
Workshop Program

9:00 Welcome
9:30 Integrating Linguistic Information from Multiple Sources in Lexicon Development and

Spoken Language Annotation
Per Anders Jande

10:15 Argument Structure in TimeML
James Pustejovsky, Jessica Littman, Roser Saurí

11:00 Coffee break

11:30 Dependency conversion and parsing of the BulTreeBank
Atanas Chanev, Kiril Simov, Petya Osenova, Svetoslav Marinov

12:15 NLP Tools Integration Using a Multi-Layered Repository
João Graça, Nuno J. Mamede, João D. Pereira

13:00 Lunch break
14:30 Merging FrameNet and PropBank in a corpus of written Dutch

Paola Monachesi, Jantine Trapman
15:15 XML-Based Representation of Multi-Layered Annotation in the PDT

Petr Pajas, Jan Stepánek
16:00 DEB Tools for Merging Linguistic Resources

Ales Horák, Karel Pala
16:30 Coffee break

17:00 Sustainability of Linguistic Resources
Stefanie Dipper, Erhard Hinrichs, Thomas Schmidt, AndreasWagner, AndreasWitt

17:45 Merging Layered Annotations
Nancy Ide, Keith Suderman

18:00 Demo session
18:30 Closing session

Workshop Organisers

Erhard Hinrichs, University of Tübingen, Germany
Nancy Ide, Vassar College, USA

Martha Palmer, University of Colorado-Boulder, USA
James Pustejovsky, Brandeis University, USA

Program Committee

Eneko Agirre (Basque Country University, Spain)
Collin Baker (International Computer Science Institute, USA)
Gosse Bouma (University of Groningen, The Netherlands)
Monserrat Civit (Centre de Llenguatges i Computació, University of Barcelona, Spain)
Hamish Cunningham (University of Sheffield, UK)
Bonnie Dorr (University of Maryland, USA)
Eva Ejerhed (University of Umea, Sweden)
Tomaz Erjavec (Institut Josef Stefan, Slovenia)
David Farwell (CRL New Mexico State University, USA)
Christiane Fellbaum (Princeton University, USA)
Charles J. Fillmore (International Computer Science Institute, USA)
Jan Hajic (Center for Computational Linguistics, Charles University, Czech Republic)
Eva Hajicova (Center for Computational Linguistics, Charles University, Czech Republic)
Eduard Hovy (International Sciences Institute, USA)
Sandra Kübler (University of Tübingen, Germany)
Alessandro Lenci (University of Pisa, Italy)
Lori Levin (LTI, Carnegie-Mellon University, USA)
Inderjeet Mani (MITRE, USA)
Adam Meyer (New York University, USA)
Rada Mihalcea (University of North Texas, USA)
Sergei Nirenburg (University of Maryland-Baltimore County, USA)
Joakim Nivre (Växjö University, Sweden)
Boyan A. Onyshkevych (U.S. Dept. of Defense, USA)
Karel Pala, (Masaryk University, Czech Republic)
Gerald Penn (University of Toronto, CA)
Wim Peters (University of Sheffield, UK)
Manfred Pinkal (DFKI, Saarbruecken, Germany)
Massimo Poesio (University of Essex, UK)
Adam Przepiorkowski (Polish Academy of Sciences, Poland)
Owen Rambow (Columbia University, USA)
Kiril Simov (CLPP, Sofia, Bulgaria)
Beth Sundheim (SPAWAR Systems Center, USA)
Piek Vossen (Irion Technologies, The Netherlands)
Fei Xia (IBM Research, USA)
Bert Xue (University of Pennsylvania, USA)
Dietmar Zaefferer (Ludwig-Maximilians-Universitaet, Germany)
Annie Zaenen (Palo Alto Research Center, USA)

Table of Contents
Integrating Linguistic Information from Multiple Sources in Lexicon Development and Spoken
Language Annotation
Per Anders Jande.. 1
Argument Structure in TimeML
James Pustejovsky, Jessica Littman, Roser Saurí... 8

Dependency conversion and parsing of the BulTreeBank
Atanas Chanev, Kiril Simov, Petya Osenova, Svetoslav Marinov... 16
NLP Tools Integration Using a Multi-Layered Repository
João Graça, Nuno J. Mamede, João D. Pereira .. 24

Merging FrameNet and PropBank in a corpus of written Dutch
Paola Monachesi, Jantine Trapman .. 31

XML-Based Representation of Multi-Layered Annotation in the PDT 2.0
Petr Pajas, Jan Stepánek... 40

Sustainability of Linguistic Resources
Stefanie Dipper, Erhard Hinrichs, Thomas Schmidt, AndreasWagner, AndreasWitt 48

DEB Tools for Merging Linguistic Resources
Ales Horák, Karel Pala ... 55

Merging Layered Annotations
Nancy Ide, Keith Suderman ... 61

Integrating Linguistic Information from Multiple Sources in Lexicon
Development and Spoken Language Annotation

Per Anders Jande

Dept. of Speech, Music and Hearing, School of Computer Science and Communication, KTH
Lindstedtsv̈agen 24, SE-100 44 Stockholm, Sweden

Abstract
In this paper, two related spoken language-oriented projects are presented. Both projects deal with integrating linguistic information
from multiple sources. The first project described is the development of a multi-purpose central lexicon database including phonemic
representations. Special emphasis is put on central availability and facilitating incremental development. The second project described
is a spoken langue annotation project aimed at creating data for data-driven pronunciation modelling. The annotation is designed to
form a general description of discourse context, including variables from the discourse level down to the articulatory feature level. A
multi-layer annotation scheme for spoken language is described and the information included in the annotation is presented. Models
of pronunciation variation induced from the annotation are evaluated in a tenfold cross validation experiment. On average, the models
produce 8.1% errors on the phone level. Models trained on phoneme level information only produce an average error of 14.2%. This
means that including information above the phoneme level in the context description can improve model performance by 42.6%.

1. Introduction
Studies of spoken language commonly involve various
types of linguistic information. For example, in data-driven
modelling of various spoken language phenomena, it is of-
ten necessary to annotate spoken language data with in-
formation on the phoneme and/or phone level as well as
information on the word level, such as part of speech and
morphology. At the development of speech synthesis sys-
tems and automatic speech recognition systems, pronunci-
ation lexica are important.
In this paper, two spoken language-oriented projects are
presented. A common denominator of the projects is that
they deal with integrating linguistic information from mul-
tiple sources. The first project discussed is the development
of a multi-purpose central lexicon database, which is used
for the annotation of spoken language and in various other
contexts. The second project, which is the main focus of
this paper, is a data-driven approach to modelling phone-
level pronunciation variation, involving the annotation of
spoken language with various kinds of linguistic informa-
tion in multiple layers.

2. A Central Lexicon Database
A multi-purpose central lexicon database called CENTLEX

is being developed at the department of Speech, Music
and Hearing (TMH) and the Centre for Speech Technology
(CTT) at KTH. The lexicon is based on lexical resources
of different types and on different formats, developed for
various research projects at TMH/CTT over the years. The
information is stored in a relational database with separate
tables for different types of information.

2.1. Information Included in the Lexicon

CENTLEX is a full-form lexicon, with each entry minim-
ally containing an orthographic word form and a grammat-
ical analysis (part of speech and morphology). An entry can
also have an arbitrary number of phonemic representations,
ordered by their probability of use. Each phonemic repres-
entation can be enriched with information about the inten-

ded context of the representation (e.g.reduced formor for-
eign language). Such information is added e.g. for proper
names, since orthographically identical names may be pro-
nounced differently depending on the native language en-
vironment of the person bearing the name. An entry also
contains information about the probability of the particu-
lar grammatical analysis given the orthographic word (es-
timated from a large automatically tagged text corpus).
Presently, the database contains about 410,000 entries with
330,000 unique orthographic word forms.

2.2. Availability

One of the main ideas with the CENTLEX database is that
all lexical data used in projects at TMH and within CTT is
stored centrally, so that the data is immediately and easily
available for all researchers at the department and for all
partners involved in the Centre. Lexicon-related work con-
ducted in different projects can be easily integrated with
the central lexical resource, and the results immediately
available for all users. Standards for mapping between the
CENTLEX format and several commonly used formats have
been developed to facilitate information sharing.
An interface to the database on the TMH internal web
makes it possible to search the lexicon and to check out
purpose-specific lexica with the set of information reques-
ted on several different output formats. Selected users also
have the possibility to edit the lexicon via the web inter-
face, to stimulate continuous lexicon expansion and im-
provement of existing data. The web interface is not suited
for large-scale changes of the database, so a stand-alone
annotation/correction tool has been developed for lexicon
development on a larger scale. This tool stores informa-
tion on a CENTLEX import format, so that it can be easily
incorporated with the database.
The lexicon is thus incrementally built and the latest version
is always available at a central location. Some of the in-
formation first included in the database has been automatic-
ally generated and the initial information merger was done
with automatic methods. The data thus has to be checked
with respect to quality, which is done continuously. Sub-

1

sequently added information is, however, mostly informa-
tion which is manually obtained or checked. Each lexicon
entry is annotated with information about whether it has
been manually checked/corrected, by whom and when, to
separate information of different quality.

2.3. Applications
Thus far, the CENTLEX database has been used as a lex-
icon in an experimental speech synthesis system (used in
various research-oriented applications at the department of
Speech, Music and Hearing at KTH) and in a large vocabu-
lary speech recognition system. CENTLEX has also been
used for training grapheme-to-phoneme conversion rules
for commercial speech synthesis and as a lexicon for com-
mercial speech synthesis applications. It has further been
used as a reference in the development of a system for pro-
duction of talking books with synthetic speech for visu-
ally impaired and dyslectic university students. Finally,
CENTLEX has been used for annotation in research projects
aimed at context-sensitive prosody prediction and phone-
level pronunciation prediction.

3. Pronunciation Variation Modelling
Although there is a certain degree of individual and ran-
dom variation in the pronunciation of words in context, the
variation is largely systematic within a restricted, relatively
homogeneous group of language users. This agreement on
systematic variation strategies can be seen as a property of
the language variety (e.g. dialect) spoken by the group. The
aim in the pronunciation variation modelling project de-
scribed here is to model this systematic variation inherent
to a language variety, with the focus on variation in phone
level realisation. The target language variety used in the
work presented in this paper is central standard Swedish.

3.1. Annotating Spoken Language Data
The methods used for pronunciation variation modelling
are data-driven. Spoken language is annotated with various
kinds of linguistic and related information, which is used by
machine learning algorithms to create pronunciation mod-
els. The phoneme is the central unit in the approach and
the annotation is aimed at describing the discourse context
of a phoneme from high-level linguistic variables such as
speaking style, down to the articulatory feature level. This
multi-variable linguistic context description is then used to
predict the context-sensitive realisation of the phoneme.
The results reported in this paper are based on recent addi-
tions to the annotated data. The effect of making informa-
tion on different linguistic levels available as predictors of
phone level pronunciation is investigated and the predictive
power of specific linguistic variables is discussed.

3.2. Background
Phonological work on pronunciation variation in Swedish
has been reported by several authors, e.g. Gårding (1974),
Bruce (1986), Bannert and Czigler (1999), Jande (2003)
and Jande (2005). There is an extensive corpus of research
on the influence of various context variables on the pronun-
ciation of words. Variables that have been found to influ-
ence the segmental realisation of words in context are fore-
most speech rate, word predictability (often estimated by

global word frequency) and speaking style, cf. e.g. Fosler-
Lussier and Morgan (1999), Finke and Waibel (1997), Jur-
afsky et al. (2001a) and Van Bael et al. (2004).
The influence of various other variables on the pronunci-
ation of words has also been studied, but these have mostly
been studied in isolation. When more variables are taken
into account, the number of variables simultaneously un-
der study is in most cases limited to less than a handful.
Describing the discourse context more generally, includ-
ing a large variety of linguistic and related variables, en-
ables studies of the interplay between various information
sources on e.g. phone-level pronunciation.
Machine learning methods can be used for such studies.
A model of pronunciation variation created through ma-
chine learning can be useful in speech technology applica-
tions, e.g. for creating more dynamic and natural-sounding
speech synthesis. In addition to models which can predict
the pronunciation of words in context, it is possible to cre-
ate models which are descriptive and to some degree ex-
plains the interplay between different types of variables in-
volved in the predictions.

3.3. Speech Data

The speech data used for pronunciation variation modelling
is the VAKOS database, originally constructed by Bannert
and Czigler (1999) for a phonological study of variation in
consonant clusters, a RADIO INTERVIEW database and a
RADIO NEWS database, with recordings originating from
Sveriges radio(Swedish public service radio).
The VAKOS database is a set of elicited monologues; ten
speakers talk about some suggested topic or topics to a re-
cording assistant (who is silent). About ten minutes from
each speaker is included in the database. The VAKOS
database also includes some manual annotation at different
levels. The RADIO INTERVIEW database is a set of two 25
minute radio broadcast interviews, each including speech
mainly from three speakers, the interviewee and two inter-
viewers. The interviewees are experienced public speakers
and are allowed to answer questions in length, rarely being
interrupted. The RADIO NEWS database includes two ra-
dio news broadcasts, including speech from altogether three
studio news announcers and eight reporters. Only studio
environment recordings are included in the RADIO NEWS

database.

3.4. A Multi-Layer Annotation System

The annotation used for pronunciation variation modelling
is organised in six layers: 1) a discourse layer, 2) an ut-
terance layer, 3) a phrase layer, 4) a word layer, 5) a syl-
lable layer and 6) a phoneme layer. The layers are segmen-
ted into units, which are linguistically meaningful and can
be synchronised to the speech signal. The segmentation of
each layer is strictly sequential, i.e., every part of the signal
belongs to some unit at all layers and there is no overlap
between units within a layer.
Durational boundaries are inherited from higher order lay-
ers to lower order layers, so that a discourse boundary is al-
ways also an utterance boundary, a phrase boundary, a word
boundary, a syllable boundary and a phoneme boundary.
The layers are thus hierarchically ordered so that a higher

2

Figure 1: Annotation layers with example annotation aligned to the speech signal

order unit serves as the parent of all lower order units within
its segmental bounds. An arbitrary amount of information
can be supplied for each unit in each layer. Figure 1 shows
an excerpt of a sound file with some aligned example an-
notation.
The most important feature of this system of annotation
is that information can be unambiguously inherited from
units on higher layers by units on the layers below. A unit
can thus pass on its information to all the units within its
bounds in the lower order layers. Consequently, informa-
tion connected to syllable, word, phrase, utterance and dis-
course layer units, respectively, as well as to the phoneme
layer units, is accessible from the phoneme layer. This is
important since the pronunciation variation models will use
phoneme-sized units as input. Sequential context informa-
tion, i.e., properties of the units adjacent to the current unit
at the respective layers is used at model induction together
with information connected to the current unit. Having the
information stored in different layers enables easy access to
the sequential context information.

