (A,B).

As exemplified above, governors with missing gov-
ernees ⎯ i.e. implied governors with non-implied govern-
ees ⎯ need not be directly penalized, as any really mis-
aligned governor will leave governees behind as scape-

goats to pay for the mistake. All these notions are formal-
ized in the following subsections.

3.7. Attribute-Value Matrix Types
As a notational aid for the following definition, we de-

fine a type constructor for a functional flavor of Attribute-
Value Matrices (AVMs). Given a set of n distinct ele-
ments/attributes {ai}, 1 ≤ i ≤ n, and a sequence of n (not
necessarily distinct) sets/types 〈T1, T2, … , Tn〉, the expres-
sion {a1:T1, a2:T2, … , an:Tn} denotes the set defined thus:

{ } { }

()

1 1
1

: , ... , : : : , ... ,
.

1 ()

n

n n i n i
i

i i

a T a T f f a a T

i i n f a T
=

⎧ ⎫⎛ ⎞
= → ∧⎪ ⎪⎜ ⎟
⎨ ⎬⎝ ⎠
⎪ ⎪∀ ≤ ≤ → ∈⎩ ⎭

∪

In other words, {a1:T1, … , an:Tn} is the set/type com-
prising all and only functions mapping each “attribute” ai
to a value of its respective type Ti. In effect, each of these
functions can be regarded as an AVM.

3.8. Phrase and Structure
A phrase in a text t is an element of (the type)

phrase(t) defined as follows:

{ }
dom()span : 2

() myself governor : (),
,

head : ()

t

phrase t phrase t
phrase t

⎧ ⎫
⎪ ⎪= ∪⎨ ⎬
⎪ ⎪
⎩ ⎭

where ‘myself’, ‘span’, ‘governor’ and ‘head’ denote
unique atomic constants. This means that a phrase in a text
t is either ‘myself’, a sort of null value, or an AVM stand-
ing for a real phrase in t and containing the following at-
tributes:
a) span, the set of positions in t comprised by the phrase;
b) governor, whose value is either:

i. ‘myself’, when the phrase has no governor and thus
can never be penalized, or

ii. another AVM standing for the governor of the
phrase; and

c) head, whose value is either:
i. ‘myself’, when the span of the phrase coincides

with the head span of the phrase, i.e. the span of
its syntactic head. These phrases would correspond
to leaves in syntactic trees and will usually com-
prise one single word; or

ii. another AVM standing for a subphrase whose head
span coincides with that of the current phrase. By
recursively accessing this feature, it should be pos-
sible to determine the head span of any phrase.

Any set of phrases S ⊂ phrase(t) is said to be a struc-
ture on text t.

It is worth noticing that our definitions of phrase and
structure are rather relaxed and allow such abuses as infi-
nite-depth AVMs and head features that never actually
lead to a head span. We assume that further restraining the
definitions would be to no avail and rely on users to pro-
vide the correct instantiations according to the application.

3.9. (Dangling) Phrase Implication
An alignment ƒ implies a phrase p ⎯ denoted ƒ → p

⎯ iff any of the following conditions is valid:
a) p = myself, i.e. the null phrase is always implied;
b) p(head) = myself ∧ p(span) ∩ ran(ƒ) ≠ ∅, i.e., when

the phrase comprises exactly its head, it is implied iff
some vestige of the head can be found among the

24

spared positions ⎯ ran(ƒ) ⎯ implied by the align-
ment; or

c) p(head) ≠ myself ∧ ƒ → p(head), i.e., otherwise, the
phrase is implied iff its head attribute is.

In summary, a phrase is implied iff its head is implied, no
matter how many of its other subphrases may be missing.

Finally, in order to identify constituents missing their
governors, we define the relation “implies dangling” ⎯
denoted ƒ→/ p ⎯ that holds between an alignment ƒ and a
phrase p iff ƒ implies p, p has a governor, but the latter is
not also implied. Formally, we have the following defini-
tion:

() ()
(governor)

.
g p

f p f p g
f g
= ∧⎛ ⎞

→ ↔ → ∧∃/ ⎜ ⎟¬ →⎝ ⎠

3.10. Penalty and Restatement
Given a structure S on some text, it is now straightfor-

ward to build a function calculating the number of viola-
tions to S implied by an alignment thus:

{ }() . :penalty S f p p S f pλ= ∈ ∧ →/ .

Finally, the problem of extract alignment can be prop-
erly stated in the following fashion: given two texts ⎯
extr and src ⎯ and a structure S on src, the solution is any
alignment of extr in relation to src that minimizes the
function penalty(S).

4. Constraint-Based Extract Alignment
In the following subsections, we (i) build a constraint-

based model to solve the problem of extract alignment as
formalized previously, (ii) describe a search/optimization
procedure composing a complete solving method, and (iii)
highlight some details of its implementation by Sumalign.

4.1. Model Creation
As formalized earlier, our input is composed by two

texts ⎯ an extract extr and a source src ⎯ and a structure
S on src. Let us assume without loss of generality that
dom(extr) is a simple set of consecutive numbers in `
starting at 1. Under this condition, the alignment can be
modeled as a vector A of |dom(extr)| integer variables.
After determination of the whole vector, it will effectively
implement a mapping from extract positions (vector indi-
ces) to source ones (vector elements).

The starting basic constraints for the elements of A are
given thus:
 () { }()1 ()ii arity A A src extr i− ⎡ ⎤∀ ∈ ∈ ⎣ ⎦ , (1)

where arity(V) denotes the set of indices in the vector V,
and f -1[Y] is the inverse image of set Y under f, defined
thus:

[] { }1 dom() : ()f Y x f f x Y− = ∈ ∈ .

Given a token t, the expression src-1[{t}] yields a set
with all source positions occupied by t. Therefore, for a
given extract position i, src-1[{extr(i)}] yields all source
positions occupied by the same token found at i. Con-
straint (1) is thus enough to ensure token-equality between
aligned positions (Section 3.2, item a). It is worth remark-
ing that src-1[Y] returns determined sets at model creation,
and hence (1) is actually a source of basic constraints.

In order to ensure that A is indeed an alignment, it suf-
fices to constrain it to preserve order (3.2. b) thus:

 { }()1() 1 i ii arity A A A−∀ ∈ − < . (2)

In constraint (2), as well as in all the others, we at-
tempt to make clear which (sub)constraints are really non-
basic, i.e. involving two or more undetermined variables
at model creation and corresponding to the creation of a
propagator. Consequently, we write 〈C〉, such as 〈Ai-1 < Ai〉
in (2), only to identify C as a non-basic constraint. This is
not current CCP practice, but might be helpful to readers
not as yet acquainted with CCP.

Constraints (1) and (2) usually yield very strong
propagation for extract alignment, comparable to that
simulated in Figure 3. In fact, the CSPs resulting from the
expansion of these constraints are very similar to the one
in Figure 2. Section 5 details the impressive results these
two constraints alone were observed to produce in our
experiment.

It is in order now to tackle the application of the pen-
alty function. To this end, it is first necessary to model
phrase implication, whose first requirement is the declara-
tion of a set variable Ran modeling the range of the align-
ment (3.9. b), in the following fashion:
 ()

()

1

: ,
ub A

i
i

Ran X toSingleton A X
=

= ∪ , (3)

where ub(V) denotes the maximum index for vector V and
toSingleton(x, X) is a predicate constraining a set variable
X to be a singleton containing a integer variable x defined
thus:

(,) 2 1toSingleton x X x X X x X↔ ∈ ∧ ∈ ∧ = ∧ ∈`` .
Variable Ran is therefore constrained to be the union of all
Ai taken as singletons, which is exactly the range of the
alignment that A is supposed to model.

As our aim is not directly to impose (dangling) phrase
implication, but rather detect (count) it, we apply the rei-
fication technique, rather routine in CCP. A reified ver-
sion of a constraint C ⎯ denoted a bC ⎯ yields an inte-
ger-encoded Boolean variable constrained to coincide
with the (possibly yet to be determined) truth-value of C.
For simplicity, we assume that this notation obviates writ-
ing 〈C〉. The encoding is standard: 0 for false and 1 for
true. A reified version of phrase implication is defined
thus:

()

1, myself
() (head) , (head) myself

() 0 , otherwise.

p
impl p impl p p

p span Ran

⎧ =⎪⎪= ≠⎨
⎪

∩ >⎪⎩
c fd ge h

 (4)

Dangling phrase implication is defined below in (5),
which uses the logic operators for conjunction and nega-
tion ⎯ a b∧ and a b¬ , respectively ⎯ in reified versions,
i.e. defined for integer-encoded Boolean variables and
yielding the truth-value of the expression itself also as a
variable. Application of these operators thus creates
propagators.

a b a b ()
0, myself

()
() (governor) , else.

p
dang p

impl p impl p∧ ¬

=⎧⎪= ⎨
⎪⎩

 (5)

Finally, the application of the penalty function can be
modeled by a variable Penalty constrained to be the sum-
mation of dang(p) for every p in the input structure S, as
shown in constraint (6). As dang(p) yields 1 for phrases
implied dangling or 0 otherwise, the summation correctly
equals the number of phrases implied dangling by the
modeled alignment.

25

 ()
p S

Penalty dang p
∈

= ∑ (6)

4.2. Searching for a Minimum
Given such a model as described in the previous sec-

tion and according to the general CCP paradigm, solving
is performed by interleaving propagation cycles with dis-
tribution steps. In this section we focus on the distribution
strategy we adopted.

Evidence (cf. Section 5) suggests (i) that our model
yields excellent propagation for extract alignment and (ii)
the simplest optimization technique in CCP is enough to
solve the problem adequately. It consists of distributing
first over the variable to be minimized/maximized naïvely,
i.e. optimistically assuming the best possible value accord-
ing to the current basic constraints. If failure ensues in the
following propagation and distribution (over other interest
variables) steps, the second best value is assumed, search
is resumed and so on until the first solution is found,
which must thus be an optimum. Such a process can be
very inefficient in some scenarios, where less eager opti-
mization strategies are recommended (e.g. branch-and-
bound). In fact, we actually experimented with alternative
strategies, but their discretion not to assume best values
right away proved wasteful.

Therefore, the first distribution constraint we apply is
simply:
 ()min dom()Penalty Penalty= (7)
where dom(V) denotes the domain of variable V accord-
ing to the current basic constraints. Next, we distribute
over the vector A using a first-fail strategy. While there
are undetermined variables in A, this strategy does the
following:
a) select one undetermined Ai whose domain size

|dom(Ai)| is minimum, i.e. one of those offering fewest
alternative values. This represents the “first-fail” char-
acter of the strategy, which prioritizes distribution over
more constrained variables as an attempt to induce
failure as early as possible, avoiding depth in search;

b) assume the distribution constraint Ai = min(dom(Ai)),
while creating a backtrack point for Ai > min(dom(Ai));

c) wait for the resulting propagation to cease and iterate.
As a result of distributing over A, either a total deter-

mination of A ⎯ i.e. an alignment ⎯ is produced or fail-
ure ensues, which means that the current value assumed
for Penalty is too strict and the next best value should be
tried. However, in our experiment (cf. Section 5), due to
the remarkable side-effects of (7), distribution over A
never actually happened. At all times, propagation just
after model creation ⎯ i.e. before (7) is first imposed ⎯
was so strong as to ensure that the first min(dom(Penalty))
coincided with the actual best value for Penalty; and, once
this value had been assumed, propagation alone was able
to determine all variables of interest.

In order to show how this might happen, let us resume
the “in the ISS” case in Section 3.6. For the referred ex-
tract (which 3.6 shows only partially, being actually one
of the instances in our experiment), the starting propaga-
tion promoted by constraints (1) and (2) is able to deter-
mine the alignment for several extract positions, which
allows (4) to determine implication (or not) of a great
number of phrases. Three among the (already known to
be) implied phrases share one same governor that, in turn,

is known not to be implied. Hence (5) is able to determine
that these three phrases are dangling, which enables (6) to
infer that Penalty cannot be less than 3. This value is as-
sumed in (7), which makes (6) impose dang(p) = 0 for all
phrases p except those three ones. As the governors of
phrases CD (i.e. “theC ISSD”) and EF are known not to be
implied from the very start, the following happens to both
p ∈ {CD , EF }:
a) constraint (5) infers that the only way to maintain

dang(p) = 0 is to impose impl(p) = 0, triggering (4) to
forbid the head span of p to have any intersection with
the range of the alignment;

b) constraint (3) is then able to forbid all Ai to assume any
value in the head span of p, which means that no
alignment is possible anymore with the head of p;

c) analogously, the governee inside p is ruled out for
alignment, since its governor (the head of p) is now
known not to be implied.

Finally, extract positions X and Y have their alignment
candidates short-listed to exactly A and B and thus no real
choice is required.

4.3. Implementation
We directly implemented the CCP solution to extract

alignment described here in Sumalign, an application en-
tirely developed by means of the Mozart programming
system. Sumalign reads sources and their (syntactic) struc-
ture in an XML-based format described in (Vieira at al.,
2003) and (Gasperin et al., 2003). Extracts are read as raw
text files, though necessarily tokenized.

It is worth highlighting a few implementation details
conferring Sumalign a performance boost and at times
representing a slight deviation from the original model,
namely:
a) punctuation includes very frequent tokens such as

commas and full stops and, even under constraints (1)
and (2), often allows a great number of alternative
alignments. Take, for example, a source text compris-
ing several sentences and an extract composed by the
first sentence and the last one only. The full stop at the
end of the first sentence in the extract might poten-
tially be aligned with that of any of the deleted sen-
tences. At the same time, source structure and other
annotation sometimes not even make reference to
punctuation tokens. Above all, in our specific applica-
tion, the alignment of punctuation is irrelevant. There-
fore, Sumalign allows specifying a set of free punc-
tuation tokens. Whenever an Ai in the model corre-
sponds to an extract position occupied by one of these
tokens, this variable is never selected for distribution.
In the end, if propagation alone was not able to fully
determine such variables, their alignments are given as
a sets of alternative values;

b) before structure files are read, Sumalign first poses
constraints (1) and (2) and waits for stability. At this
point, the upper-bound value of Ran (the range of the
alignment) is usually considerably narrowed and is
used to avoid storing phrases which are already known
not to be implied. This requires adding a value ‘miss-
ing’ to phrase(t) and defining impl(missing) = 0;

c) function impl in (4) is implemented with memoization
to avoid creating new propagators at every invocation.
For the same reason, a memoized negated version
¬impl is also supplied.