3.5. Segmentation

With some minor exceptions, automatic methods are used
for segmentation, however with manual supervision to im-
prove accuracy at some intermediate stages. The annota-
tion process begins with segmenting each annotation layer
into its respective type of unit. The next step is to retrieve,
calculate or estimate a set of features for each unit. An ut-
terance is in this context defined as a discourse turn uttered
by a single speaker. This means that a monologue discourse
is treated as a single utterance. For dialogues, the corpus is
manually segmented into utterances.
Automatic segmentation begins at the word level. Given an
orthographic string, the corpus is segmented into word units
using an automatic aligner Sjölander (2003). Manual cor-
rection of the word layer segmentation is performed, since
all succeeding annotation depends on this segmentation and
increases in the segmentation accuracy on this level gives
large improvements in the accuracy of successive annota-
tion. Manual word layer segmentation was already in-
cluded in the VAKOS database.
The phrase layer is segmented with the help of a shallow
parser (Megyesi, 2002) using a string of tags produced by
a part of speech and morphological tagger. The phrases are

aligned to the signal using the word boundaries. The parser
was created for parsing written text, but it is robust and
produces parses also for tagged orthographic transcripts of
spoken language.
The phoneme layer is segmented word-by-word using
the word boundaries and phonemic representations from
the CENTLEX database as input to an automatic aligner
(Sjölander, 2003). The phonemes are clustered into syl-
lables with forced syllable boundaries at word boundaries
and the syllable layer is segmented using this clustering and
the durational boundaries from the phoneme level segment-
ation.
Some units with special characteristics are introduced at
the word layer to ensure that parts of the signal that
are not speech (or non-analysable speech) can be annot-
ated. The special unit types are<overlap> (overlapping
speech),<pause> (including pauses, inhalation and exhal-
ation sounds),<non speech> (including laughter, smacks,
clicks, coughs and hawking sounds etc.) and<filled
pause>. The information supplied for normal word units
is not included for these units. Within the boundaries of
one of the special word layer units, a<sil> (for pauses)
or a<junk> special phoneme unit is used as a place filler
at the phoneme layer, but no additional annotation is sup-
plied on lower order layers. Every special word layer unit
is, however, included in a phrase unit, an utterance unit and
in the discourse unit.

3.6. Adding Information to the Units

Values for a set of variables hypothesised to be important
for predicting the realisation of a phoneme in its discourse
context is attached to each unit at each layer of annotation.
The following sections will briefly describe the information
attached to the units at each layer.

3.6.1. The Discourse Layer
A set of ‘inverted speech rate’ measures based on the global
mean phoneme durationis attached to discourse layer units.
Phoneme durations are estimated from the automatic align-
ment of the phonemic word representations to the signal.
The discourse layer information also includes four speaking
style-related variables:number of discourse participants,
degree of formality, degree of spontaneityandtype of inter-
action.

3

3.6.2. The Utterance Layer
In the utterance layer, mostly speaker attributes are annot-
ated. Speaker pitch registeris a binary variable that dif-
ferentiates speakers with a high pitch register from speak-
ers with a low pitch register. This variable may interplay
with measures based on pitch movement. A set ofmean
phoneme durationmeasures over the utterance and sets of
pitch rangeandpitch dynamics(‘speech liveliness’) meas-
ures are also included in the utterance layer annotation.

3.6.3. The Phrase Layer
An attribute calledphrase typecorresponds to the type of
the current phrase according to the shallow parser used for
phrase chunking. Also included in the phrase layer an-
notation is a set ofphrase lengthmeasures: the number
of words, syllablesandphonemes, respectively, contained
by each phase unit. Further, two measures associated with
the prosodic weightof a phrase are calculated: the num-
ber ofstressed syllablesand the number offocally stressed
wordscontained by the phrase (focal stress annotation was
manually provided for a subset of the speech data). Finally,
pitch dynamics, pitch rangeand mean phoneme duration
measures are calculated over each phrase unit.

3.6.4. The Word Layer
The word is generally conceived of as the most central lin-
guistic unit, in that it is the principal conveyor of mean-
ing in language and the principal syntactic unit. There
is thus a large variety of features that can be attached to
the word units. To begin with,part of speechand mor-
phological information from the tagger is included in the
annotation. Morphology is included as a set of tags cor-
responding to different morphological dimensions. Based
on the part of speech tags, a division of words intoword
types(content words vs. function words) is made. A sim-
ilar variable denotedfunction wordhas the entire closed set
of function words and a generic ‘content word’ represent-
ation as its possible values. There are pronunciation vari-
ation strategies specific to certain function words and the
function wordvariable should be a strong predictor of this
behaviour.
The predictability of a word has been shown to be import-
ant for the realisation of the word, cf. e.g. Fosler-Lussier
and Morgan (1999) and Jurafsky et al. (2001b). Many
variables influence the predictability of a word in con-
text. Measures related to word predictability included in
the word layer annotation areword repetitionsand lexeme
repetitions(the number of times the full-form word and the
lexeme, respectively, has been repeated thus far in the dis-
course),the position of the word in a phrase, the position
of the word in a frequent collocationandglobal word fre-
quency. A special measure termedword predictability is
also included in the annotation. This measure is an es-
timation based on a weighted combination of unigram, bi-
gram and trigram probabilities collected from the Göteborg
Spoken Language Corpus (Allwood et al., 2002). Thepart
of speechvariable already mentioned also affects the pre-
dictability of a word in context, since there are syntactic
constraints governing language production.
The distances to the preceding and the succeeding fo-
cally stressed word can be important factors in predicting

the pronunciation of the current word and these distances
(measured in number of words) are therefore included in
the word layer annotation. Information about the presence
of a pause, a filled pauseor an interrupted wordadjacent
to the current word is also included. Prosodic boundaries
are important for grouping coherent subunits in the speech
signal. For listeners, this grouping facilitates parsing the
sound stream. Manualprosodic boundaryannotation has
been supplied for the databases used.
Word lengthis measured as the number of syllables and
as the number of phonemes, respectively, contained by the
word. Finally, some measures ofpitch dynamics, pitch
rangeandmean phoneme durationover each word unit are
included in the word layer annotation.

3.6.5. The Syllable Layer
Information about the stress and accent of the current
syllable is derived from the phonemic representations.
Swedish has two different types of word stress,accent I
andaccent II. In central standard Swedish, accent I has a
single stressed syllable while accent II has a primary and a
secondary stress. There is also a special compound accent
similar to accent II, with primary stress on the first com-
pound constituent and a secondary stress on the last com-
pound constituent. Thestressannotation is a simple divi-
sion between stressed and unstressed syllables, while the
accentannotation takes the word accent into account, thus
making theaccentclassification a division into finer stress
type classes.
Further, the distances to the nearest preceding stressed syl-
lable and to the nearest preceding syllable withprimary
stress(measured in number of syllables) are included in
the syllable layer annotation. The distances to succeed-
ing stresses are also included.Syllable lengthis measured
in number of phonemes. The initial and final syllables of
a word are generally less prone to syllable reduction than
medial syllables, which makes theposition of the syllable
in the wordan important variable to include in the annota-
tion. Lastly, a set ofmean phoneme durationmeasures over
the syllable are calculated.

3.6.6. The Phoneme Layer
Thephoneme identitiesincluded in the phoneme layer an-
notation are represented by the phoneme symbols from
CENTLEX. A set of articulatory featuresdescribing the
phoneme is associated with each phoneme unit. Thepos-
ition of the phoneme in the syllablemay be important for
predicting the realisation of the phoneme. Hence, inform-
ation about in which part of the syllable (onset, nucleusor
coda) the phoneme is located is included in the annotation.
A consonant cluster lengthvariable takes as its value the
length (phoneme count) of the consonant cluster of which
the current phoneme is a part. This measure defaults to 0
for vowels.
Thephoneis the context-dependent realisation of the phon-
eme. Phonetic identity is the variable to be estimated by
the pronunciation variation models and consequently, the
phone is used as the key in model training. The phones are
supplied by a hybrid automatic transcription system, using
statistical decoding and a set of a posteriori correction rules.

4

A place filler∅ symbol is used to signal that there is no real-
isation of a particular phoneme in the phonetic string.
The SNACK sound toolkit (Sj̈olander and Beskow, 2000)
is used for building and decoding statistical models rep-
resenting the possible realisations of a word. Models are
built using an empirically compiled context-insensitive list
of possible realisations (tentative phones) for each phon-
eme and a set of HMM monophone models. The speech
signal is parameterised to form a sequence of observations.
The path trough the statistical model most closely match-
ing this observation sequence (using Viterbi decoding) can
be represented as a string of phones, and this string is the
output of the statistical decoder.
Evaluated against a small manually transcribed gold stand-
ard, statistical decoding alone was shown to give higher
phone error rates (PER) than estimating the phonetic tran-
script with the phoneme string. However, due to the sys-
tematic nature of the errors made by the statistical decoder,
a set of correction rules that significantly lowered the error
rate could be compiled. The final hybrid transcription sys-
tem produces an average of 15.5% errors on the phone level
when compared to an enlarged gold standard transcription.
This means that the PER is reduced by 40.4% compared to
using the phoneme string for estimating the phone realisa-
tion.
Since manual transcription is restricted by a relatively small
set of phone symbols, some decisions about phone iden-
tity are not obvious, most notably many cases of choos-
ing between a full vowel symbol and a schwa. Default-
ing to the system decision whenever a human transcriber is
forced to make ad hoc decisions would increase the speed
of manual transcript checking and correction considerably
without lowering the transcription quality. It is worth not-
ing that if this strategy had been used for compiling the gold
standard transcript, the PER would have been somewhat
lower. The 15.5% PER is thus a slight under-estimation of
the system performance. Manual correction of the automat-
ically obtained transcripts will most likely result in more
accurate pronunciation variation models.

4. Creating Pronunciation Variation Models
Using the annotation from the speech databases, pronunci-
ation variation models can be created with different types
of machine learning methods. If the model is to be used
for descriptive purposes, it must be transparent, i.e., it must
contain information such that the model can be represen-
ted on a format interpretable by a human familiar with lin-
guistic theory.
A machine learning paradigm that creates transparent mod-
els and is suitable for the type of data at hand is thedecision
tree inductionparadigm. A decision tree inducer com-
monly needs no ad hoc knowledge and can induce mod-
els directly from training data. It is thus very easy to use
once you have the data. For these reasons, the decision tree
paradigm has been selected for creating the models repor-
ted in this paper. It is not claimed that the decision tree
paradigm necessarily produces the best models. Other ma-
chine learning paradigms may be able to create more ac-
curate models or models which meet certain application-
specific demands.

4.1. Decision Tree Induction

Decision trees are induced from a set of training instances
compiled from the structured annotation. The training in-
stances are phoneme-sized and can be seen as a set ofcon-
text sensitive phonemeswith their respective phone realisa-
tions. Each training instance includes a set of 516 attrib-
ute values and the phone realisation, which is used as the
classification key. The features of the current unit at each
layer of annotation are included as attributes in the training
examples. Where applicable, information from the neigh-
bouring units at each annotation layer is also included in
the attribute sets. The algorithm used for inducing the pro-
nunciation variation models is that included in the DTREE

program suite (Borgelt, 2004).
Decision tree induction is non-iterative and trees are built
level by level, which makes the learning procedure fast.
However, the optimal tree is not guaranteed. At each new
level created during the tree induction procedure, the set of
training instances is split into subsets according to the val-
ues of one of the attributes. The attribute selected is the
attribute that best meets a given criterion, generally based
on entropy minimisation. In the current case, a measure
referred to assymmetric information gain ratio(Lopez de
Mantaras, 1991) is used. The inducer is set to allow group-
ing of discrete values to obtain the optimal number of nodes
at each level.

4.1.1. Pruning
Since training data generally contain some degree of noise,
a decision tree may be biased toward the particular noise
in the training data (over-trained). However, once a tree is
constructed, it can be pruned to make it more generally ap-
plicable. The idea behind pruning is that the most common
patterns are kept in the model, while less common patterns,
with high probability of being due to noise in the training
data, are deleted. At pruning, a sub-tree of a particular
node is replaced by a leaf with the most common class of
the leaves governed by the sub-tree, when some criterion is
met.

4.2. Model Evaluation

A tenfold cross validation procedure was used for model
evaluation. Under this procedure, the data is divided into
ten equally sized partitions using random sampling. Ten
different decision trees are induced, each with one of the
partitions left out during training. The left out partition is
then used for evaluation. A separate tenfold cross valid-
ation evaluation was performed for data from each of the
three databases (VAKOS, RADIO INTERVIEW and RADIO

NEWS) and for the collapsed data set.
The prosodic information cannot be fully exploited in its
current form in e.g. a speech synthesis context. Thus, it was
interesting topic investigate the influence of the prosodic
information (variables based on f0, duration, focal stress
and prosodic boundary information) on model results. To
investigate this, an experiment where the decision tree in-
ducer did not have access to the prosodic information was
performed for each of the four data sets. As a baseline, an
evaluation of trees induced from phoneme layer informa-
tion only was also performed for each data set. The same

5

Table 1: Mean and standard deviation of phone error rate (PER) for each data set

Database All VAK OS RADIO I NTERVIEW RADIO NEWS

training instances 93,996 52,263 31,779 9,936
evaluation instances 10,444 5,807 3,531 1,104

Trained on attributes all nopro∗ pho† all nopro∗ pho† all nopro∗ pho† all nopro∗ pho†

x̄PER (per cent) 8.14 13.08 14.19 9.07 14.90 15.60 8.94 12.32 13.74 9.34 10.57 11.70
σPER (per cent) 0.15 0.25 0.23 0.39 0.49 0.53 0.42 0.30 0.54 1.23 1.23 1.34

∗no prosodic attributes,†phoneme level attributes only

Table 2: Error reduction as a result of making more information available for the decision tree inducer

Database All VAK OS RADIO I NT. RADIO NEWS

Tree types pho†>all‡ nopro∗>all‡ pho†>all‡ nopro∗>all‡ pho†>all‡ nopro∗>all‡ pho†>all‡ nopro∗>all‡

Error reduction (per cent) 42.64 37.77 41.86 39.12 34.93 27.43 20.20 11.65
‡trained with access to all attributes,∗trained access only to non-prosodic attributes,†trained with access only to phoneme level attributes

randomisation was used under all conditions.
Each tree was pruned under a range of pruning criteria and
the tree with the optimal performance on the evaluation data
was selected to be used in the evaluation. The pruning cri-
teria used all yielded the same pruned tree and the optimal
tree could thus either be theprunedtree or the original,un-
prunedtree. Thesymmetric information gain ratioattrib-
ute selection measure created trees, which were near the
optimal before pruning. Hence, the effect of pruning on
model performance was small. In most cases, pruning af-
fected model performance (on the test data) negatively and,
on average, pruning gave rise to adecreasein model per-
formance with 0.6%. The unpruned trees were actually sub-
jected tobasic pruning, at which the trees were pruned to
the extent that no deterioration of accuracy on the training
data occurred. Thus, following “Occam’s razor”, if there
were several trees giving the same result, the simplest of
these trees was selected.

5. Results and Discussion
Table 1 summarises the results from the cross validation
experiments. On average, we get a phone error rate of 8.1%
when training on 90% of the collapsed data set and allowing
the decision tree inducer to use all available information.

5.1. Phone Error Rates

Using the phoneme string to estimate phone realisations
gives a PER of 20.4%, which means that phone errors can
be reduced by 60.2% by using an average pronunciation
variation model in stead of using a phoneme string collec-
ted directly from a lexicon. Applying phonological sandhi
rules to adapt the phonemic representations for isolated
words to their context decreased the PER for the phoneme
string only to 20.3%. The error reduction resulting from
using the pronunciation variation model is thus significant.
Further, as can be seen from Table 2, we get a reduction of
PER by 42.6% when switching from a classifier trained on
phoneme level information only to a classifier trained on all
available information.

5.2. Data Size and Speaking Style

It is likely that the PERs presented in Table 1 reflect the fact
that both the amount and the type of training data affects
the performance of the models induced. If all attributes

are used, neither models trained on the VAKOS database
nor models trained on the RADIO NEWS database have the
lowest PER, although the VAKOS database has the largest
number of training instances and the RADIO NEWS data-
base has the most formal type of speech. Instead, the mod-
els trained on the RADIO INTERVIEW database show the
lowest PER. The RADIO INTERVIEW database has the ad-
vantages of having relatively formal speech compared to
the VAKOS database, relatively few speakers and many
more training instances than the RADIO NEWS database.
Further, we can see from Table 2 that models trained on
the VAKOS database are more dependent on prosodic in-
formation and generally on information on layers above the
phoneme, while the models trained on the RADIO NEWS

database are less dependent on this type of information.