26

5. Preliminary Evaluation
As a first evaluation experiment, a small test corpus

was submitted to Sumalign with the following features: a
source corpus comprising 45 short newspaper articles
amounting to 5507 tokens and an extract corpus amount-
ing to 2449 tokens with an average compression rate of
55%. The structure files comprise 4021 phrases, 507 of
which are not actually stored due to the mechanism in
(4.3. b), a gain margin that might be more expressive were
the compression rate greater. The extracts were automati-
cally generated by pipelining the rhetoric analyzer DiZer
(Pardo, Nunes & Rino, 2004) and the (extractive) rhetoric
summarizer Rhesuma (Seno & Rino, 2005). After align-
ment, the extracts were found to commit 99 structural vio-
lations. It is worth reminding that all such violations are
due exclusively to irregular segmentation by the summar-
izer, which the aligning process only exposes. In fact, all
generated alignments were found to be 100% precise. Fur-
ther details on the test corpus are available in Table 1.

In our experiment, three dimensions were measured
for each problem instance, namely:
a) search space size, taken as the product

|dom(A1)| × … × |dom(An)|, i.e. the number of possible
assignments to A according to the basic constraints
valid at a given moment. For each instance, size is
probed twice: on stability after constraint (1) is posed
and on stability after (2). This is done to sense how
well these two constraints alone propagate with no re-
sort whatsoever to search. In Table 1, size data is given
in order of magnitudes, as the numbers involved are
very large and vary wildly;

b) search depth, taken as the number of choices made
and failures observed during search;

c) turnaround time to find a solution, including reading
and processing of input files, on a computer with a
3Ghz Pentium4 CPU and 1.25Gb RAM running Win-
dows XP.

 total mean max min

source tokens 5507 122 215 62
extract tokens 2449 54.4 113 22

phrases 4021 89.4 172 35
stored phrases 3514 78.1 159 29 co

rp
us

violations 99 2.2 11 0
size after (1)* 438 9.73 29 1
size after (2)* 0

depth
(total/failures)

11/0 0.24/0 1/0 0/0

turnaround (s) 15.2 0.34 1.43 0.05 pe
rf

or
m

an
ce

precision 100%
Table 1: Summary of evaluation results. Items marked

with an asterisk (∗) are measured in orders of magnitude

Table 1 summarizes the results of the experiment,
which sets regular punctuation free by means of the
mechanism in (4.3. a). In orders of magnitude, we ob-
served size fall from an average 9.73 on stability after
constraint (1) to 0 after (2), invariably. In specific, at this
stage slightly over 75% of the cases were completely de-
termined (size = 1), and the maximum observed size was
8. That explains the several instances whose search depth
is 0, since a completely determined alignment vector also
implies a determined Penalty variable and thus no distri-
bution at all is performed. The remaining instances have

depth equal to 1, corresponding to the first time (7) was
posed, which was enough to produce a solution.

Time performance was also very good, the whole ex-
periment being carried out in little more than 15 seconds.
Although all these results are usually regarded as indica-
tive of a very successful application of CCP, further ex-
perimentation with problem instance parameters is neces-
sary before more definitive conclusions can be drawn. In
specific, it would be interesting to investigate the impact
of source length and compression rate on performance.

6. Conclusions and Future Work
In this paper we tackled the alignment of extracts with

their respective sources, which adds value to available
source annotation whose projection onto abstracts serves a
purpose. One possible such purpose is the evaluation of
extractive summarization methods for the criterion of tex-
tuality.

We present a constraint-based solution and the promis-
ing results of a preliminary evaluation experiment. A more
representative corpus is under construction that will pro-
vide not only a better platform for experimentation but
also the opportunity to apply Sumalign in a real-case sce-
nario.

Acknowledgements
We would like to thank Brazilian funding agencies

CAPES and CNPq for supporting this work.

7. References
Gasperin, C., Vieira, R., Goulart, R., and Quaresma, P.

(2003). Extracting XML chunks from Portuguese Cor-
pora. In Proceedings of the Workshop on Traitement
automatique des langues minoritaires. Batz-sur-Mer:
ATALA, pp. 223-232.

Mani, I., and Maybury, M.T. (eds.) (1999). Advances in
Automatic Text Summarization. MIT Press.

Pardo, T.A.S., Nunes, M.G.V., Rino, L.H.M. (2004).
DiZer: An Automatic Discourse Analyzer for Brazilian
Portuguese. In Proceedings of the 17th Brazilian Sym-
posium on Artificial Intelligence – SBIA. Springer, pp.
224-234.

Rich, E. and Knight, K. (1991). Artificial Intelligence, 2nd
edition, McGraw-Hill.

Russell, S. and Norvig, P. (1995). Artficial Intelligence: A
Modern Approach, Prentice-Hall, 1995.

Schulte, C. (2002). Programming Constraint Services:
High-Level Programming of Standard and New Con-
straint Services, Lecture Notes in Computer Science
Series, Springer-Verlag.

Seno, E.R.M., and Rino, L.H.M. (2005). Co-referential
chaining for coherent summaries through rhetorical and
linguistic modeling. In Proceedings of the Workshop on
Crossing Barriers in Text Summarization Research.

Vieira, R., Gasperin, C., Goulart, R., and Salmon-Alt, S.
(2003). From concrete to virtual annotation markup
language: the case of COMMOn-REFs. In Prooceed-
ings of ACL 2003 Workshop on Linguistic Annotation:
Getting the Model Right. Sapporo: ACL, pp. 6-13.

Van Roy, P. and Haridi, S. (2004). Concepts, Techniques,
and Models of Computer Programming, MIT Press.

27

Semi-Automatic Phonological Annotations of Speech by Grammatical Inference

Robert Kelly and Julie Carson-Berndsen

UCD School of Computer Science and Informatics
Belfield, Dublin 4, Ireland

{robert.kelly, julie.berndsen}@ucd.ie

Abstract
This paper describes a technique for automatically generating multiple levels of linguistic annotation for a corpus of speech utterances.
Using a training corpus of multilevel annotations, a corresponding finite-state representation is automatically constructed by grammatical
inference. This finite-state description is then employed as a knowledge component to automatically generate a new multilevel anno-
tation for an unseen utterance. The approach is evaluated on a small corpus of English speech utterances annotated over four levels of
phonological description.

1 Introduction
This paper addresses the problem of automatically generat-
ing multilevel annotations for a corpus of speech utterances.
A multilevel annotation of a speech utterance consists of a
number of independent parallel tiers of time-aligned anno-
tation tokens where each tier represents an annotation of the
utterance at some level of linguistic description. The levels
of annotation provided by a particular corpus will vary de-
pending on the purpose for which the corpus is intended but
typically range from a phonetic labelling of segments, such
as the phonetic transcriptions provided with TIMIT (Garo-
folo et al., 1993), to an annotation level labelling some
semantic category, e.g. speech acts (Leech and Weisser,
2003).
Multilevel annotations of speech are now recognised as
valuable linguistic resources. In particular, the different
levels of annotation provided with a corpus can be used as
a “Gold Standard” for evaluating the hypotheses generated
by automatic speech recognition systems. Also, annotated
corpora are used in unit-selection approaches to speech syn-
thesis. However, the process of manually producing high
quality linguistic annotations of speech utterances is time
consuming and requires much effort and linguistic exper-
tise. While many computational tools have been devel-
oped in an attempt to ease the annotation burden, e.g. Praat
(Boersma and Weenik, 2000), Emu (Cassidy and Harring-
ton, 2001), and MATE (McKelvie et al., 2001), the effort
required to produce any significant amount of annotated
data by human annotators is still immense1. Also, such
tools provide limited, if any, automatic annotation and/or
verification support. On the other hand, a number of anno-
tation tools have been developed which automatically anno-
tate speech corpora at different levels of linguistic annota-
tion (see, for example, the inventory of different automatic
annotators used by Leidner et al. (2003)), however such
tools generally operate at or above the level of the word
and typically generate an annotation at only one level of
linguistic description.