5.3. Attribute Ranking

Table 3 shows the 18 top ranking attributes over the ten
optimal trees trained on all information from all databases.
The layer from which the attribute is collected is used as a
prefix in attribute names. Attributes can refer to the current
unit or to units at±4 positions from the current unit at the
specific annotation layer. Duration measures can be based
on the duration of allphonemesor on the duration ofvowels
only, they can be based onnormalisedor absolutephoneme
duration and they can be based on duration on alog scale.
The ranking in the first column of Table 3 is based on the
position of the attribute in the ten trees. For this meas-
ure, the attribute governing the largest number of sub-trees
(leaves excluded) will get the highest rank (1). The second
column weights the sub-tree count with the number of clas-
sifications involving the attribute (over the training data).
For this measure, an attribute involved in many classific-
ations can climb in rank even if it does not appear in the
absolute top of the tree. Thephoneme identityattribute ap-
pears in the top node of all trees. This means that it governs
all sub-trees and is involved in all classifications made by
the trees.

5.4. Attributes Used by the Models

From Table 4, it can be seen that variables from all layers
of annotation are used by the trees trained on all available
information from all databases. In fact, from 516 available
attributes, as many as 470 were used at least once in the

6

Table 3: The 18 top ranking attributes for trees trained on all information from all databases

Rank Rank based on # sub-trees Rank based on # sub-trees· # classifications
1 phoneme identity phoneme identity
2 phoneme identity+1 phoneme identity+1
3 word function word-1 word duration phonemes absolute
4 word duration phonemes absolute word function word+1
5 word function word+1 word function word
6 phoneme identity+4 word function word-1
7 phoneme identity-2 phoneme identity-1
8 word function word phoneme identity+2
9 phoneme identity-1 phoneme identity-3
10 phoneme identity-4 phoneme identity+4
11 phoneme identity+2 word duration vowels absolute
12 phoneme identity-3 phoneme identity-2
13 phoneme identity+3 phoneme identity+3
14 word duration vowels absolute phoneme identity-4
15 syllable accent syllable accent
16 syllable nucleus phrase duration phonemes absolute
17 word duration vowels normalised word duration vowels normalised
18 word duration vowels log absolute syllable nucleus

Table 4: Probability of variables from each annotation layer at the top twelve tree levels

Level P(Phoneme) P(Syllable) P(Word) P(Phrase) P(Utterance) P(Discourse)
∑

1 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000
2 0.4101 0.0791 0.4820 0.0144 0.0144 0.0000 1.0000
3 0.4113 0.0493 0.3941 0.1404 0.0025 0.0025 1.0000
4 0.4052 0.0507 0.4298 0.0897 0.0145 0.0101 1.0000
5 0.3728 0.0310 0.4281 0.1294 0.0310 0.0077 1.0000
6 0.3936 0.0330 0.3729 0.1460 0.0348 0.0198 1.0000
7 0.3952 0.0316 0.3416 016.27 0.0383 0.0306 1.0000
8 0.4338 0.0408 0.3168 013.47 0.0397 0.0342 1.0000
9 0.4140 0.0440 0.3299 014.10 0.0543 0.0168 1.0000
10 0.4180 0.0384 0.3250 014.77 0.0561 0.0148 1.0000
11 0.3958 0.0545 0.3189 015.22 0.0529 0.0256 1.0000
12 0.4096 0.0422 0.3293 014.46 0.0562 0.0181 1.0000

ten trees. However, the phoneme and word layer attributes
are the attributes most commonly used in the higher levels
of the trees. The top ranking utterance layer attribute is a
vowel-based duration measure showing up at place 50 using
the first ranking strategy and on place 46 using the second
ranking strategy. The top discourse layer attribute is also
a vowel-based duration measure and shows up at place 31
and 35, respectively.

Theword frequencyandword predictabilityattributes both
get ranks around 110. The relatively weak predictive
strength of these variables may be due to the fact that they
are obscured by thefunction wordvariable, which gets high
ranks. Further, theword frequencyand word predictab-
ility measures are estimated from a corpus of transcribed
speech, relatively small in comparison to standard text cor-
pora. These measures may be improved with text data.

A large variety of the duration and pitch based measures
are represented among the variables used by the optimal
trees (the first measure based on pitch shows up at place
42 using the fist ranking strategy and on place 55 using the
second ranking strategy). Most of the duration measures
seem to be nearly equivalent in terms of predictive power,
with vowel-based measures working somewhat better over
larger units. Units on higher order layers are both larger in
terms of duration and conceptually more abstract than units
on lower order layers. Because of this, it is not possible to
make exact predictions from higher order layer units only

and attributes from these levels end up in the lower levels
of the decision trees, as a result of the ‘greedy’ induction
algorithm used.

5.5. Effects of Noise

The erroneous classifications possible for a phoneme are
limited to the set of realisations for the phoneme found in
the training data. Both training and evaluation data contain
up to 15.5% errors on the phone level, as previously dis-
cussed. Since the phone string is generated by an automatic
transcription system with a priori restrictions on the pos-
sible realisations of each phoneme, the range of variation is
probably less than it would have been if the transcripts had
been produced by a human. It is not immediately obvious
whether this translates into lower phone error rates for the
pronunciation variation models than would have been the
case if the phones in the training and evaluation data had
been supplied by a human transcriber.

5.6. Gold Standard Evaluation

Although it is hard to speculate about how the model per-
formance would be affected by more accurate training data,
the transcriptions generated by the current models can be
evaluated against actual target transcriptions. When eval-
uated against the small gold standard consisting of five
minutes of manually transcribes speech from the VAKOS
database, the models produce a PER of 16.9%, which
means that the deterioration in performance when using the

7

model instead of the automatic transcription system is only
8.5% and that the improvement using the model instead of
the phoneme string is 34.9%

6. Conclusions
In this paper, two related spoken language-oriented pro-
jects have been described, each dealing with the issue of
integrating linguistic information from multiple sources.
First, the work with developing a multi-purpose central lex-
icon database including phonemic representations was de-
scribed. The central ideas behind this project are central
availability and incremental development. Tools for facil-
itating continuous and simultaneous lexicon development
have been created.
Second, a project aimed at modelling phone-level pronunci-
ation in discourse context was presented. A data-driven ap-
proach was taken for this task and the work involved annot-
ating spoken language with linguistic and related informa-
tion ranging from the discourse level down to articulatory
feature level. Annotation was structured in six layers: 1) a
discourse layer, 2) an utterance layer, 3) a phrase layer, 4) a
word layer, 5) a syllable layer and 6) a phoneme layer. The
layers were segmented into their specific unit types and lin-
guistic information was attached to each unit at each level.
The resulting annotation was used for machine learning of
models describing variation in phoneme realisation. Us-
ing the phoneme as the primary unit, a set of training in-
stances, essentially being context-sensitive phonemes, were
created. Each instance contained information about the cur-
rent phoneme and about the current unit in all annotation
layers above. Instances also contained information about
the sequential context of the current unit in each layer.
In the evaluation of models created from the multi-layer
linguistic annotation, emphasis was put on the effects of
adding information of different types to the training data in
addition to phoneme-level variables. It was shown that in-
cluding information from multiple layers improves model
performance, most notably for spontaneous speech, where
the predictive power of phonological and grammatical in-
formation is relatively low.
Attributes from all layers of annotation were used in the
models with the highest prediction accuracy and as many as
470 out of 516 available attributes were actually used by at
least one of the models (optimally pruned decision trees) in
a tenfold cross validation experiment. The optimal models
produced an average phone error rate of 8.1%, which is an
improvement with 60.2% compared to using the phoneme
string for estimating phone-level realisation. A comparison
between models trained only on phone layer attributes and
models trained on attributes from all layers showed that the
prediction accuracy could be improved by 42.6% by adding
attributes for units above the phoneme layer.
The classification keys used at model training were gener-
ated by an automatic transcription system with access to the
speech signal. Evaluated against gold standard transcrip-
tions, the models produced a phone error rate of 16.9%.
This means that the deterioration in performance when us-
ing the model instead of the automatc transcription system
is only 8.5% and that the improvement using the model in-
stead of a phoneme string from a lexicon is 34.9%.

Acknowledgements
The research reported in this paper is carried out at the
Centre for Speech Technology, a competence centre at
KTH, supported by VINNOVA (the Swedish Agency for
Innovation Systems), KTH and participating Swedish com-
panies and organisations.

7. References
J. Allwood, L. Gr̈onqvist, E. Ahlśen, and M. Gunnarsson.

2002. G̈oteborgskorpusen för talspr̊ak (The G̈oteborg
spoken language corpus). InNydanske Sprogstudier 30,
pages 39–58. København: Akademisk Forlag.

R. Bannert and P. E. Czigler. 1999.Variations in conson-
ant clusters in standard Swedish. Phonum 7, Reports in
Phonetics. Ume̊a: Ume̊a University.

C. Borgelt. 2004. Dtree. http://fuzzy.cs.uni-
magdeburg.de/∼borgelt/dtree.html.

G. Bruce. 1986. Elliptical phonology. InPapers from the
Scandinavian Conference on Linguistics, pages 86–95.

M. Finke and A. Waibel. 1997. Speaking mode de-
pendent pronunciation modeling in large vocabulary
conversational speech recognition. InProceedings of
Eurospeech, pages 2379–2382.

E. Fosler-Lussier and N. Morgan. 1999. Effects of speaking
rate and word frequency on pronunciations in conversa-
tional speech.Speech Communication, 29(2–4):137–158.

E. Gårding. 1974. Sandhiregler för svenska konsonanter
(Sandhi rules for Swedish consonants). InSvenskans be-
skrivning 8, pages 97–106.

P. A. Jande. 2003. Phonological reduction in Swedish. In
Proceedings of ICPhS, pages 2557–2560.

P. A. Jande. 2005. Inducing decision tree pronunciation
variation models from annotated speech data. InPro-
ceedings of Interspeech, pages 1945–1948.

D. Jurafsky, A. Bell, M. Gregory, and W. Raymond. 2001a.
Probabilistic relations between words: Evidence from re-
duction in lexical production. In J. Bybee and P. Hopper,
editors,Frequency and the emergence of linguistic struc-
ture, pages 229–254. Amsterdam: John Benjamins.

D. Jurafsky, A. Bell, M. L. Gregory, and W. D. Ray-
mond. 2001b. The effect of language model probability
on pronunciation reduction. InProceedings of ICASSP,
volume 2, pages 2118–2121.

R. Lopez de Mantaras. 1991. A distance-based attribute
selection measure for decision tree induction.Machine
Learning, 6(1):81–92.

B. Megyesi. 2002. Shallow parsing with PoS taggers and
linguistic features.Journal of Machine Learning Re-
search, 2:639–668.

K. Sjölander and J. Beskow. 2000. WaveSurfer – a pub-
lic domain speech tool. InProceedings of ICSLP, pages
464–467.

K. Sjölander. 2003. An HMM-based system for automatic
segmentation and alignment of speech. InProceedings
of Fonetik, pages 93–96.

C. P. J. Van Bael, H. van den Heuvel, and H. Strik. 2004.
Investigating speech style specific pronunciation vari-
ation in large spoken language corpora. InProceedings
of ICSLP, pages 586–589.

8

Argument Structure in TimeML

James Pustejovsky, Jessica Littman, Roser Saurı́

Computer Science Department, Brandeis University
415 South Street

Waltham, MA 02454
{jamesp, jlittman, roser}@cs.brandeis.edu

Abstract
TimeML is a specification language for the annotation of events and temporal expressions in natural language text. In addition, the
language introduces three relational tags linking temporal objects and events to one another. These links impose both aspectual and
temporal ordering over time objects, as well as mark up subordination contexts introduced by modality, evidentiality, and factivity.
Given the richness of this specification, the TimeML working group decided not to include the arguments of events within the language
specification itself. Full reasoning and inference over natural language texts clearly requires knowledge of events along with their
participants. In this paper, we define the appropriate role of argumenthood within event markup and propose that TimeML should make
a basic distinction between arguments that are events and those that are entities. We first review how TimeML treats event arguments in
subordinating and aspectual contexts, creating event-event relations between predicate and argument. As it turns out, these constructions
cover a large number of the argument types selected for by event predicates. We suggest that TimeML be enriched to include certain
temporally-related discourse relations, such as those that involve causal predicates, since these also involve event-event relations. We
propose that all other verbal arguments be ignored by the specification, and any predicate-argument binding of participants to an event
should be performed by independent means. In fact, except for the event-denoting arguments handled by the extension to TimeML
proposed here, almost full temporal ordering of the events in a text can be computed without argument identification.

1. Introduction

TimeML, an annotation scheme for capturing temporal in-
formation, is used to create a temporal abstraction of what
is presented in natural language text. The result both an-
chors and orders events with respect to time. This tells us
what is happening when but not who is involved. To answer
the question Who does what when? we must extend the an-
notation to include arguments of events such as entities or
other events.

However, the goal of a TimeML annotation remains the
capture of temporal information and entities are not tem-
poral objects. In addition, there have already been great
strides in the area of entity recognition. Rather than recre-
ating that work and, thereby, extending the TimeML speci-
fication far beyond what it was desgined for, we propose a
much smaller extension to TimeML that will allow for the
merging of other annotation schemes that already specialize
in this area.

In this paper, we begin with a brief overview of what
TimeML currently is. Section 3. describes a way in which
TimeML already deals with eventive arguments. In section
4., we describe another proposed extension to TimeML,
the discourse link, which can also take advantage of other
annotations such as the one provided in GraphBank. Fi-
nally, in section 5., we present the new ARGLINK tag and
describe some ways in which linguistic information from
other sources can be used.1

1This paper originally appeared in the Dagstuhl Seminar
Proceedings (Pustejovsky et al., 2006). It has been up-
dated for this workshop. The original text can be found at
http://drops.dagstuhl.de/opus/volltexte/2006/449/.

2. Overview of the Current TimeML
Specification

The TimeML specification language provides a standard for
capturing all temporal information in a natural language
text. This includes temporal expressions, events, and the
relationships they share. To achieve such an annotation,
TimeML uses four main tag types that fall into two cat-
egories, those that consume text and those that do not.
TIMEX3, SIGNAL, and EVENT fall into the former group.
The non-consuming tags are primarily of the LINK type
with the exception of MAKEINSTANCE, a tag which com-
pletes the annotation of events. In the subsections that fol-
low, we briefly describe each of these tags.

2.1. Temporal Expressions
TimeML expands on earlier attempts to annotate temporal
expressions (Mani and Wilson, 2000; Schilder and Habel,
2001), with the introduction of the TIMEX3 tag. Specifi-
cally, TIMEX3 adds functionality to the TIMEX2 standard
(Ferro et al., 2001).
Temporal expressions in TimeML fall into four categories:
DATEs, TIMEs, DURATIONs, and SETs. A DATE is any
calendar expression such as July 3 or February, 2005. The
annotation of such examples includes a value attribute
that specifies the contents of the expression using the ISO
8601 standard. The example in (1) shows the annotation of
a fully specified DATE TIMEX3.