1For example, Barras et al. (2001, §. 4.3) report that the to-
tal time required to produce annotations on four levels (ortho-
graphic, speech turn, topic, background noise) for one hour of
broadcast news, including verification, using the Transcriber tool
took around 50 hours for a single human annotator.

In this paper, a semi-automatic approach to linguistic an-
notation is proposed based on grammatical inference tech-
niques. Given a training corpus of manually produced mul-
tilevel annotations and a new utterance to be annotated, a
generalised finite-state transducer is constructed from the
training corpus using a regular inference algorithm. The
constructed transducer is then used as a knowledge resource
to automatically generate a multilevel annotation for the
new utterance2. The accuracy of the automatically gen-
erated annotations cannot be guaranteed since the content
of a multilevel annotation will vary with respect to a num-
ber of sources; in particular, the annotator and the speaker.
Therefore, automatically generated annotations serve only
as a first attempt which of course must be verified by a hu-
man annotator. Thus, while it is recognised that this anno-
tation strategy does not completely eliminate the need for
manual annotation, an evaluation based on a small training
corpus of multilevel annotations for English speech utter-
ances shows that a great deal of tedious annotation marking
and labelling can potentially be performed in an automatic
fashion.
The remainder of this paper is organised as follows. Section
2 introduces the Ostia transducer inference algorithm. Sec-
tion 3 presents a scheme for encoding a training corpus of
multilevel annotations as a positive sample of input-output
pairs. Such a sample can then be supplied to Ostia to in-
fer a corresponding finite-state transducer. Section 4 dis-
cusses how an inferred transducer can be used to automat-
ically generate a new multilevel annotation. The quality of
these automatically generated annotations are evaluated in
section 5 in the context of a small corpus of English speech
utterances annotated over four levels of phonological de-
scription. Finally, section 6 presents concluding remarks
and some directions for future work.

2 Constructing Annotation Transducers
The basis of the annotation strategy discussed in this paper
is the construction of a finite-state transducer from a sup-

2This is somewhat similar to the approach adopted by Roche
and Schabes (1995) for constructing a part-of-speech tagger.
However, in this paper the annotation problem is generalised to
multilevel annotations over an arbitrary number of different lin-
guistic levels.

28

plied training sample of multilevel annotations. A finite-
state transducer is a generalisation of a finite-state automa-
ton whereby a number (possibly zero) of output symbols
are emitted whenever a state-transition is effected on an in-
put symbol. Thus, a finite-state transducer defines a regular
mapping from strings of input symbols to strings of output
symbols.
Ostia, the Onward Subsequential Transducer Inference Al-
gorithm (Oncina et al., 1993), is a grammatical inference
technique (cf. Fu and Booth (1975)) that identifies a subse-
quential finite-state transducer from a positive sample of
input-output pairs (i.e., no negative examples of the re-
quired transduction are assumed to be available). A sub-
sequential transducer is a restriction of a finite-state trans-
ducer requiring that it’s input tape be deterministic, that is,
for each combination of state and input symbol a unique
next state is defined, but allowing a number (possibly zero)
of final output symbols to be emitted when the entire input
string has been consumed.
Given a sample S of input-output pairs, Ostia infers a trans-
ducer from S in two stages. Firstly, a tree subsequential
transducer is constructed from S. The tree transducer de-
scribes exactly the pairs in the sample S and is constructed
such that the consecutive symbols of the output strings
which appear in S are assigned to those state-transitions
which are as “close” as possible to the unique initial state of
the tree without causing a conflict in the input-output map-
pings defined in S. This is illustrated in Figure 1 which
shows an initial tree transducer constructed from a small
sample of phoneme-CV pairs extracted from the LeaP an-
notated speech corpus (Gut, 2004) (cf. section 5.1)3.

Figure 1: Initial subsequential transducer
constructed by Ostia from the sample
{(jy, CV), (jytu, CV CV), (jyd@n, CV CV C), (j@, CV),
(j@dug,CV CV C), (j@Tr@, CV CCV)}.

Following the construction of the tree subsequential trans-
ducer Ostia identifies a solution subsequential transducer
by continually merging pairs of compatible states. A pair of

3The final output emissions are modelled here by defining a
special end-of-string transition labelled with # on the input tape
and the corresponding final output symbols on the output tape.
When an input string is consumed by the transducer it makes an
end-of-string transition from the current state (if one exists). For
this paper, the symbol $ represents the empty string while : is used
to separate the input and output constituents of a state-transition
label in a transducer.

states is compatible if merging them results in a new trans-
ducer which is (or can be made) subsequential. For exam-
ple, in Figure 1 the states 2 and 8 can be merged since the
result can be made subsequential (by subsequently merging
the state pairs 5 and 9 and 15 and 18). The subsequential
transducer resulting from this merge is illustrated in Figure
2.

Figure 2: Subsequential transducer resulting from the
merge of states 2 and 8 in Figure 1.

The solution transducer identified by Ostia is guaranteed
to describe the mappings defined in S but will typically
generalise over S to define a larger class of transductions.
Thus, applying Ostia to a training corpus of multilevel an-
notations will typically yield a transducer which generalises
from the annotations seen in the training corpus to describe
additional (but similar) annotation structures. Therefore,
an inferred transducer can potentially be used to generate a
new annotation for an utterance which was not seen in the
supplied training corpus. However, in order to use Ostia
to infer a transducer from a training corpus of multilevel
annotations, the corpus must first be encoded as a positive
sample of input-output pairs. This aspect of the transducer
inference approach to automatic annotation generation is
discussed in detail in the following section.

3 Encoding Multilevel Annotations
This section presents an encoding scheme which allows a
training corpus of multilevel annotations over an arbitrary
number of different linguistic levels to be encoded as a pos-
itive sample of input-output pairs for use with Ostia. The
annotation strategy described here assumes that each level
of annotation in a training corpus consists of a continuous
sequence of annotation tokens where each token is labelled
with the name of the linguistic object it represents and is
time-aligned with the original speech signal by augmenting
the token with a temporal start and end time referring to
a start and end point for the token with respect to the cor-
responding speech signal4. A multilevel annotation of this
type over four levels of linguistic description is illustrated
in Figure 35. This shows a small portion of a manually pro-

4Note that annotations of this type necessarily exclude those
levels of annotation describing instants, for example, tonal or pitch
markers. However the encoding scheme presented here can be
easily extended to cater for these types of annotation since the
notion of temporal overlap between instants and between instants
and intervals is well defined (cf. (Bird and Klein, 1990)). Extend-
ing the encoding to these levels is left to future work however.