(1) a. April 7, 1980

b. <TIMEX3 tid="t1" type="DATE"

value="1980-04-07"

temporalFunction="false">

April 7, 1980

</TIMEX3>

9

April 7, 1980 is a fully specified temporal expression be-
cause it includes all of the information needed to give its
value. Many temporal expressions are not fully specified
and require additional information from other temporal ex-
pressions to provide their full value. We will say more
about the annotation of these expressions shortly, but, for
now, notice that the annotation in (1) includes an attribute
called temporalFunction and that it is set to “false”.
When a temporal expression requires more information to
complete its annotation, this attribute is set to “true” to indi-
cate that a temporal function will be used. For more on this
process, refer to the section below on temporal functions.
While the DATE type is used to annotate most calendar ex-
pressions, the TIME type is used to capture expressions
whose granularity is smaller than one day. Examples of
this include 4:20 and this morning. Example (2) shows the
annotation of a fully specified TIME TIMEX3. Notice that
for a TIME to be fully specified, it must include date infor-
mation as well.

(2) a. 10:30am April 7, 1980

b. <TIMEX3 tid="t1" type="TIME"

value="1980-04-07T10:30"

temporalFunction="false">

10:30am April 7, 1980

</TIMEX3>

Expressions such as for three months include a DURA-
TION TIMEX3. The value attribute of a DURATION
again follows the ISO 8601 standard. For example, three
months receives a value of “P3M”. Occasionally, a DU-
RATION will appear anchored to another temporal expres-
sion. Since TimeML strives to annotate as much temporal
information as possible, this information is also included
in the annotation of a DURATION with the beginPoint
and endPoint attributes as shown in (3).

(3) a. two weeks from December 17, 2005

b. <TIMEX3 tid="t1" type="DURATION"

value="P2W"

beginPoint="t2" endPoint="t3">two

weeks</TIMEX3>

c. <TIMEX3 tid="t2" type="DATE"

value="2005-12-17">

December 17, 2005</TIMEX3>

d. <TIMEX3="t3" type="DATE"

value="2005-12-31"

temporalFunction="TRUE"

anchorTimeID="t1"/>

The example in (3a) contains to temporal expressions sepa-
rated by a signal (see subsection 2.3.). The first, two weeks,
is annotated as a DURATION. The second, December 17,
2005, is a fully specified DATE. Every TIMEX3 annotation
includes an identification number. This number is used to
relate the temporal expression to other TimeML objects. In
this case, the identification value in (3c), “t2”, is included
in the annotation of two weeks as the beginPoint of the

duration. With this information, the endPoint of the du-
ration can be calculated. An additional TIMEX3 is cre-
ated to hold its value. This is the TIMEX3 given in (3d).
Since the value of the new TIMEX3 must be calculated,
temporalFunction is set to “true” and a temporal an-
chor is suppled. This new attribute will be explained below.
The final type of TIMEX3 is used to capture regularly re-
curring temporal expressions such as every three days. This
type, SET, uses the attributes quant and freq to anno-
tated quantifiers in an expression and the frequency of the
expression, respectively. An example is given in (4).

(4) a. two days every week

b. <TIMEX3 tid="t1" type="SET"

value="P2D" quant="EVERY"

freq="1W">two days every

week</TIMEX3>

2.1.1. Temporal Functions
When a temporal expression is not fully specified, it re-
quires the use of a temporal function to calculate its
value. In a manual annotation, the user provides a partic-
ular anchor time ID that supplies the missing information.
The user then gives the correctly calculated value for the
TIMEX3. In automatic annotation, a library of temporal
functions is used to perform the calculation.
The example in (3d) shows an annotation that uses a tem-
poral function. In this case, the end point of a duration was
calculated using the beginPoint and value of the dura-
tion given in (3b). For the new temporal expression in (3d),
the temporalFunction attribute is set to “TRUE” and
the tid for the duration is given as the anchorTimeID.
Finally, the correct value is supplied. This same process
is used for temporal expressions that are missing informa-
tion such as April 7, which is missing the year, and for rel-
ative temporal expressions such as today.

2.2. Events
Events that can be anchored or ordered in time are captured
with TimeML. Such events are predominantly verbs, but
nouns, adjectives, and even some prepositions can also be
eventive. The annotation of TimeML events is a two part
process. First, they are tagged with the EVENT tag. This
tag has two attributes: an ID number and an event class.
The classification of an event can help determine what re-
lationships that event may participate in. For example, an
event classified as REPORTING will be the first element of
an evidential SLINK (see the subsection on Subordinating
Links in section 2.4.). There are seven event classes:

• REPORTING: say, report, tell

• PERCEPTION: see, watch, hear

• ASPECTUAL: initiate, terminate, continue

• I ACTION: try, investigate, promise

• I STATE: believe, want, worry

• STATE: on board, live, seek

10

• OCCURRENCE: land, eruption, arrive

Several of these classes introduce an event argument and
are of particular interest to the work in this paper. The
TimeML Annotation Guidelines (Saurı́ et al., 2005b) detail
exactly which events fall into which classes.

2.2.1. Instances of Events
Besides the classification of an event, natural language doc-
uments supply much more information about events that we
need to represent in an accurate annotation. In addition to
the head of the event that is captured in the text, an event
may include further tense and aspect indicators or modi-
fiers that affect its modality or polarity. This information is
captured with MAKEINSTANCE, a non-consuming timeML
tag. Every event in TimeML has at least one instance an-
notated with this tag. A separate tag is used because one
mention of an event in text can actually refer to multiple
instances, as in example (5).

(5) John swims on Monday and Tuesday.

Here, there is one mention of swim that is tagged as an OC-
CURRENCE EVENT. TimeML will try to link this event
to the temporal expressions also present in the sentence.
However, it is clear that the swim event that takes place on
Monday is not the same one that takes place on Tuesday.
Instead, it is an instance of the event that is anchored to
each temporal expression.
Instances of events can also have different tense, aspect,
polarity, or modality properties. Again, this information is
captured with the MAKEINSTANCE tag. Once an event has
an instance annotated, that instance is elligible to take part
in a LINK tag to show what relationship it has with other
temporal objects (refer to section 2.4.).

2.3. Signals
When temporal objects are related to each other, there is of-
ten an additional word present whose function is to specify
the nature of that relationship. These words are captured
with the SIGNAL tag, which has one attribute that provides
an identification number. Example (6) shows a typical use
of preposition at as SIGNAL, and a complete annotation of
all the temporal objects present.

(6) a. The bus departs at 3:10 pm.

b. The bus

<EVENT eid="e1" class="OCCURRENCE">

departs

</EVENT>

<MAKEINSTANCE eiid="ei1"

eventID="e1" pos="VERB"

tense="PRESENT" aspect="NONE"

polarity="POS"/>

<SIGNAL sid="s1">

at

</SIGNAL>

<TIMEX3 tid="t1" type="TIME"

value="XXXX-XX-XXT15:10">

3:10pm

</TIMEX3>

2.4. Links
TimeML uses three varieties of LINK tag to represent rela-
tionships among temporal objects. In all cases, the LINK
tag is non-consuming as there may not be any explicit text
to capture or the relationship could be between objects
whose locations vary greatly. Each link tag comes with a
set of relation types to specify the nature of the relation-
ship. In the following paragraphs, we briefly describe each
of these tags: TLINK, ALINK, and SLINK.

2.4.1. Temporal Relationships
All temporal relationships are represented with the TLINK
tag. TLINK can be used to annotate relationships between
times, between events, or between times and events. In this
way, TimeML can both anchor and order temporal objects.
A signalID can also be used in a TLINK if it helps to de-
fine the relationship. The TLINK in example (7) completes
the annotation of The bus departs at 3:10pm.

(7) <TLINK lid="l1" eventInstanceID="ei1"
relatedToTime="t1"
signalID="s1" relType="IS INCLUDED"/>

The possible relType values for a TLINK are based on
Allen’s thirteen relations (Allen, 1984). TLINK is also used
to assert that two event instances refer to the same event
using the IDENTITY relType.

2.4.2. Aspectual Links
Events classified as ASPECTUAL introduce an ALINK.
The ALINK represents the relationship between an aspec-
tual event and its argument event. This is an example of one
way that TimeML already deals with event arguments.

2.4.3. Subordinating Links
As mentioned in section 2.2., certain event classes intro-
duce a subordinated event argument. Some examples are
verbs like claim, suggest, promise, offer, avoid, try, delay,
think; nouns like promise, hope, love, request; and adjec-
tives such as ready, eager, able, afraid. In the following
sentences, the events selecting for an argument of situation
or proposition type appear in bold face, whereas the corre-
sponding argument is underlined:

(8) a. The Human Rights Committee regretted that dis-
crimination against women persisted in practice.

b. Uri Lubrani also suggested Israel was willing to
withdraw from southern Lebanon.

c. Kidnappers kept their promise to kill a store
owner they took hostage.

In TimeML, subordination relations between two events
are represented by means of a Subordinating Links (or
SLINKs). The SLINK tag is perhaps the best exam-
ple of the current treatment of arguments in TimeML.
Reference to each event is expressed by a pointer to
them (through the attributes eventInstanceID and
subordinatedEventInstance), and the relation
type is conveyed by means of the attribute relType,
which captures the type of modality projected in each
case onto the event denoted by the subordinated clause.
relType can be any of the following types:

11

1. FACTIVE: When the argument event is entailed or
presupposed. Here is an annotated example:2

(9) a. The Human Rights Commitee regretted that
discrimination against women persisted in
practice.

b. The Human Rights Committee
<EVENT eID="e1" class="I ACTION">
regretted
</EVENT>
that discrimination against
women
<EVENT eID="e2"
class="ASPECTUAL">
persisted
</EVENT>
in practice.
<SLINK eventInstanceID="e1"
subordinatedEventInstance="e2"
relType="FACTIVE"/>

2. COUNTERFACTIVE: When the main predicate presup-
poses the non-veracity of its argument:

(10) a. A Time magazine reporter avoided jail at the
last minute...

b. A Time magazine reporter
<EVENT eID="e1" class="I ACTION">
avoided
</EVENT>
<EVENT eID="e2" class="STATE">
jail
</EVENT> at the last minute...
<SLINK eventInstanceID="e1"
subordinatedEventInstance="e2"
relType="COUNTERFACTIVE"/>

3. EVIDENTIAL: Typically introduced by REPORTING

or PERCEPTION events, such as tell, say, report and
see, hear, respectively.

4. NEGATIVE EVIDENTIAL: Introduced by REPORTING

and PERCEPTION events conveying negative polarity;
e.g., deny.

5. MODAL: For annotating events introducing a reference
to possible world.

(11) a. Uri Lubrani also suggested Israel was willing
to withdraw from southern Lebanon.

b. Uri Lubrani also
<EVENT eID="e1" class="I ACTION">
suggested
</EVENT>
Israel was
<EVENT eID="e2" class="I STATE">
willing
</EVENT>
to

2For the sake of simplicity, in this and the following examples
we obviate the annotation of MAKEINSTANCE tags.

<EVENT eID="e3"
class="OCCURRENCE">
withdraw
</EVENT>
from southern Lebanon.
<SLINK eventInstanceID="e1"
subordinatedEventInstance="e2"
relType="MODAL"/>
<SLINK eventInstanceID="e2"
subordinatedEventInstance="e3"
relType="MODAL"/>

The following section goes into the detail of how SLINKs
account for some arguments.

3. Events and their Participants
We will assume for our discussion that events can be repre-
sented as first order individuals, existentially quantified in
a neo-Davidsonian manner where participants to the event
are conjoined relations between individuals and the event
(Davidson, 1967; Parsons, 1990). For each event, e, we
will identify the participants to this event with a three-place
relation, Arg:

(12) λk: intλx: indλe: event[Arg(k, e, x)]

Rather than labeling arguments with specific named seman-
tic functions, such as agent, patient, and instrument, we
identify the argument by an index, k. The idea is that a
post-parsing procedure will identify the appropriate seman-
tic role played by an argument.
Both named entity arguments and event arguments are ex-
pressible in this fashion. For example, for the sentence in
(13a), the participants are directly identified by their indices
1 and 2, respectively, but not functionally, as Agent and Pa-
tient.

(13) a. John kissed Mary.

b. ∃e[kiss(e) ∧ Arg(1, e, j) ∧ Arg(2, e,m)]

Notice that the current TimeML representation of (13a)
identifies the event predicate but not its arguments.

(14) John

<EVENT eid="e1" class="OCCURRENCE">

kissed

</EVENT>

<MAKEINSTANCE eiid="ei1" eventID="e1"

pos="VERB"

tense="PAST" aspect="NONE"

polarity="POS"/>

Mary.

With the addition into TimeML of an Arg-relation, we
would be able to identify the entity participants as repre-
sented in (13b) above. This should be done cautiously,
however, without complicating the specification language
or making the annotation task more difficult than it already
is. We will take up this issue in Section 5 below.
By design, TimeML treats predicates that select for event
arguments differently from those taking named entities. For

12

example, the event-embedding predicate see, in most cases,
allows the same simple conjunctive representation over ar-
guments that we saw in (13b), assuming the argument is
extensional.3

(15) a. John saw Mary fall.

b. ∃e1∃e2[see(e1)∧Arg(1, e1, j)∧Arg(2, e1, e2)∧
fall(e2) ∧ Arg(1, e2,m)]

In the next section, we turn to the question of how to gen-
eralize the encoding of an event argument as expressed in
TimeML through SLINKs.

3.1. SLINK Encodes Partial Argument Structure
According to the TimeML specification, predicates in natu-
ral language that are encoded as introducing SLINKs in fact
already identify the embedded complement as an argument
to the verb.
For example, the TimeML markup of (16a) explicitly iden-
tifies the embedded complement (verb) as a subordinated
argument to the event regret.

(16) a. John regretted that Sue marrried Bill.

b. John

<EVENT eID="e1" class="I ACTION">

regretted

</EVENT>

that Sue

<EVENT eID="e2" class="OCCURRENCE">

married

</EVENT>

Bill.

<SLINK eventID="e1" subEventID="e2"

relType="FACTIVE"/>

As it happens, with a factive predicate such as regret we can
existentially quantify the event representing the embedded
complement of the SLINK predicate. A first-order neo-
Davidsonian representation of this sentence would, there-
fore, look like the following:

(17) ∃e1∃e2[regret(e1)∧Arg(1, e1, j)∧Arg(2, e1, e2)∧
marry(e2) ∧ Arg(1, e2, s) ∧ Arg(2, e2, b)]

The current TimeML representation of this sentence, how-
ever, expressed as a first-order expression, is closer to that
shown in (18), since no entity arguments are represented in
TimeML.

(18) ∃e1∃e2[regret(e1) ∧ Arg(2, e1, e2) ∧ marry(e2)]

For all other modality-introducing predicates, TimeML
is generally descriptively adequate in differentiating the
modal force of the complement expression. For example,
the SLINK predicate believe is annotated as (19b) below.

(19) a. John believes that Bill went to Japan.

3We assume that the typing on the Arg relation can be gener-
alized to allow events as arguments.

b. Mary

<EVENT eID="e1" class="I ACTION">

believes

</EVENT>

that Bill

<EVENT eID="e2" class="OCCURRENCE">

went

</EVENT>

to Japan.

<SLINK eventID="e1" subEventID="e2"

relType="MODAL"/>

The modal subordination introduced by the propositional
attitude predicate believe is represented by an SLINK with
a relType value of MODAL. To model this, we will in-
troduce a special first order variable, ê, effectively encoding
the modality of the event and the domain of its subordina-
tion. On this strategy, a first order expression representing
the partial argument structure of (19b) would be that shown
in (20).4

(20) ∃e∃ê[believe(e) ∧ Arg(2, e, ê) ∧ go(ê)]

4. Encoding Discourse Relationships in
TimeML

One aspect of adding more arguments to TimeML is to cap-
ture a limited number of temporally-related discourse rela-
tions. This is done with a new kind of link, DLINK, with
relationship types such as narrative and causal. Here, as an
example, we focus on causal DLINKs, which involve the
class of predicates that introduce causal relations between
events explicitly in their lexical semantics.
The representation of causation between event denoting ex-
pressions within the same sentence is common in natu-
ral languages. For example, the following sentences ex-
press causal (and hence temporal) relations between events,
which are largely ignored in TimeML.