5All annotations in this paper are illustrated using Praat
(Boersma and Weenik, 2000).

29

Figure 3: Portion of a speech utterance annotated at four
levels of linguistic description; the word level, the phrase
level, the syllable level, and the vowels (skeletal CV) level.

duced annotation for an utterance in the LeaP corpus.
Multilevel annotations of the type described above can be
encoded as a positive sample of input-output pairs by ex-
amining the overlap relations which occur between the dif-
ferent levels of annotation. The encoding requires that one
of the levels of annotation be designated as the domain an-
notation while a second and distinct level be designated
as the input annotation. The remaining (i.e., non-domain
and non-input) levels of annotation are referred to here as
the output annotations.
The encoding works by constructing an input-output pair
(di, do) for each token d of the designated domain level an-
notation. The input string di is constructed by concatenat-
ing (following the temporal order of the annotation tokens)
the labels of those tokens on the input annotation which
temporally overlap d6. The corresponding output string do

is constructed in two stages. Firstly, an individual output
string is constructed for each output annotation by concate-
nating (again, following the temporal order of the annota-
tion tokens) the labels of those tokens on the output anno-
tation which temporally overlap d. Secondly, the individual
output strings are themselves concatenated together accord-
ing to some predefined ordering on output annotations; usu-
ally the top-to-bottom order as they appear in the multilevel
annotation. Each of the individual output strings involved
in this concatenation is separated from one other by a spe-
cial delimiter symbol. This makes explicit the contribution
of each output annotation to a given output string.
The encoding of multilevel annotations presented above es-
sentially segments each annotation level using the tokens
of the domain and input annotations in order to construct
the corresponding sample of input-output pairs. Thus, ap-
plying the encoding scheme to the multilevel annotation il-
lustrated in Figure 3, for example, using the word level as
the domain annotation and the syllable level as the input
annotation, imposes the segmentation illustrated in Figure
4. Using “-” as the special delimiter symbol separating the
individual output strings (constructed from the phrase and
vowels level annotations here), and using “.” to separate
concatenated symbols (required since multicharacter sym-
bols occur in the syllable level annotations), the encoding
constructs the following sample of input-output pairs from
the multilevel annotation shown in Figure 3.

{(ju, p− C.V), (wU.n, p− C.V.C), (lEd, p− C.V.C)}

6A token t1 with start time s1 and end time e1 overlaps a token
t2 with start time s2 and end time e2 iff e1 > s2 and e2 > s1.

Figure 4: Segmentation imposed on the multilevel annota-
tion of Figure 3 when encoded with the word level as do-
main annotation and the syllable level as input annotation.

The correspondences between annotation tokens which are
captured by these input-output pairs can be easily seen from
the segmentation illustrated in Figure 4.
The encoding scheme presented in this section can be used
to encode an entire corpus (or part thereof) of multilevel
annotations over n levels (n > 1) as a positive sample of
input-output pairs. If a new utterance is annotated at one of
the levels of linguistic description given by the training cor-
pus then encode the training corpus using this level as the
input annotation and use Ostia to infer a corresponding gen-
eralised transducer7 A new multilevel annotation can then
be generated by using the inferred transducer to parse the
tokens of the manual annotation. This is discussed in detail
the following section.

4 Generating Multilevel Annotations
In order to generate a new multilevel annotation for an un-
seen utterance using an inferred transducer, the utterance
must first be (manually) annotated at the linguistic level de-
scribed by the input tape of the transducer. The inferred
transducer is then used to parse the sequence of token labels
of this supplied annotation level; dividing the sequence into
a number of well-formed token combinations. Each well-
formed token combination is then used to construct a new
annotation token for the linguistic level corresponding to
the domain of the transducer. The start time and end time of
each new domain-level token is derived from the start time
of the first token and the end time of the last token respec-
tively in the corresponding well-formed combination. Fi-
nally, the label of each new domain-level token is obtained
by concatenating the individual labels in the corresponding
well-formed combination.
The remaining levels of annotation are constructed by ob-
serving the outputs which are produced as the transducer
parses the supplied sequence of input-level annotation to-
kens. Thus, as each well-formed combination is identified,
a corresponding sequence of outputs is generated. Each
output will describe a (possibly empty) concatenation of
annotation tokens over a number of levels (where each level

7The choice of domain annotation in this case is arbitrary.
Note, however, that the corresponding inferred transducer will
describe well-formed combinations of input annotation tokens
with respect to the domain annotation (i.e., the domain annota-
tion determines the linguistic domain of the inferred transducer).
Thus, a coarser level of annotation (e.g., phrase or word) may
be a more appropriate domain annotation compared with a finer-
grained level of annotation (e.g., syllable or segment).

30

Figure 5: Portion of a transducer inferred using Ostia. The input tape accepts strings of word level tokens while the outputs
are tokens over the syllable and skeletal (CV) level. Note that $ represents the empty string, . represents concatenation, −
delimits annotation levels on outputs and # represents the special end-of-string marker (cf. section 2).

is separated from the next by the special delimiter symbol).
Given a sequence of outputs corresponding to some well-
formed combination, an annotation is constructed for each
level as follows. Firstly, the concatenations of symbols for
each of the individual levels in each output is extracted. The
extracted concatenations of symbols are then themselves
concatenated together in sequence. A number of identical
symbols may occur in sequence in the resulting concatena-
tion (this occurs as a result of the segmentation imposed by
the encoding scheme presented in section 3 which may split
a single annotation token across multiple transitions in the
corresponding inferred transducer) and these are smoothed
into a single token. Each individual symbol which remains
following smoothing is used to construct an annotation to-
ken for the current level with a label equal to that sym-
bol. Augmenting these newly constructed annotation to-
kens with meaningful start and end times is difficult since
the input-output mappings defined by inferred transducers
may not preserve linguistic correspondences between lev-
els. In particular, transducers inferred by Ostia may delay
producing non-empty output until a parse is complete (cf.
Figure 5). Here, approximate start and end times are as-
signed to each token which allots an equal portion of the
duration of the corresponding well-formed combination of
input-level tokens.

35.624217 35.782928 there’s
35.782928 36.093914 nothing
36.093914 36.269782 i
36.269782 36.417769 can
36.417769 36.582913 do
36.582913 36.771649 said
36.771649 36.886152 the
36.886152 37.190704 dog
37.190704 37.619651 sil

Figure 6: Manual annotation of new utterance at the word
level.

In order to illustrate this automatic annotation process Fig-
ure 5 shows a portion of a transducer constructed using Os-
tia from a corpus of multilevel annotations over four levels
(cf. section 5.1 below). The domain of the transducer de-
scribes phrase level annotations, the input tape describes
word tokens, and the output tape describes syllable and
skeletal (CV) annotation levels. This portion of the trans-
ducer can be used to generate a multilevel annotation over

four levels for a new utterance which is manually annotated
at the word level. Thus, supplied with the manual word
level annotation of Figure 6, the individual tokens of this
annotation are parsed into the following three well-formed
combinations.