(21) a. [The rain]e1 caused [the flooding]e2.
b. [The rioting]e1 led to [curfews]e2.
c. [Fifty years of peace]e1 brought about [great
prosperity]e2.

To capture this relation, we make use of the new DLINK in
order to express the causal relation between two events.

<DLINK>
attributes ::= [lid] [origin]

[eventInstanceID] signalID
relatedToEventInstance relType

lid ::= ID
{lid ::= LinkID
LinkID ::= l<integer>}
origin ::= CDATA
eventInstanceID ::= IDREF
{eventInstanceID ::= EventInstanceID}
relatedToEventInstance ::= IDREF
{relatedToEventInstance ::=

4This is similar to the first order representations in
DAML for modal subordination (Jerry Hobbs (p.c); cf.
http://www.daml.org/ontologies/.

13

EventInstanceID}
signalID ::= IDREF
{signalID ::= SignalID | EventInstanceID}
relType ::= ’CAUSES’|’NARRATIVE’

This solution can be adopted for the following verbs, in
their causative senses: cause, stem from, lead to, breed,
engender, hatch, induce, occasion, produce, bring about,
produce, secure.
Now, a sentence such as (22a) can be explicitly annotated
as involving a causal relation, as follows:

(22) a. The rioting led to curfews on November 22, 2004.

b. The

<EVENT eid="e1" class="OCCURRENCE">

rioting

</EVENT>

<MAKEINSTANCE eiid="ei1"

eventID="e2" tense="NONE"

aspect="NONE"/>

<EVENT eid="e2" class="CAUSE">

led

</EVENT>

<MAKEINSTANCE eiid="ei2"

eventID="e2" tense="PAST"

aspect="NONE"/>

to

<EVENT eid="e3" class="OCCURRENCE">

curfews

</EVENT>

<MAKEINSTANCE eiid="ei3"

eventID="e2" tense="NONE"

aspect="NONE"/>

on

<TIMEX3 tid="t1" type="DATE

value="2004-11-22">

November 22, 2004

</TIMEX3>.

<DLINK eventInstanceID="ei1"

relatedToEventInstance="ei3"

relType="CAUSES" signalID="ei2"/>

<TLINK eventInstanceID="ei3"

relatedToTime="t1"

reltype="IS INCLUDED"/>

Note that both the subject and object event expressions are
syntactically arguments to the causal predicate. In this case,
the Arg relation is not operative since the matrix predicate
is itself a realization of a Cause relation directly:

(23) a. The rioting led to curfews.

b. ∃e1∃e2[rioting(e1)∧Cause(e1, e2)∧curfews(e2)]

It is important to note that there are many cases where cau-
sation, expressed through explicit causative predicates such
as those mentioned above, is not syntactically a relation be-
tween two events, but a relation between an individual and
an event. Consider the sentences below:

(24) a. [John]x caused [a fire]e2.
b. [The drug]x induced [a seizure]e2.

In such cases of event metonymy (Pustejovsky, 1989;
Pustejovsky, 1995), we will introduce a skolemized event
instance, ei1, to act as the proxy in the causation relation.
Hence, the TimeML for (24a) would be as follows:

(25) John

<MAKEINSTANCE eiid="ei1" eventID="NONE"

tense="NONE"

aspect="NONE"/>

<EVENT eid="e2" class="CAUSE">

caused

</EVENT>

<MAKEINSTANCE eiid="ei2" eventID="e2"

tense="PAST"

aspect="NONE"/>

a

<EVENT eid="e3" class="OCCURRENCE">

fire

</EVENT>

<MAKEINSTANCE eiid="ei3" eventID="e3"

tense="NONE"

aspect="NONE"/>

<DLINK eventInstanceID="ei1"

relatedToEventInstance="ei3"

relType="CAUSES" signalID="ei2"/>

The interpretation of John as the agent of an event involved
in the causation is out of the scope of TimeML; it would be
the responsibility of subsequent semantic interpretation to
bind the entity John to the causing event.

5. Binding Entity Arguments in TimeML
In this section, we propose an extension to the current spec-
ification of TimeML to accommodate the treatment of en-
tity arguments. Our goal is to avoid any explicit mention of
entities within the TimeML markup. There are two reasons
for this move: first, entity arguments are not temporally
sensitive text extents, unlike event-denoting predicates and
temporal expressions; secondly, we wish to avoid compli-
cating the TimeML specification. Therefore, our strategy
will be to accomplish the argument binding independent of
the event tag itself. Currently, the EVENT tag is defined as
follows:

<EVENT>
attributes ::= eid class
eid ::= ID
{eid ::= EventID
EventID ::= e<integer>}
class ::= ’OCCURRENCE’ | ’PERCEPTION’

| ’REPORTING’ | ’ASPECTUAL’
| ’STATE’ | ’I_STATE’ | ’I_ACTION’

On our approach, this need not change. Rather than add an
argument list to the event —similar to the SUBCAT list in
HPSG (Pollard and Sag, 1994)— we will treat the binding
of particpants to events in a parallel fashion to the treat-
ment of event ordering; by introducing a new linking rela-
tion, called ARGLINK. This will encode, in TimeML, the
binding accomplished by the Arg relation defined in (12)
above.

14

<ARGLINK>
attributes ::= alid [origin]

eventInstanceID ArgID
alid ::= ID
{alid ::= ArgLinkID
ArgLinkID ::= al<integer>}
origin ::= CDATA
eventInstanceID ::= IDREF
{eventInstanceID ::= EventInstanceID}
ArgID ::= IDREF
{ArgID ::= EntityID}

Now let us see how the two participants in sentence (26),

(26) John kissed Mary.

can be represented, using the ARGLINK tag. Recall that
the desired logical form for this sentence is:

(27) ∃e[kiss(e) ∧ Arg(1, e, j) ∧ Arg(2, e, m)]

Assuming that the named entities in (26) have been iden-
tified and indexed, we can express the bindings shown in
(27) as the two ARGLINKs below:

(28) John (ai1)

<EVENT eid="e1" class="OCCURRENCE">

kissed

</EVENT>

<MAKEINSTANCE eiid="ei1" eventID="e1"

pos="VERB"

tense="PAST" aspect="NONE"

polarity="POS"/>

Mary (ai2).

<ARGLINK alid="al1"

eventInstanceID="ei1" ArgID ="ai1"/>

<ARGLINK alid="al2"

eventInstanceID="ei1" ArgID ="ai2"/>

The actual annotation and indexing of entity arguments can
be carried out with the help of a robust parser such as RASP
(Briscoe and Carroll, 2002). Within the TimeML anno-
tation, ARGLINK will simply declare that a particular en-
tity is a participant in a given event instance. The semantic
role of arguments (e.g. who is the kisser and who is being
kissed) is left underspecified, but it can be later identified
along the lines of current research on semantic role labeling
(Gildea and Jurafsky, 2002; Gildea and Palmer, 2002; Car-
reras and Màrquez, 2005); that is, based on knowledge in-
duced from corpora annotated for argument structure, such
as FrameNet (Fillmore et al., 2001) or PropBank (Palmer et
al., 2005), along with some extensions to Evita (Saurı́ et al.,
2005a), our TimeML compliant, open-domain event recog-
nizer, so that it identifies sentence voice (active or passive).
The end result will include both information on what enti-
ties participate in what events, and what are their semantic
roles.

6. Conclusion
In this paper, we discussed the role of arguments in
TimeML, an event annotation specification language, and

explored possible ways to account for event argument
structure without resulting in an overloaded annotation.
We first described how TimeML handles event arguments
in subordinating and aspectual contexts, where SLINKs
and ALINKs create event-event relations between a pred-
icate and an event-denoting argument. We proposed that
TimeML be enriched slightly to include discourse relations
such as causal predicates (DLINK), since these also involve
event-event relations. Finally, we enriched the TimeML
specification by introducing ARGLINK, a linking mech-
anism allowing entities to be identified with the event they
participate in. This resource connects TimeML annotation,
which handles event and temporal information, with argu-
ment structure-annotated resources such as PropBank and
FrameNet, and consequently allows avoiding argument tag-
ging as part of the TimeML spec, a move that would over-
load the annotation effort. Using components from other
annotation schemes that account for event argument struc-
ture is therefore an optimal alternative in order to enrich the
description of events in TimeML.

7. References
James Allen. 1984. Towards a general theory of action and

time. Artificial Intelligence, 23:123–154.
Ted Briscoe and John Carroll. 2002. Robust accurate sta-

tistical annotation of general text. In Proceedings of the
Third International Conference on Language Resources
and Evaluation, pages 1499–1504.

Xavier Carreras and Lluı́s Màrquez. 2005. Introduction to
the conll-2005 shared task: Semantic role labeling. In
Proceedings of the Ninth Conference on Computational
Natural Language Learning (CoNLL-2005), pages 152–
164.

Donald Davidson. 1967. The logical form of action sen-
tences. In The Logic of Decision and Action.

Lisa Ferro, Inderjeet Mani, Beth Sundheim, and George
Wilson. 2001. Tides temporal annotation guidelines.
Technical Report Version 1.0.2, MITRE Technical Re-
port. MTR 01W0000041.

Charles J. Fillmore, Charles Wooters, and Collin F. Baker.
2001. Building a large lexical databank which provides
deep semantics. In Proceedings of the Pacific Asian Con-
ference on Language, Informa tion and Computation.

Daniel Gildea and Daniel Jurafsky. 2002. Automatic la-
beling of semantic roles. Computational Linguistics,
28(3):245–288.

Daniel Gildea and Martha Palmer. 2002. The necessity
of parsing for predicate argument recognition. In Pro-
ceedings of the 40th Annual Meeting of the Association
for Computational Linguistics (ACL), pages 239–246,
Philadelphia, PA.

Inderjeet Mani and George Wilson. 2000. Robust tempo-
ral processing of news. In Proceedings of the 38th An-
nual Meeting of the ACL (AC L2000), pages 69–76, New
Brunswick, New Jersey.

Martha Palmer, Dan Gildea, and Paul Kingsbury. 2005.
The proposition bank: An annotated corpus of semantic
roles. Computational Linguistics, 31(1).

Terence Parsons. 1990. Events in the Semantics of English.
MIT Press, Cambridge, MA.

15

Carl Pollard and Ivan Sag. 1994. Head-Driven Phrase
Structure Grammar. CSLI, Stanford, CA.

James Pustejovsky, Jessica Littman, and Roser Saurı́. 2006.
Argument structure in timeml. In Graham Katz, James
Pustejovsky, and Frank Schilder, editors, Dagstuhl Semi-
nar Proceedings, Germany. Internationales Begegnungs-
und Forschungszentrum (IBFI), Schloss Dagstuhl.
http://drops.dagstuhl.de/opus/volltexte/2006/449/.

James Pustejovsky. 1989. Current issues in computational
lexical semantics. In ACL89, pages xvii–xxv.

James Pustejovsky. 1995. The Generative Lexicon. MIT
Press, Cambridge, MA.

Roser Saurı́, Robert Knippen, Marc Verhagen, and James
Pustejovsky. 2005a. EvITA: A robust event recognizer
for QA systems. In Proceedings of the HLT/EMNLP
2005.

Roser Saurı́, Jessica Littman, Robert Knippen, Rob
Gaizauskas, Andrea Setzer, and James Puste-
jovsky, 2005b. TimeML Annotation Guidelines.
http://www.timeml.org.

Frank Schilder and Christopher Habel. 2001. From tempo-
ral expressions to temporal information: Semantic tag-
ging of news messages. In Proceedings of the ACL-2001
Workshop on Temporal and Spatial Information Process-
ing, pages 65–72, Toulouse.

16

Dependency conversion and parsing of the BulTreeBank

Atanas Chanev∗, Kiril Simov†, Petya Osenova†, Svetoslav Marinov‡

∗Department of Cognitive Sciences, University of Trento
Italy, TN, 38068, Rovereto, via Matteo del Ben 5 &

Istituto Trentino di Cultura-irst
Italy, TN, 38050, Povo (Trento), via Sommarive 18

chanev@form.unitn.it
† Linguistic Modelling Laboratory, IPP, Bulgarian Academy of Sciences

Bulgaria, 1113, Sofia, Acad. G.Bonchev St. 25A
{kivs, petya}@bultreebank.org

‡School of Humanities and Informatics
University College Skövde &

Göteborg University
Graduate School of Language Technology

Sweden, Göteborg, 40530, Box 200, Faculty of Arts
svetoslav.marinov@his.se

Abstract
Recently dependency parsing is gaining popularity. It is broadly accepted that dependency representations are more suitable for free
word order languages. Statistical dependency parsers are easy to port from one language to another, if there are dependency treebanks
for learning a grammar for the particular language. However, many treebanks are based on constituency and have to be converted to
dependency representations prior to learning statistical dependency parsers. In this paper we investigate the issues of the conversion of
the BulTreeBank (Simov et al., 2002) from Head-driven Phrase Structure Grammar (HPSG) format to dependency-based format and
its parsing. We have performed three different conversions to three different dependency formats. For two of the conversions we used
head tables and dependency tables which were stated explicitly, as in (Xia, 2001). For the other conversion the tables were implicitly
implemented by rules. Our choice of rules for the tables was guided by decisions rooted in different linguistic theories. We have parsed
the converted treebank with the Malt parser (Nivre et al., 2004) for ‘evaluating’ our conversions. Then we made error analysis to find
advantages and pitfalls of each conversion strategy.

1. Introduction
Generally porting existing algorithms for statistical Natu-
ral Language Processing from language to language can
be done with limited effort. Statistical dependency parsers
are not an exception from the rule. Nevertheless, for train-
ing statistical methods we need language resources which
are often annotated according to different linguistic theories
and annotation schemes.
Most of the current NLP technologies were firstly de-
veloped for English and some of them were then ported
to other languages. In parsing, state-of-the-art statistical
parsers like those reported in (Collins, 1997) and (Char-
niak, 2000) were ported to Czech1 (the porting of the
Collins’ parser was documented in (Collins et al., 1999)).
Another porting of state-of-the-art parsers, this time from
English to Italian, was described in (Corazza et al., 2004).
In most of the cases parsers have to be adapted to the anno-
tation scheme of the treebank for the new language.
The most famous treebank for parser evaluation for English
is undoubtedly the Penn Treebank (Marcus et al., 1993). It
is constituency-based but information about heads of the
phrases can be found in the most recent version of the tree-
bank. While information about heads seems to be very use-
ful for learning and parsing English, this kind of informa-

1The interested reader can find information about
the performance of various parsers for Czech on:
http://ufal.mff.cuni.cz/czech-parsing/

tion is crucial for free word order languages.
Constituency notion does not seem to be very convenient
for free word order languages. It can be successfully sub-
stituted by fully dependency-based approach as in (Hajič,
1998), or richly extended with head information as in
HPSG-based treebanks like the BulTreeBank (Simov et al.,
2002). Pure constituency treebanks can be converted to de-
pendency, if we want to benefit from dependency represen-
tations for free word order languages.
There are several studies for parsing Bulgarian. A shallow
parsing module has been used in the annotation of the Bul-
TreeBank. Chunks have been identified with a manually
constructed grammar. We should also mention the work on
constituency parsing within a larger system for text analysis
for Bulgarian (Tanev, 2001) which was not evaluated on a
treebank because there was not a broadly available treebank
for Bulgarian at that time.
Another study (Krushkov and Chanev, 2005) reports full
constituency parsing of simple sentences in Bulgarian with
a grammar extracted from a small syntactically annotated
collection of sentences. Evaluation was done manually and
this makes the results biased and not reliable.
The first experiments on dependency parsing of Bulgarian
were performed by (Marinov and Nivre, 2005). They report
84.2% unlabelled and 78.0% labelled precision on a lim-
ited subset of the BulTreeBank converted to dependency
graphs. The conversion tables from that experiment were
used in one of the experiments that this paper describes.