(1) there’s nothing i can do (2) said the dog (3) sil

which are used to derive the following phrase level
annotation (where the start and end times of each token
are derived from the word tokens of Figure 6 and an
underscore “ ” is used to separate the constituent word
labels).
35.624217 36.582913 there’s nothing i can do

36.582913 37.190704 said the dog

37.190704 37.619651 sil

Considering the well-formed combination “there’s nothing
i can do” a syllable level annotation is generated by exam-
ining the corresponding sequence of outputs

$-C.V.C.C.V.C.V.C $-$ $-$ $-$ $-$
DEr\s.DEr\s.nV.TIN.aI.ken.ken.du.du-V.C.C.V.C.C.V

Extracting the syllable level symbols from these outputs
and concatenating (smoothing where required) yields the
following.

DEr\s.nV.TIN.aI.ken.du

The duration of the well-formed combination “there’s noth-
ing i can do” is 0.958696 (= 36.582913 − 35.624217).
Therefore, a duration of ≈ 0.159783 (= 0.958696/6) is
alloted to each of the six syllables in the generated annota-
tion yielding the following syllable level annotation.
35.624217 35.784 DEr\s
35.784 35.943783 nV

35.943783 36.103566 TIN

36.103566 36.263349 aI

36.263349 36.423132 ken

36.423132 36.582913 du

A skeletal annotation for the well-formed combination
“there’s nothing i can do” can be automatically generated
in a similar manner.
Again, note that the start and end times assigned to the syl-
lable and skeletal level tokens by the automatic annotation
are approximations only and will need to be verified by a
human annotator. In addition, the annotation tokens which
are generated are subject to human verification since varia-
tion may occur between speakers and/or annotators. Also,

31

some levels of annotation, e.g. semantic, may not be easily
predictable from the content of other levels, e.g. phonetic,
leading to errors in automatically generated annotation to-
kens. Therefore, the grammatical inference approach dis-
cussed here embodies a semi-automatic approach to gen-
erating linguistic annotation since automatically generated
annotations are subject to verification by human annotators.
Thus, while it is recognised that this annotation strategy
does not eliminate the need for manual annotators, a great
deal of tedious annotation work (e.g., token marking and la-
belling) can potentially be performed in an automatic fash-
ion; alleviating at least some of the burden of annotating a
speech utterance at multiple levels. The following section
presents an experimental evaluation of the approach on a
small corpus of English speech utterances annotated over
four levels of phonological description.

5 Experimental Evaluation
5.1 The LeaP Corpus
The LeaP corpus (Gut, 2004) was collected in order to in-
vestigate the acquisition of prosody by non-native speak-
ers of German and English and consists of both read and
free speech manually annotated over six levels of anno-
tation8. The manual annotations were carried out us-
ing ESPS/waves+ and Praat producing six levels as fol-
lows. The phrase level divides the speech into intonational
phrases, the words level divides the speech into individual
words, the syllable level divides the speech into individual
syllables, the segments level divides the speech into vocalic
and consonantal intervals, the tones level marks the pitch
accents and boundary tones in the speech and finally the
pitch level marks the variant pitch heights in the speech.
Note that some utterances are also annotated at the part-of-
speech and lemma level but these levels are generated auto-
matically using annotation tools and are not considered for
the evaluation presented here.
In order to minimise speaker variability a training corpus
was constructed using only the annotated utterances for na-
tive speakers of read speech. For the evaluation reported
here, the LeaP subcorpus consisting of the four read utter-
ances by the native English speakers were used. Each of the
four utterances in this subcorpus consists of approximately
268 words corresponding to a reading of a short story (cf.
Gut (2004) for further details concerning the nature and vo-
cabulary of the read speech used for this evaluation). Three
of the four utterances were used as training data while the
remaining utterance was used as test data. The multilevel
annotations provided for the training utterances were en-
coded using the phrase level annotation as the domain an-
notation and the words level annotation as the input anno-
tation9. Note that, since the encoding scheme presented in

8Thanks to Ulrike Gut at the University of Freiburg for making
the LeaP Corpus available.

9The words level was designated the input annotation since it
encodes the minimum of variation. Thus, each speaker will utter
the same words albeit with different phonetic realisations (result-
ing in varying annotations on the remaining levels). This max-
imises the likelihood that the inferred transducer can parse the
words level tokens of the new utterance.

section 3 cannot at present encode levels of annotation de-
scribing instants, neither the tones nor the pitch levels are
considered for this evaluation. However, as discussed pre-
viously, the encoding can be easily extended to cater for
annotations of this type.
The encoding of the training utterances produced a posi-
tive sample consisting of 234 input-output pairs. Due to
speaker variation in the corpus the sample contained am-
biguous pairs having identical input but differing outputs.
Such a sample cannot be modelled as a subsequential trans-
ducer and a more powerful class of transduction is required:
the p-subsequential transducers. The p-subsequential trans-
ducers generalise the subsequential transducers by allowing
p ≥ 0 final outputs at a given state. The p final outputs are
nondeterministic and ensure that ambiguous transductions
can be accurately modelled. Therefore, in order to facili-
tate transducer inference from ambiguous samples, the Os-
tia inference algorithm is modified such that multiple non-
deterministic final outputs are permitted. However, when
partitioning the states of the tree (p-)subsequential trans-
ducer corresponding to an ambiguous sample, only those
states which have identical final outputs are considered for
merging. These modifications to Ostia are sufficient for our
needs and allow generalised p-subsequential transductions
to be inferred from ambiguous input-output pairs. Note,
however, that these modifications may not be sufficient to
guarantee that the modified Ostia algorithm identifies (in
the limit) the class of p-subsequential transductions. Us-
ing the sample of input-output pairs corresponding to the
encoded training corpus, the modified Ostia algorithm in-
ferred a p-subsequential transducer with 369 states and 505
transitions. This transducer was then used to generate an
annotation over the phrase, syllable, and segments level
from the words level annotation of the test utterance. A
brief comparison of this automatically generated multilevel
annotation and the manually produced annotation for this
utterance is now presented.
Note that, due to the size of the training and test data sets
described above, the following sections describe only a pre-
liminary evaluation of the grammatical inference approach
to linguistic annotation. Naturally, an evaluation on a larger
corpus of annotations is required in order to determine if
the approach scales up to larger data sets. However, such
an evaluation requires that a large corpus providing annota-
tions over a large number and variety of linguistic levels. In
contrast, speech corpora typically only provide annotations
over a small and fixed number of levels.

5.2 Test Annotation Analysis
An initial attempt to produce an annotation for the test ut-
terance failed because the manual words level annotation
for the utterance contained tokens which were not seen in
the training annotations. Thus, for example, a words token
labelled “couldn’t” appears in the test utterance which does
not appear in the words level annotation for any of the train-
ing utterances (the corresponding expanded form consisting
of two consecutive tokens labelled “could” and “not” does
appear however). While identifying such variation between
the test and training annotations may prove useful for au-
tomatic verification or consistency checking procedures, it

32

Tokens Marked # Tokens Marked with Correct Boundaries # Tokens Marked with Correct Labels
Non-speech Speech Non-Speech Speech Non-Speech Speech

16 57 16 12 1 0

Table 1: Token analysis for the automatically generated phrase level annotation.