17

However, they were extended with more rules in order to
cover the larger amount of data that we had.
Besides the head and dependency tables for Bulgarian that
were first introduced in (Marinov and Nivre, 2005), another
table and another conversion method are reported in this pa-
per. All the methods for conversion that we used are eval-
uated on a small set of gold standard annotation. Finally
an inductive dependency parser (Nivre et al., 2004), (Nivre,
2005) is used on the converted versions of our treebank to
find out which conversion has been learned and parsed best.
The paper is structured in the following way: In Section
2. the treebank that we used in our experiments is pre-
sented. Section 3. discusses the ‘head tables’ that we have
implemented. In section 4. we present our ‘dependency ta-
bles’ and argue about the shortcomings for each of the ap-
proaches that we followed. Section 5. reports error analysis
of our conversions. In the next 2 sections (6. and 7.) we
briefly present the parser that we use and show our parsing
results. In section 8. we conclude our work.

2. The BulTreeBank Annotation Scheme
Treebank annotation is of great importance to a success-
ful cross-theoretic portability. Since for different tasks and
applications various types of information are needed, it is
practical for a treebank to have not entirely constituency
or dependency encodings, but rather some combination of
both. They might be presented with different degrees of
explicitness. It is important the appropriate information to
be easily derivable. Having all this in mind, we pursued
hybrid annotation in BulTreeBank. HPSG language model
was explored. It views the linguistic data as a set of con-
stituent structures with head-dependant markings.
Currently the treebank comprises 214000 tokens, a lit-
tle more than 15000 sentences. Each token is annotated
with elaborate morphosyntactic information. Additionally
the Named Entities are annotated with ontological classes
as person, organization, location, and other.
The HPSG-based annotation scheme defines a number of
phrase types which reflect both – the constituent structure
and the head-dependent relation. Thus we have phrase la-
bels with the explication of the dependent types like VPC
(verbal head complement phrase), VPS (verbal head sub-
ject phrase), VPA (verbal head adjunct phrase), NPA (nom-
inal head adjunct phrase) etc. We consider coordinations as
non-headed phrases, where the grammatical function over-
rides the syntactic labels (Simov and Osenova, 2003). This
fact causes problems if some head is always needed within
the dependency relation. However, modelling coordination
still remains one of the ‘tough nuts’ in all frameworks.
Behind the constituent structures and the head-dependent
relations the treebank also represents phenomena like ellip-
sis, pro-dropness, word order, secondary predication, con-
trol. As an important mechanism for dealing with these
phenomena we are using co-reference relations.
The treebank is in XML format, hence the restrictions over
the language relations of dominance are encoded in a DTD.
In most cases the head within phrases can be uniquely de-
rived. For example, under the phrase VPC the head is the
verb, while the complement is a nominal or a clause. Only
in some combinations more specific rules are needed. For

example, in NP phrases of the type NN. The head might be
the former or the latter NP depending on the semantics of
the phrase. In such cases manual annotation of the head is
necessary.

3. Head Tables
We have performed three different conversions of the Bul-
TreeBank from HPSG-based to dependency-based format.
From now on we will refer to them in the following way:
conversion 1 – the conversion of Svetoslav Marinov for the
first ever experiments on dependency parsing of the Bul-
TreeBank, with an extended head table by Atanas Chanev;
conversion 2 – the conversion of Atanas Chanev and con-
version 3 – the conversion of Kiril Simov and Petya Osen-
ova for the CoNLL-X shared task2.
In two of our conversions from constituency to dependency
representation, head tables (Xia, 2001) were used to deter-
mine the head of each constituent. For conversion 3, rules
for identification of the head were applied, then all non-
head daughters were made to point to the head daughter of
the constituent. Once the head of each phrase of the sen-
tence is known, the conversion approach can vary from re-
cursively top-down as in (Daum et al., 2004) to iteratively
bottom-up as in all the conversions described in this study.
Conversion procedures from constituency-based to
dependency-based representation can be traced back to
(Gaifman, 1965). He showed that if one knew the head
daughter of each constituent in a sentence, the unlabelled
dependency graph of that sentence could be easily re-
trieved. Information about heads is kept in a table that is
known in the literature as ‘head table’. In addition to head
tables, (Xia, 2001) introduced dependency tables which
are needed for adding labels to the unlabelled dependency
arcs of the sentence graph.
Besides in (Xia, 2001), conversions from constituency to
dependency performed for English on the WSJ part of the
Penn treebank have been reported in (Collins, 1997), (Ya-
mada and Matsumoto, 2003) and (Nivre and Scholz, 2004).
All these conversions benefit from a head table that consists
of records containing the constituent that can have daugh-
ters, the direction of searching for the head constituent and
a list of possible head constituents ordered by priority.
There are several studies in which German treebanks have
been converted to dependency. Conversions have been
reported in (Kübler and Telljohann, 2002) and (Ule and
Kübler, 2004) for the TüBa-D treebank (Hinrichs et al.,
2000). However, information about some dependencies is
explicitly annotated in TüBa-D and only a few treebank
specific issues have to be addressed for a successful con-
version to dependency format.
The German NEGRA treebank (Skut et al., 1997) has been
converted using the script DEPSY in (Daum et al., 2004).
DEPSY is based on (Magerman, 1994) and implements a
top-down recursive algorithm. However, the script can con-
vert treebanks in only two formats: Penn Treebank and NE-
GRA treebank.
There are studies on conversion from constituency to the
Prague Dependency Treebank (PDT) format. One of them

2http://nextens.uvt.nl/˜conll/

18

Table 1: An extract from the collection of rules used in
conversion 3.

Rule Head
AdvPA -> Adv Adv Adv[2]
AdvPC -> Adv Adv Adv[1]
NPA -> NPA NPA NPA[1]
NPA -> (N NPA) (N NPA) *[1]
NPA -> (N H) (H N) *[1]
NPA -> N N N[1]
NPA -> CoordP PP CoordP
Nomin -> * *

is about the conversion of an English treebank (Žabokrtský
and Kučerová, 2002). And another is about the conversion
of an Arabic treebank (Žabokrtský and Smrž, 2003). The
conversion algorithm used in these studies has been supple-
mented with a procedure for removing the traces from the
treebanks.
In all the transformations mentioned above, except in the
transformation of the TüBa-D treebank, the conversion has
been performed similarly, usually in a recursive top-down
fashion together with processing of treebank annotation
specific constructions. Having a constituency treebank and
a head table, if the mentioned algorithms are used, the re-
sulting dependency treebank should always be the same,
except in the case of the TüBa-D conversion where the
whole process is strongly dependent on the treebank.
Two of our conversion methods (namely conversion 1 and
2) are very similar to the conversion method for the WSJ
part of the Penn treebank. The difference in the head tables
is that there is not an option for right to left search for the
head among the daughters of the constituent. However, this
is not a big disadvantage, because in most of the cases there
is very little ambiguity which daughter to be the head. In
conversion 3 the head table was substituted by rules which
allow even more precise specifications for the choice of the
head than the method described in (Xia, 2001). The ‘head
table’ was encoded in 250 rules. Several constructions were
converted by hand.
Our head tables have 44 records for conversion 1 and 38
records for conversion 2. The differences in the head tables
for the two conversions are due to different treatment of
several linguistic structures, e.g. clauses. Table 4 shows
the percentage of the heads from each of the conversions
(the rows) that were found in every conversion and the gold
standard data (the columns).
The gold standard data (last column) that we annotated our-
selves is used for evaluation. It consists of 60 sentences
(976 tokens). For all the other columns the training part of
the BulTreeBank was used. It consists of 10911 sentences
(159394 tokens). All the punctuation marks were skipped
in the evaluation.
In Table 1 we give a few rules that were used in conversion
3. The first column contains the rule from the grammar
used in the annotation of the BulTreeBank and its left-hand
side corresponds to the constituent whose head daughter
should be selected. The constituents on the right hand side

Table 2: An extract from the head table for conversion 1.

Constituent Head daughter
AdvPC <Adv> <Gerund>

Ako <Ako> <C>

AkoP <Ako> <C>

APA <A> <Participle> <Pron>

<Adv> <M> <Prep>

APC <A> <Participle>
C <C> <Prep>

CLCHE <C>

CLDA <T>

Table 3: An extract from the head table for conversion 2.

Constituent Head daughter
AdvPC <Adv> <AdvPA> <AdvPC>

<Gerund> <CoordP>

Verbalised <T> <I>
Subst <Pron> <M> <A>

<Participle>
APA <A> <APA> <APC>

<Participle> <CoordP> <Pron>

APC <A> <APC> <APA>

<Participle> <CoordP>

C <C>

CLCHE <V> <VPA> <VPS>

<VPC> <VPF> <Participle>
<CLDA> <CLCHE> <CoordP>

CLDA <V> <VPA> <VPS>

<VPC> <VPF> <CoordP>

of the rule are its daughters among which the head should
be chosen. Relying on the second column of the table the
choice can be made.
For example, the head of the mother constituent given in
the first record of Table 1 is the second Adv daughter con-
stituent. Wildcards are used with the meaning ‘no matter
which constituent’ and in some cases the meaning ‘or no
constituent’ can be added. This approach is different from
the approach of conversion 1 and 2 in its richer possibilities
of specification which daughter to be the head of the con-
stituent. The rule from the first row of Table 1 cannot be
encoded using the head tables from conversions 1 and 2.
In addition to the rules from conversion 3 we give extracts
from the head tables of conversion 1 (Table 2) and 2 (Ta-
ble 3). Each rule from these tables starts with a mother
constituent and then the possible head daughters are given
ordered by priority.
All the records from the head tables from conversion
1 and 2 can be encoded with rules like those used in
conversion 3. We can do that using rules of the type
<Const1> -> * <Const2> *which are very com-
mon in conversion 3. A record from conversions 1
and 2 has the form Const1 <Const2> <Const3>

...<ConstN> meaning that Const2 is the head

19

Table 4: Comparison of the different conversions to one
another as well as on the gold standard data.

Conv. 1 2 3 Gold
1 100% 82.18% 69.06% 62.94%
2 82.18% 100% 79.42% 74.49%
3 69.06% 79.42% 100% 70.76%

daughter of Conjst1 and if it is not present, then
Const3 is, etc. This record can be translated to the
rules: <Const1> -> * <Const2> * – the head is
Const2, <Const1> -> * <Const3> * – the head
is Const3, . . . , <Const1> -> * <ConstN> * –
the head is ConstN.
If the rules of conversion 3 encode the same information as
the head tables of conversion 1 or 2, the dependency arcs in
the resulting dependency treebank will not differ from the
arcs of the treebanks obtained by performing conversion 1
or 2 directly. With this we put an accent on the conver-
sion table but not on the conversion algorithm. However,
we will not prove here our assumption that the processing
approach is irrelevant for a broader set of conversion algo-
rithms, since it is beyond the scope of this paper.
The differences in our conversions are not due to the dif-
ferent conversion methods but dependent on the different
sets of head rules. Undoubtedly there are head rules that
treat the same linguistic constructions differently in conver-
sions 1, 2 and 3. This indroduces different types of errors
in the three converted dependency treebanks. We will dis-
cuss some of the interesting cases of erroneously converted
graphs in Section 5.

4. Dependency labels
4.1. Three sets of dependency labels
There had been three sets of dependency labels that we
used in the dependency tables in conversions 1 and 2 and
in the rules in conversion 3. The labels are taken from a
Swedish treebank (Nilsson et al., 2005) in conversion 1 and
where possible from an Italian treebank (the Turin Univer-
sity Treebank – TUT) (Bosco, 2004) in conversion 2. The
labels in conversion 3 had been chosen according to lin-
guistic principles more than taken from another treebank.
The labels used in conversion 1 are 14: ADV (adver-
bial modifier), APP (apposition), ATT (attribute), CC (co-
ordination), DET (determiner), ID (non-first element of
multi-word expression), IP (punctuation), OBJ (object),
PR (complement of preposition), PRD (predicative com-
plement), SUBJ (subject), UK (head-verb of subordinate
clause dependent on complementizer), VC (verb chain),
ROOT (dependent of a special root node). The labels used
in conversion 1 were adapted from Swedish to Bulgarian
without significant effort in (Marinov and Nivre, 2005).
The labels used in conversion 2 are generally follow-
ing (Bosco, 2004) and more specifically a reduced ver-
sion used in (Chanev, 2005). Although reflecting most
of the basic principles of the TUT annotation scheme,
the number of tags is greatly reduced to 14. The cur-
rent tag set includes the tags: SUBJ (subject), OBJ (ob-

ject), RMOD (adjectival or adverbial modifier, PP or relative
clause), ARG (argument), INDCOMPL (locative or theme
complement), EMPTYCOMPL (reflexive personal pronoun
modifying verb), PREDCOMPL (predicative complement),
INTERJECTION, APPOSITION, COORDINATOR (co-
ordinating conjunctions and arguments of coordination),
CONTIN (part of an expression), TOP (root label),
SEPARATOR (punctuation) and DEPENDENT (default la-
bel).
Although a reduced number of tags was used in conversion
2, it gave best results in some of the experiments. How-
ever, a more precise set of dependency tags should increase
parsing accuracy3. Besides being somehow incomplete,
the labels from conversion 2 were taken from an annota-
tion scheme which is more semantically oriented and which
was originally developed for Italian. Several changes were
made in order the labels to represent syntactic more than
semantic relations and fit the language (Bulgarian) better.
An example of such a change is using subjects and objects
only in their shallow sense and not in prepositional phrases,
for example4.
The dependency set from conversion 3 is more fine-grained
than the dependency labels set of conversions 1 and 2. The
the number of labels is 16: subj (subject), obj (ob-
ject), mod (modifier), indobj (indirect object), comp
(complement), prepcomp (complement of preposition),
adjunct, xcomp (clausal complement), xmod (clausal
modifier), clitic (clitic form), xadjunct (clausal ad-
junct), marked (clauses introduced by a subordinator),
pragadjunct (pragmatic adjunct), xsubj (clausal sub-
ject), xprepcomp (clausal complement of preposition),
conj (coordinated conjunction),conjarg (argument of a
coordinated construction), ROOT (root label), punc (punc-
tuation).
Whereas there are labels with the same role in the three
dependency label sets there are labels from each set with no
strict analogues from the other two. Basic categories as root
nodes, subjects, objects as well as punctuation are treated in
the same way in all the dependency sets. Coordinations are
treated differently. Conversion 3 has two different labels
for coordinated constructions, namely ‘conj’ and ‘conjarg’.
For the other sets there is only one (‘CC’ in conversion 1
and ‘COORDINATOR’ in conversion 2).
The variety of the other labels concerns mainly the detail-
ness and different priorities of the relation encodings. For
example, in conversions 1 and 3 ‘complement of prepo-
sition’ is set ‘PR’ and ‘prepcomp’, while in conversion
2 there is no such distinction. Then, in conversions 1
and 2 ‘predicative complement’ is set ‘PRD’ and ‘PRED-
COMPL’, while in conversion 3 this kind of complement is
a part of a broader label – ‘comp’.

4.2. Problematic issues
The dependency table guides the choice of the appropriate
dependency label for the arc that has already been found
using the head table. Relying on two constituents above the
word in the original treebank a dependency label should be

3See Section 7.
4Besides being inconvenient to process, these constructions

cannot be converted using a common head table.

20

chosen. This was the approach in conversion 2. In con-
version 1, there were rules in which only one constituent
above one of the words from the relation and two – above
the other were enough to determine the dependency labels
of some arcs in the graphs of some sentences.
Using one or two constituents above the words for deter-
mining the labels of each dependency relation might not
be very appropriate for languages with free word order. In
particular, if only two constituents are taken in mind when
determining the label of the relation we may end up with
errors like mistaken subjects and objects, especially if the
structure of the trees in the treebank is too flat or it is too
deep and both subject and object candidates have the same
two constituents above them.
In languages like Bulgarian, where long-distance depen-
dencies are common, it is difficult to keep the annotation
scheme of the treebank uniform. A typical example for
‘breaking’ the boundaries of a constituent is in cases where
a noun or pronoun subject is included in the verb phrase.
Having such structures in our treebank it is harder to con-
vert in a plausible way. The trees from the BulTreeBank are
generally more deep than the trees from the Penn treebank.
We consider one of the reasons for that to be the free-word-
orderness of Bulgarian.
One of the problems with increasing the number of con-
stituents above each word in the sentence tree to guide the
decision which label to be used for each particular depen-
dency arc is that the number of rules in the dependency ta-
ble will increase. In some cases two constituents above the
words from the tree are enough but in other cases more con-
stituents should be considered. Using a dependency table
that relies on two or three constituents above each word in
the tree with the rules with three constituents having higher
priority might be worth trying.
A common problem in conversion 2, for example, was mis-
taking the subject and the object in the sentence. In these
cases two constituents above the words in the tree were not
enough for selecting the appropriate label.
The following sentences will clarify this issue: ‘V dushata
i se pojavi omraza sreshtu men’ (‘Hatred against me arose
in her soul.’). Here ‘omraza’ (‘hatred’) is the subject of the
verb ‘pojavi’ (‘arose’). The constituents above ‘omraza’
are N and NPA. The constituents above ‘poiavi’ are V and
V. But in the sentence: ‘I shte napishat kritika za mene /
pod formata na policejski akt’ (‘And they will write criti-
cism about me / in the form of a policeman’s statement’)
‘kritika’ (‘criticism’) is the object of the verb ‘napishat’
(‘write’). The constituents above ‘kritika’ are N and NPA
and the constituents above ‘napishat’ are V and V – the same
as the constituents from the first example sentence.

5. Error analysis
Whereas in the previous section we described problems
with incorrectly assigned dependency labels, if having a
correctly retrieved dependency graph, this part of the paper
adresses cases of incorrectly attached dependents. We show
where our conversions are wrong with respect to the gold
standard. There might be at least two different reasons for
incorrect attachment corresponding to two different types
of errors: 1) relations which are errors according to any

theory of dependency grammar and 2) relations where the
errors are not errors according to some theory of depen-
dency grammar, especially a theory that is consistent with
the head tables of some of our conversions.
Inconsistencies between the conversions can be observed in
the verb chain treatment and clauses. If an auxiliary verb
is considered the head in a VP, sometimes arguments that
normally should be attached to the main verb, like subject
and object, will be attached by the conversion algorithm to
the auxiliary verb instead. Having auxiliaries as heads can
be syntactically more plausible, but we unwillingly neglect
the valency of the verb, if not attaching its arguments im-
mediately5.
According to (Tesnière, 1959) the main verb and the aux-
iliary form a nucleus and all the dependents of the verb
should be attached to the nucleus. But we would not like
to pass the boundary by introducing relations among words
other than ‘dependent’. The auxiliary, if present, is chosen
to be the head of the VP in conversions 1 and 3, contrary to
the solution implemented in conversion 2 where the main
verb is chosen to be the head. We have agreed to use the
auxiliary as the head in the gold standard.
The other major difference in the conversions are clauses.
In conversions 1 and 3 subordinating conjunctions were
chosen to be the heads of the clauses. However, the main
verb of the clause was chosen to be the head of the con-
struction in conversion 2. We have the subordinating con-
junction being the head of the different types of clauses in
the gold standard set. Similarly to the wrong attachment of
arguments of the main verb in the auxiliary case, the con-
version algorithm can attach the arguments of the main verb
to the subordinating conjunction rather than the main verb
and this is an error.
In table 5 the three conversions of the sentence ‘I shte
napishat kritika za mene / pod formata na policejski akt.’
(‘And they will write criticism about me / in the form of a
policeman’s statement.’) are given together with the gold
standard heads. Each row from the table contains a nu-
merated word from the sentence together with information
about it part-of-speech, the number of the head word, ex-
tracted from conversions 1, 2, and 3 as well as the gold
standard head and the dependency labels from each of the
conversions.
Conversions 1 and 2 of the sentence from table 5 are iden-
tical. The root of conversion 1 should be the same as the
root of conversion 3 and the gold standard. This error is
probably due to the rules from the head table of conversion
2 that were added to the head table of conversion 1.
Another serious problem reflecting on the conversion pro-
cedures is the presence of errors in the treebank. If a head
rule is introduced just for the reason to deal with an er-
ror annotation, the quality of the conversion will decrease.
Sometimes it is hard to distinguish erroneous annotations
from proper ones. It is especially tricky to convert linguis-
tic constructions which were not specified in the annotation
guidelines of the treebank.

5These clarifications were discussed in personal communica-
tion with Joakim Nivre.

21

W No Word PoS Head 1 Head 2 Head 3 Head gold Dep 1 Dep 2 Dep 3
1 I Cp 3 3 2 2 - COORDINATOR conj
2 shte Tx 3 3 0 0 VC ARG ROOT
3 napishat Vpptf-r3p 0 0 2 2 ROOT TOP comp
4 kritika Ncfsi 3 3 2 2 OBJ SUBJ obj
5 za R 4 4 4 4 ATT RMOD mod
6 mene Ppelas1 5 5 5 5 PR ARG prepcomp
7 / pt 3 3 2 2 IP SEPARATOR punct
8 pod R 3 3 2 2 ADV INDCOMPL adjunct
9 formata Ncfsd 8 8 8 8 PR ARG prepcomp

10 na R 9 9 9 9 ATT RMOD mod
11 policejski Amsi 12 12 12 12 ATT RMOD mod
12 akt Ncmsi 10 10 10 10 PR ARG prepcomp
13 . pt 3 3 2 2 IP SEPARATOR punct

Table 5: Three different analyses and the gold standard for a sentence from the BulTreeBank.

6. The parser
We used the Malt parser (Nivre et al., 2004) in our experi-
ments. Malt parser is a data-driven dependency parser that
uses a dependency treebank to learn the actions of a shift-
reduce parsing algorithm. It had been tested on several lan-
guages, including Swedish, Italian and Bulgarian among
others. It has proven to be easily portable from one lan-
guage to another and is suitable for parsing the data that we
have converted.
Malt parser is more generally a framework for construction
of different parsers. Different features as part-of-speech
tags, lexical units and dependency labels can be used for
preparing feature models for learning. Some feature mod-
els had proven to be language independent to a large extent.
For example, the model m4 is always better than the model
m2. Using the m7 model (Marinov and Nivre, 2005) re-
port very good results for Bulgarian. The model consists
of six part-of-speech features, four lexical features and four
dependency features.
Several learning methods are available as well as a few
parsing algorithms within the framework of Malt parser. In
this paper, however, we report results that were obtained
using only the arc-eager algorithm from (Nivre et al., 2004)
together with memory based learning (Daelemans and den
Bosch, 2005).

7. Parsing results
We annotated a small set of gold standard data on which to
evaluate our conversions, because we did not have a large
scale manually annotated dependency treebank. The reason
for our decision to use the conversions for training and pars-
ing with a statistical dependency parser was that this could
give us evidence for dependency parsing performance of
the BulTreeBank.
If the parsing results for the three conversions are different
from each other, we can trace the inconsistencies and con-
clude good and bad conversion practices. However, parsing
is not the best measure for the accuracy of our conversions,
because a wrongly converted construction could be learned
and parsed properly as well as a properly converted con-
struction could be learned and parsed wrongly and the other

Table 6: Parsing results for the BulTreeBank converted to
dependency

Accuracy Conv. 1 Conv. 2 Conv. 3
Unlabelled: 76.04% 86.00% 85.27%
Labelled: 20.69% 79.24% 79.48%

two combinations are also possible. Although the parsing
task is not entirely appropriate for evaluation of the accu-
racy of our conversions we can conjecture about their ap-
plicability.
All the results are obtained on the same training and test
sets with the original gold standard part-of-speech tags of
the BulTreeBank. The results are given in Table 6. The
metric that we use for evaluation is labelled and unlabelled
accuracy measured per word as defined by (Lin, 1998).
If using memory based learning, conversion 2 gives the best
unlabelled accuracy and labelled accuracy which is very
close to the best. A defect of conversion 2 is the significant
number of arcs in the training and test sets (around 4%) that
were given the default dependency label ‘DEPENDENT’.
We believe that if we reduce that percent, parsing results
will improve. The same statement is valid for conversion 1
where there are too many default labels. This is due to the
rules from the head table of conversion 2 that we artificially
added to the head table of conversion 1.
Finally we should mention some preliminary experiments
with the Malt parser using another learner within the pars-
ing framework – Support Vector Machines (Chang and Lin,
2005). We obtained better results for conversions 2 and 3.
We haven’t performed tests on conversion 1.

8. Conclusions and future work
We can conclude that in general terms the head table is
more important than the conversion algorithm. It should be
easy to use different conversion algorithms with the same
head table and obtain the same results in most of the cases
(with minor corrections in the algorithms which have some-
thing to do with treebank specific phenomena).

22

We conclude that the choice of dependency labels for au-
tomatically converted constituency compatible treebanks
should be linguistically motivated and specific for the lan-
guage.
We showed that obtaining applicable dependency parsing
results for Bulgarian is achievable if we use the BulTree-
Bank, even though it is not a dependency treebank. Our
results can be used in areas like Question Answering and
other tasks from NLP where the syntactic structure of the
sentence can provide clues for better analysis and disam-
biguation.
Our work demonstrates that a treebank than combines the
constituent and the dependency information is a valuable
source for extraction of dependency treebanks with differ-
ent inventory of dependency labels and with different gran-
ularity of specificity. The experiments with the Malt parser
show that the quality of the parsing output depends on the
information in treebank. This gives us area for future re-
search how to extract the most appropriate treebank for a
given task.
Having achieved state-of-the-art parsing for Bulgarian we
can further improve our conversions in several directions.
The first one is for the dependency tables of conversion 1
and 2. The table of conversion 2 is not large enough and
there are still around 4% of the words in both the training
and test data having the default ‘DEPENDENT’ label. The
same problem can be observed to a greater extent in con-
version 1.
The second direction for further research is to choose a uni-
fied representation for all the dependency structures, com-
bining approaches from the three conversions. A first step
in that direction could be to perform several further trans-
formations in order to fix errors, e.g. in the clauses and
VPs’ treatment. Combined with a unified approach to de-
pendency representation this step could gain some parsing
accuracy.
Optimizing the different options and feature models of the
Malt parser for Bulgarian and using the SVM learner can
improve further parsing results.
Besides the dependency parser we could try a good con-
stituency parser on the BulTreeBank as well. Our intuition
is that such a parser would not give better parsing accuracy,
because of the free word order nature of the Bulgarian lan-
guage. Nevertheless, evaluating and comparing a depen-
dency and a constituency parser on the BulTreeBank can
point some interesting directions for future research.

Acknowledgements
We would like to thank Joakim Nivre for providing the Malt
parser as well as hints about best performing feature models
and issues concerning treebank conversion. We thank Al-
berto Lavelli and two anonymous reviewers for their valu-
able comments and suggestions on a previous version of
this paper. This work was partly funded by a grant provided
within the project BIS-21++ at the Institute for Parallel Pro-
cessing, Bulgarian Academy of Sciences.

9. References
C. Bosco. 2004. A grammatical relation system for tree-

bank annotation. Ph.D. thesis, University of Torino.

A. Chanev. 2005. Portability of dependency parsing algo-
rithms – an application for Italian. In Proc. of the fourth
workshop on Treebanks and Linguistic Theories (TLT),
Barcelona.

C.-C. Chang and C.-J. Lin. 2005. LIBSVM: A
library for Support Vector Machines. URL:
http://www.csie.ntu.edu.tw/ cjlin/papers/libsvm.pdf.

E. Charniak. 2000. A maximum-entropy-inspired parser.
In Proc. of the First Meeting of the North American
Chapter of the Association for Computational Linguis-
tics (NAACL), Seattle.

M. Collins, J. Hajič, E. Brill, L. Ramshaw, and C. Tillmann.
1999. A statistical parser for Czech. In Proc. of the 37th
Meeting of the Association for Computational Linguis-
tics (ACL), College Park.

M. Collins. 1997. Three generative, lexicalized models for
statistical parsing. In Proc. of the 35th Annual Meeting
of the Association for Computational Linguistics (ACL),
Madrid.

A. Corazza, A. Lavelli, G. Satta, and R. Zanoli. 2004. Ana-
lyzing an Italian treebank with state-of-the-art statistical
parsers. In Proc. of the 3rd workshop on Treebanks and
Linguistic Theories (TLT 2004), Tübingen.

W. Daelemans and A. Van den Bosch. 2005. Memory-
Based Language Processing. Cambridge University
Press.

M. Daum, K. A. Fith, and W. Menzel. 2004. Automatic
transformation of phrase treebanks to dependency trees.
In Proc. 4th Int. Conf. on Language Resources and Eval-
uation, LREC-2004, Lisbon.

H. Gaifman. 1965. Dependency systems and phrase-
structure systems. Information and control, 8:304–337.

J. Hajič. 1998. Building a syntactically annotated corpus:
The Prague Dependency Treebank. In Issues of Valency
and Meaning, Prague. Karolinum.

E. Hinrichs, J. Bartels, Y. Kawata, V. Kordoni, and
H. Telljohann. 2000. The Verbmobil treebanks. In Proc.
of 5. Konferenz zur Verarbeitung natürlicher Schprache,
Ilmenau.

H. Krushkov and A. Chanev. 2005. Automatic parsing: a
probabilistic approach for Bulgarian. In Proc. of Annual
Spring Conference of the Union of Bulgarian Mathemati-
cians (UBM), Borovetz.

S. Kübler and H. Telljohann. 2002. Towards a dependency-
based evaluation for partial parsing. In Proc. of the
LREC-Workshop Beyond PARSEVAL – Towards Im-
proved Evaluation Measures for Parsing Systems, Las
Palmas.

D. Lin. 1998. A dependency-based method for evaluating
broad-coverage parsers. Natural Language Engineering,
4 (2):97–114.

D. M. Magerman. 1994. Natural language parsing as sta-
tistical pattern recognition. Ph.D. thesis, Stanford Uni-
versity.

M. P. Marcus, B. Santorini, and M. A. Marcinkiewicz.
1993. Building a large annotated corpus of English: The
Penn Treebank. Computational Linguistics, 19 (2):273–
290.

S. Marinov and J. Nivre. 2005. A data-driven parser for

23

Bulgarian. In Proc. of the fourth workshop on Treebanks
and Linguistic Theories (TLT), Barcelona.