Figure 7: Comparison of the manual and automatic annotations for a portion of the test utterance (from ≈ 31.200642
seconds to ≈ 34.950642 seconds).

limits the ability of an inferred transducer to generate new
annotations for unseen utterances. Note that this kind of
variation between annotation tokens will be problematic for
any automatic learning procedure applied to the annotation
task since novel token labels appearing in the test data can-
not be easily predicted from those seen in the training data.
For this evaluation, problematic word tokens such as these
(only three such instances occurred in the test utterance dis-
cussed here) were replaced by a special match-all symbol
which forced them to be matched against their correspond-
ing expanded forms in the training annotations. This en-
ables the inferred transducer to parse the words level tokens
of the test utterance into well-formed combinations which
are then used to construct the remaining levels of annotation
(cf. section 4). Note that, since the inferred transducer is in
fact p-subsequential, a given well-formed combination may
have a number of corresponding outputs. If a well-formed
combination is identified with more than one corresponding
output then a single output is chosen nondeterministically.

5.2.1 Phrase Level Annotation
Table 1 summarises the annotation tokens which were au-
tomatically generated at the phrase level for the test ut-
terance. As can be seen, a total of 73 phrase level to-
kens were marked by the automatically generated annota-
tion comprised of 16 non-speech intervals and 57 speech
intervals. In contrast, the manual annotation for the test
utterance marks 65 phrase level tokens; 33 of which rep-
resent non-speech intervals consisting of pauses, breaths,
and silences while 32 represent intonational phrase inter-
vals. The second column of Table 1 shows that 16 of the
33 non-speech intervals marked by the manual annotation
were marked with the correct start and end times by the
automatic annotation. The remaining 17 non-speech inter-
vals were incorrectly integrated into an adjacent annotation
token. This is illustrated in Figure 7 which shows a compar-
ison of the actual manual annotation produced by a human
annotator on the phrase and syllable levels (indicated by
phrase and syll respectively) and the corresponding auto-

matically generated levels (indicated by phraseg and syllg)
for a portion of the test utterance. As can be seen, an in-
terval of silence at the phrase level has been incorrectly in-
corporated into the second token of the automatically gen-
erated annotation. Figure 7 also illustrates a case where
a single phrase level token marked by the manual anno-
tation has been incorrectly divided into two tokens by the
automatic annotation. This type of annotation error, where
a single intonational phrase is incorrectly marked as a se-
quence of multiple phrases, occurs a number of times and
accounts for the additional 8 tokens generated by the auto-
matic annotation at the phrase level.
Returning to the second column in Table 1, only 12 of the
32 speech intervals marked by the manual annotation are
marked with the correct start and end times by the auto-
matic annotation. The 20 incorrectly marked phrase level
tokens arise as a result of an inaccurate phrase level parse
by the inferred transducer. Thus, a number of non-speech
intervals are incorrectly parsed as constituents of intona-
tional phrases, while tokens which should have been parsed
into a single intonational phrase are parsed into multiple
subphrases.
Finally, examining the third column of Table 1, it can be
seen that only one token marked by the automatic anno-
tation for the phrase level is labelled correctly. The rea-
son for this is that phrase level token labels are constructed
directly from parsed word sequences. Thus, for example,
all non-word tokens are labelled with “sil” in the supplied
words level annotation. Therefore, all non-speech intervals
marked in the automatically generated annotation will be
labelled “sil” while the non-speech tokens in the manual
annotation are labelled with different types of non-speech
labels (e.g., sil, pause, breath, etc.). Similarly, all intona-
tional phrases marked by the automatically generated an-
notation are labelled with the word tokens which constitute
the phrase rather than a meaningful phrase label. These la-
belling errors at the phrase level can be seen in Figure 7.
The task of predicting intonational phrase boundaries from

33

Tokens Marked # Phrases Marked with Correct Number of Boundaries # Tokens Marked with Correct Labels
377 25 67

Table 2: Token analysis for the automatically generated syllable level annotation.

a sequence of word tokens alone represents a difficult prob-
lem, and the automatic annotation marks acceptable phrase
level tokens. The annotation errors discussed above could
be overcome by integrating simple corrective heuristics as
a post processing operation whereby, for example, a period
of silence is always parsed as a single token. Such heuris-
tics would be specific only to phrase level annotations and
may not apply if the transducer used to generate the an-
notation is constructed with respect to some other domain.
Therefore, domain-specific heuristic measures aimed at im-
proving annotation accuracy are not applied as part of the
annotation strategy outlined here.

5.2.2 Syllable Level Annotation
Considering the 57 intonational phrases marked by the au-
tomatically generated annotation (cf. Table 1), the second
column of Table 2 shows that 25 of the phrases marked
have associated syllable level annotations which mark the
correct number of syllables when compared with the cor-
responding manual syllable level annotation. Considering
again the annotation shown in Figure 7, the first two phrases
marked by the automatically generated annotation mark the
correct number (8) of syllable tokens when compared with
the manual syllable annotation. Furthermore (ignoring the
misplaced silence), one of the labels of the automatically
marked tokens matches the label of its corresponding token
while the labels of the remaining automatically marked to-
kens differ by only one insertion or substitution (typically
a vowel) from the labels of the corresponding tokens of the
manual annotation.
For the 32 intonational phrases marked by the automatically
generated annotation which did not mark the correct num-
ber of syllable boundaries, 9 were marked with one more
or one less syllable when compared with the manual anno-
tation, 8 were marked with two more or two less syllables,
and 5 were marked with three more or three less syllables.
The remaining 10 phrases contained more extreme anno-
tation errors at the syllable level such as the third phrase
marked in Figure 7. As can be seen, 8 syllable boundaries
which were marked by the manual annotation are marked as
a single syllable labelled with “$” (representing the empty
string). This spurious syllable marking occurs as a result of
a combination of word tokens in the test utterance which is
not seen in the training utterances. This causes the inferred
transducer to parse this subsequence of word tokens via a
path of transitions which generates no corresponding sylla-
ble (or segment) level annotation. The reason for this is that
the acceptance path for the subsequence is in fact a subpath
in a larger acceptance path for a longer sequence of word
tokens. The associated syllable (and segment) level anno-
tation for this longer sequence is generated by the output
of an earlier transition on its acceptance path. Crucially,
this earlier transition is not included in the acceptance sub-
path which is traversed for the subsequence under consider-

ation here and so no output is generated. A similar problem
occurs when a subsequence of word tokens which should
be parsed as a single phrase is in fact parsed into a num-
ber of smaller subphrases. While this in itself causes in-
correct phrase level annotations, as discussed previously, it
also causes spurious annotations to be generated at the syl-
lable level where a number of extra tokens are erroneously
inserted.
The above annotation errors illustrate a potential drawback
of using Ostia to infer transducers from multilevel annota-
tions: inferred transducers do not in general maintain lin-
guistic correspondences between input and output annota-
tion tokens. The reason for this is that the inferred transduc-
ers are onward; producing a corresponding output string as
soon as enough of the input string has been seen to uniquely
identify it. For some input strings an output will only be
produced when the entire input has been consumed whereas
for others an output string may be produced when the first
input symbol has been consumed while for others still out-
puts may be produced in stages as the input is progressively
consumed. Thus, the nature of the inferred transducers can
lead to cases where annotation tokens are erroneously in-
serted and/or deleted for those levels of annotation gener-
ated by transduction. Some of the extremely spurious syl-
lable level annotations automatically marked for the test ut-
terance could have been avoided if alternative paths were
followed when parsing portions of the supplied word to-
kens. Others, however, could not have been avoided since
no alternative paths were available. On the other hand, the
training corpus used for the evaluation presented here is
very small. If a larger training corpus is available and, if
a stochastic transducer is inferred making use of the sta-
tistical information contained in the training annotations,
then more accurate parses would be expected. This in turn
would improve the automatically generated annotations for
transduced levels of annotation (syllable and segment here).
A stochastic transducer would also provide a more prin-
cipled means for selecting a single output for ambiguous
transductions. This is however left to future work.
Despite the fact that the automatically generated annota-
tion marks spurious syllable boundaries for some portions
of the test utterance, other portions of the test utterance are
marked in a highly accurate manner when compared with
the manual annotation. In any case, as for the phrase level,
the automatically generated syllable level annotation is in-
tended only as a first attempt which must be verified and
corrected where required by a human annotator.

6 Conclusion
This paper has presented an approach based on grammati-
cal inference techniques for automatically generating mul-
tilevel annotations of speech. An encoding scheme was de-
scribed which transforms a training corpus of multilevel an-
notations over n > 1 linguistic levels into a positive sample

34

of input-output pairs. This sample can then be supplied to
the Ostia inference algorithm which infers a correspond-
ing finite-state transducer10. The inferred transducer is then
used to automatically generate a new multilevel annotation
for an unseen utterance.
The approach was evaluated on a small corpus of speech
utterances providing four levels of phonological annota-
tion. An analysis of an automatically generated annota-
tion at the phrase and syllable level showed that inferred
transducers are capable of producing very accurate annota-
tions for some portions of the test utterance. On the other
hand, some rather spurious annotations were also gener-
ated. However, the automatically generated annotations are
intended only as a first attempt which is used to outline the
predicted structural content on the different levels of anno-
tation together with approximate temporal anchors to the
speech signal. This first attempt must of course be veri-
fied by a human annotator. Therefore, the annotation proce-
dure outlined here embodies a semi-automatic approach to
generating linguistic annotation. Note that while traditional
approaches to automatic speech recognition (e.g., HMMs)
can be used to generate segment, syllable and word level
annotations for a speech utterance, the grammatical infer-
ence approach outlined in this paper can be used to gen-
erate multilevel annotations over an arbitrary number and
type of linguistic annotation, from sub-phonetic feature an-
notations to higher level semantic annotations.
Further evaluation must be carried out to determine if the
grammatical inference approach can scale up to larger train-
ing samples of multilevel annotations over a greater number
and variety of annotation levels. A stochastic extension (or
alternative) to the Ostia algorithm which infers stochastic
annotation transducers may help in this regard. Also, an en-
hanced encoding scheme which directly reflects the tempo-
ral anchors of multilevel annotations may improve the accu-
racy of those annotations generated by transduction. On the
other hand, traditional finite-state definitions do not account
for temporal anchors. A possible solution is to extend the
traditional concept of finite-state machine to include tem-
poral information (e.g., by storing temporal anchors as a
property of the constituent states similar to the Annotation
Graph formalism of Bird and Liberman (2001)). An en-
hanced encoding scheme which constructs temporal pos-
itive samples of input-output pairs could then be used in
conjunction with a suitable inference algorithm (e.g., by ex-
tending Ostia) to construct a corresponding temporal finite-
state automaton. Finally, general purpose heuristics, such
as forcing the inferred transducer to output a parse which
minimises the number of marked subsequences, may also
improve the accuracy of the automatically generated anno-
tations across all levels.

Acknowledgements
This material is based upon works supported by the Science Foun-

10In general, representing linguistic objects as finite-state ma-
chines (automata and transducers) has many advantages, in partic-
ular, space and time efficiency. In fact, the determinism condition
of subsequential transducers ensures that they are maximally effi-
cient. Also, Ostia constructs transducers with a minimal number
of states ensuring inferred transducers are maximally compact.

dation Ireland under Grant No. 02/IN1/I100. The opinions, find-
ings and conclusions or recommendations expressed in this ma-
terial are those of the authors and do not necessarily reflect the
views of Science Foundation Ireland.
Many thanks to Nicholas Kushmerick and John Nerbonne for
valuable discussion and suggestions.

7 References
Claude Barras, Edouard Geoffrois, Zhibiao Wu, and Mark

Liberman. 2001. Transcriber: Development and use of
a tool for assisting speech corpora production. Speech
Communication, 33(1-2):5–22.

Steven Bird and Ewan Klein. 1990. Phonological events.
Journal of Linguistics, 26(1):33–56.

Steven Bird and Mark Liberman. 2001. A formal frame-
work for linguistic annotation. Speech Communication,
33(1-2):23–60.

Paul Boersma and David Weenik. 2000. Praat, a system for
doing phonetics by computer, version 3.4. Technical Re-
port 132, Institute of Phonetic Sciences of the University
of Amsterdam. www.praat.org.

Steve Cassidy and Jonathan Harrington. 2001. Multi-level
annotation in the Emu speech database management sys-
tem. Speech Communication, 33(1-2):61–77.

King-Sun Fu and Taylor L. Booth. 1975. Grammatical in-
ference: Introduction and survey, parts 1 and 2. IEEE
Transactions on Systems, Man and Cybernetics, 5(1,
4):95–111, 409–423.

John S. Garofolo, Lori F. Lamel, William M. Fisher,
Jonathan G. Fiscus, David S. Pallett, and Nancy L.
Dahlgren. 1993. DARPA TIMIT acoustic-phonetic con-
tinuous speech corpus CD-ROM. Technical report, Na-
tional Institute of Standards and Technology.

Ulrike Gut. 2004. The LeaP Corpus.
Available at http://www.phonetik.uni-
frieburg.de/leap/LeapCorpus.pdf.

Geoffrey Leech and Martin Weisser. 2003. Generic speech
act annotation for task-oriented dialogues. In Proceed-
ings of Corpus Linguistics 2003, Lancaster.

Jochen L. Leidner, Tiphaine Dalmas, Bonnie Webber, Jo-
han Bos, and Claire Grover. 2003. Automatic multi-
layer corpus annotation for evaluating question answer-
ing methods: CBC4Kids. In Proceedings of the 3rd In-
ternational Workshop on Linguistically Interpreted Cor-
pora, Budapest.

David McKelvie, Amy Isard, Andreas Mengel,
Morten Baum Moller, Michael Grosse, and Marion
Klein. 2001. The MATE workbench- an annota-
tion tool for XML coded speech corpora. Speech
Communication, 33(1-2):97–112.

Jose Oncina, Pedro Garcia, and Enrique Vidal. 1993.
Learning subsequential transducers for pattern recogni-
tion interpretation tasks. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 15(4):448–458.

Emmanuel Roche and Yves Schabes. 1995. Approximat-
ing annotated corpora with finite-state transductions: A
case study in part of speech tagging. Technical Report
TR-95-10, Mitsubishi Electric Research Laboratories.

35

Author Index

Boves, Lou 4

Carbone, Thiago Ianez 20
Carson-Berndsen, Julie 28

Hovy, Eduard 3
Kelly, Robert 28

Machado Rino, Lucia Helena 20
Pelizzoni, Jorge Marques 20

Razímová, Magda 12
Strik, Helmer 4

Tufis, Dan 2

Van Bael, Christophe 4

van den Heuvel, Henk 4
Zabokrtsky, Zdenk 12

Matsumoto, Yuji 1