J. Nilsson, J. Hall, and J. Nivre. 2005. MAMBA meets
TIGER: Reconstructing a Swedish treebank from antiq-
uity. In Proc. from the special session on treebanks at
NODALIDA 2005, Joensuu.

J. Nivre and M. Scholz. 2004. Deterministic depen-
dency parsing of English text. In Proc. of 20th Interna-
tional Conference on Computational Linguistics (COL-
ING 2004), Geneva.

J. Nivre, J. Hall, and J. Nilsson. 2004. Memory-based
dependency parsing. In Proc. of the Eighth Conference
on Computational Natural Language Learning (CoNLL),
Boston.

J. Nivre. 2005. Inductive Dependency Parsing of Natural
Language Text. Ph.D. thesis, University of Växjö.

K. Simov and P. Osenova. 2003. A treatment of coordi-
nation in the Bulgarian HPSG-based treebank. In Proc.
from FDSL-5, Leipzig. in press.

K. Simov, P. Osenova, S. Kolkovska, E. Balabanova,
D. Doikoff, K. Ivanova, A. Simov, and M. Kouylekov.
2002. Building a linguistically interpreted corpus of Bul-
garian: the BulTreeBank. In Proc. of LREC 2002, Ca-
nary Islands.

W. Skut, T. Brants, B. Krenn, and H. Uszkoreit. 1997. An-
notating unrestricted German text. In Proc. of 6. Fach-
tagung der Section Computerlinguistic der Deutschen
Gesellschaft für Sprachwissenschaft, Heidelberg.

H. Tanev. 2001. Automatic Text Analysis and Ambigui-
ties Resolution in Bulgarian. Ph.D. thesis, University of
Plovdiv.

L. Tesnière. 1959. Éléments de syntaxe structurale. Edi-
tions Klincksieck.

T. Ule and S. Kübler. 2004. From phrase-structure to de-
pendencies, and back. In Proc. of the International Con-
ference on Linguistic Evidence, Tübingen.

Z. Žabokrtský and I. Kučerová. 2002. Transforming Penn
Treebank phrase trees into (Praguian) tectogrammatical
dependency trees. Prague Bulletin of Mathematical Lin-
guistics, 78:77–94.

Z. Žabokrtský and O. Smrž. 2003. Arabic syntactic trees:
from constituency to dependency. In Proc. 10th Confer-
ence of the European Chapter of the Association of Com-
putational Linguistics, EACL 2003, Budapest.

F. Xia. 2001. Automatic Grammar Generation from Two
Different Perspectives. Ph.D. thesis, University of Penn-
sylvania.

H. Yamada and Y. Matsumoto. 2003. Statistical depen-
dency analysis with Support Vector Machines. In Proc.
of IWPT, Nancy.

24

NLP Tools Integration Using a Multi-Layered Repository

João Graça∗, Nuno J. Mamede∗, João D.Pereira†

∗L2F – INESC-ID Lisboa/IST
Rua Alves Redol 9, 1000-029 Lisboa, Portugal
{joao.graca, nuno.mamede}@l2f.inesc-id.pt

† Eng. Group –INESC-ID Lisboa/IST
Rua Alves Redol 9, 1000-029 Lisboa, Portugal

joao@inesc-id.pt

Abstract
Natural Language processing (NLP) systems are typically characterized by a pipeline architecture in which several independently de-
veloped NLP tools, connected as a chain of filters, apply successive transformations to the data that flows through the system. Hence
when integrating such tools, one may face problems that lead to information losses, such as: (i) tools discard information from their
input which will be required by other tools further along the pipeline; (ii) each tool has its own input/output format. Moreover, the tools
formats do not establish relations between their Input/Output. These relations are useful for keeping the information of different levels
aligned. Another problem is that each tool developer must normally concern himself with the definition of a data model to represent
linguistic information and Input/Output facilities for the tool he’s developing. Usually, these models and facilities are very similar, so
their redefinition for each tool represents a waste of time.
This work proposes a solution that solves these problems. We offer a framework for NLP systems. Our framework uses a client-server
architecture, in which the server acts as a repository where all tools add/consult data. Data is kept in the server under a data model that is
independent of the client tools. This model is able to represent a broad range of linguistic information. The tools interact with the server
through a generic API which allows the creation of new data and the navigation through all the existing data. Moreover, we provide
libraries implemented in several programming languages that abstract the connection and communication protocol details between the
tools and the server, and provide several levels of functionality that simplify server use.

1. Introduction
Natural Language processing (NLP) systems are typically
characterised by a pipeline architecture, in which several
NLP tools connected as a chain of filters apply successive
transformations to the data that flows through the system.
Usually, each tool is independently developed by a differ-
ent person whose focus is on his/her own problem rather
than on the future integration of the tool in a broader sys-
tem. Hence when integrating such tools, several problems
arise, which are mainly related to the following: (i) how
the tools communicate with each other, (ii) what kind of
information flows between the several tools (may cause in-
formation lost).
At the Spoken Language Systems Lab (L2F), where this
work was developed, several NLP systems have already
been created. Most of the detected problems when buld-
ing those systems where related with the information flow
between the tools composing the system. These problems
are:

• Architectural problems - the information discarded
along the system may be required further ahead by
other tools;

• Conversion between data formats - conversions are
necessary between the data formats produced by dif-
ferent tools that wish to interchange information.
Moreover, if the expressiveness of each format is dif-
ferent, then one format may not be completely map-
pable into another.

Besides these problems, which lead to information losses,
there is another problem concerning the data: how to main-

tain the data lineage between information produced by dif-
ferent tools composing a NLP system? When viewing each
tool output as a layer of linguistic information over a pri-
mary data source and considering that layers are normally
related to each other, it is desirable to maintain relations
between those layers. First, these relations enable the navi-
gation through related linguistic information produced by
different tools. Secondly, tools can reference data from
other layers in order to avoid the repetition of common data.
These types of relations are called cross-relations because
they span across linguistic information layers.
Finally, a last problem concerns the fact that each NLP tool
programmer usually develops its own data model to rep-
resent the linguistic information, and Input/Output facili-
ties to that data model. Since, these different data models
normally represent similar information they tend to be very
similar. The redefinition of such similar models represents
a waste of time.
The main objective of this work is to build an NLP frame-
work for the creation of NLP systems with the following
properties:

• Avoid information losses between tools composing a
system;

• Simplify new NLP tools implementation by providing
general Input/Output facilities and a data model to rep-
resent linguistic information;

• Simplify the reutilisation of existing NLP tools by
minimising the changes required in each individual
tool;

25

• Maintain the data from tools aligned allowing the nav-
igation through related data from different tools.

The proposed solution is a framework using a client-server
architecture instead of a pipelined architecture. In our solu-
tion, the server acts as a repository where all NLP tools
(clients) add/consult data. The server maintains cross-
relations between the existing layers of data. The data is
kept in the repository under a data model independent of
the client tools. This data model allows the representation
of a broad range of linguistic information. The tools inter-
act with the repository through a generic remote API that
permits the creation of new data and the navigation through
all the existing data. Moreover, this work provides libraries
implemented in several programming languages that ab-
stract the connection and communication protocol details
between NLP tools and the server, and provide several lev-
els of functionality that simplify the creation and integra-
tion of NLP tools.

2. Solution Requirements
We defined a set of requirements for a solution that supports
and simplifies the integration of independently developed
NLP tools into NLP systems. These requirements were
used to validate the proposed solution, and are the follow-
ing:

• All information produced during the execution of a
system should be available;

• Tools should only produce directly related informa-
tion;

• The solution should simplify the creation of new tools,
by providing: (i) an Input/Output interface, which
handles the loading and saving of data used by the
tool; (ii) a data model that can be used by each tool
to represent linguistic information;

• The solution should minimise the number of conver-
sion components required to build an NLP system,
when integrating existing NLP tools that do not com-
ply with the system’s model;

• The provided interface should allow the navigation be-
tween information produced by different NLP tools.

To achieve the previous generic requirements we defined
two groups of requirements that the solution must fulfil,
namely:

• Data Model Requirements - Represents the require-
ments for a data model capable of representing and
relating a broad range of linguistic information, which
are described in Subsection 2.1.;

• System requirements - Represents requirements of
the underlying system related with the interaction be-
tween the system and the NLP tools, which are de-
scribed in Subsection 2.2..

2.1. Data Model Requirements
The data model main requirement is that it must be able to
represent a broad range of linguistic information produced
by different NLP tools. Furthermore, the data model must
be extensible because it is impossible to foresee all kinds
of linguistic information that may appear in the future. We
begin by distinguishing two conceptually different kinds of
information that the data model must represent:

• Primary data sources such as a text, or a speech signal;

• Linguistic information produced by NLP tools, over
primary data sources, or previously defined linguistic
information.

We also identify four types of actions that NLP tools may
perform:

• Creation and edition of primary data sources, for ex-
ample, the incremental creation of a new primary data
source containing the phonetic transcription of the text
belonging to another primary data source. This newly
created data source can be the target of the linguistic
information of other tools;

• Identification of linguistic elements from a primary
data source, for instance, the segmentation of a sen-
tence into words;

• Creation of relational information between linguistic
elements, such as the relation between a verb and the
corresponding subject.

• Assignment of characteristics to a linguistic element,
or a relation, for example, the morphological features
of a word;

Each NLP tool may produce several types of information at
the same time. The linguistic information generated by an
NLP tool is normally derived from linguistic information
created by other tools. For example, a part of speech tag-
ger will use the segments produced by a tokenizer and add
morphologic information to those segments. A morpholog-
ical disambiguator may use the classifications produced by
several part of speech taggers to select the most appropriate
classification.
The data model must be able to represent several layers of
both primary data sources and linguistic information. We
have defined the following requirements regarding these
two types of information:

• The data model must be able to represent any kind of
primary data source such as text, speech, video, or any
combination of these;

• The data model must support the creation and edition
of primary data sources;

• All linguistic information except primary data sources
produced by an NLP tool must be associated with the
same layer;

• The data model must allow the selection of linguistic
information through the identification of the layer that
contains it;

26

• Each layer is associated with the identification of the
tool that produced it.

The last three requirements are necessary to simplify the
identification of information inside the data model. This
way all linguistic information is organised into layers.
The data model must represent the three types of linguis-
tic information that each NLP tool can produce: (i) the
identification of linguistic elements; (ii) the creation of rela-
tions between linguistic elements; (iii) and the assignment
of characteristics to linguistic elements and relations.
We have defined the following requirements for the repre-
sentation of those linguistic elements:

• The model must be able to represent ambiguity in the
identification of linguistic elements, for example, a
compound term can be segmented as only one segment
containing the compound term or several segments for
each word.

• The model must be able to represent trees of linguistic
elements, for example, syntactic trees.

• The model must allow the creation of relations be-
tween linguistic elements from the same layer.

• It must be possible to represent classification ambi-
guity, which correspond to associating disjunct sets
of characteristic to the same linguistic element. For
example, distinct morphological features for the same
word.

• The model must allow the association of characteristic
to linguistic elements, or relations from other layers.

Besides the representation of linguistic information pro-
duced by each NLP tool, the data model has the follow-
ing requirements concerning the relations between linguis-
tic information from different layers:

• The model must be able to represent relations between
linguistic elements from different layers. These rela-
tions represent dependencies between layers of infor-
mation, and allow the navigation between layers;

• The data model must allow linguistic elements to ref-
erence data belonging to a primary data source, with-
out having to copy its value, thus avoiding the repeti-
tion of the same data in several layers;

• The model must be able to represent data which may
not exist in any primary data source, for example, the
separation of contractions.

2.2. System Requirements
This subsection presents the general requirements of the
system which are not related to its data model, but with the
interaction between the system and the NLP tools, which
are the following:

• The system must simplify the iteration of data in the
repository, e.g. all segments from a segmentation.
This is required because iteration is the most common
way of interaction between an NLP tool and its data;

• Any NLP tool can select data based on a layer’s iden-
tification. This way an NLP tool only needs to handle
the data it requires;

• It is possible to access the data of an unfinished Anal-
ysis. This way an NLP tool may consume informa-
tion that is being produced at the same time by another
NLP tool, allowing the parallel processing of data;

• The system must make the data persistent;

• The system must be able to interact with NLP tools
written in any programming language.

3. Related Work
During the development of this work we analysed several
architectures whose goal was to simplify the creation or in-
tegration of NLP tools, towards their usage in NLP systems,
namely: the Emdros text database system (Petersen, 2004),
a text database engine for analysis, and retrieval of analysed
or annotated text; the Natural Language Toolkit (Loper and
Bird, 2002), a suite of libraries, and programs for symbolic,
and statistical natural language processing; the Gate archi-
tecture (Bontcheva et al., 2004), a general architecture for
text engineering that promotes the integration of NLP tools
by composing them into a pipes and filters architecture; and
the Festival speech synthesis system (Taylor et al., 1998), a
general framework for building speech synthesis systems.
We also compared some work from the linguistic annota-
tion field, whose focus is on the definition of a logical level
for annotation independent of the annotations’ physical for-
mat. This logical level should be able to represent the most
common types of linguistic annotations to promote reuse
of annotated corpora. Our data model can be seen as this
logical level. In this field we compared two works: the
Annotation Graphs Toolkit (AGTK) (K. Maeda and Bird,
2002) that is an implementation of the Annotation Graphs
formalism (Bird and Liberman, 1999), the most cited work
in this area; and the ATLAS architecture (Bird et al., 2000),
a generalisation of the Annotation Graphs formalism to al-
low the use of multidimensional signals.
The AGTK and the ATLAS architectures do not allow the
separation of information into layers. In these architectures,
to avoid the loss of information, each tool has to load all
previous annotations, and then save them together with its
results. This strategy has several drawbacks: first, each
tool must know how to manage data which may be unre-
lated with the tool itself. Second, each tool may have to
load and parse extra data upon its initialisation and con-
sequently save extra data when terminating. Finally, it is
difficult for a tool to handle data from several tools at the
same time, because it must merge the common data from
the input tools. Concerning the expressiveness power of
the data model used to represent linguistic information, the
adoption of the Annotation Graphs model is not possible,
mainly because it does not allow the representation of rela-
tional information, nor the representation of cross-relations
between several data layers. The extensions performed by
the ATLAS architecture provide a better representation for
conceptually different linguistic phenomena, such as hier-
archic trees, and ambiguous segmentations. Furthermore,

27

ATLAS allows the use of every type of data sources. But,
even so, this model still presents the same problems as the
Annotation Graphs formalism.
The Emdros framework has a representation model that is
too restrictive for our objectives. For example, it restricts
the media type to text. In Emdros it is not possible to prop-
erly represent some types of linguistic phenomena, such as
classification ambiguity, or relations between elements.
The NLTK restricts development to the Python program-
ming language, and relies on the Python interpreter to work.
Moreover, its underlying data model is not able to fulfil all
our requirements, for instance, the representation of ambi-
guities, such as, classification ambiguity.
The GATE framework presents the same problems as the
AGTK formalism, concerning its data model. Moreover,
it limits its use to the Java programming language. GATE
promotes the integration of NLP tools into a pipes and fil-
ters architecture, which as we mentioned in the introduc-
tion, has some problems that led to the development of this
work.
Finally, the Festival framework has a model that does not
allow the fulfilment of all our requirements, namely: i) its
source data must be text, ii) it cannot represent all types
of ambiguities defined in the requirements, iii) it does not
allow the concurrent execution of different tools.
The requirements defined in the previous section were com-
pared against the requirements that are being defined by
ISOTC37/SC4 (Terminology and other language resources)
to define a standard for linguistic annotation (Ide et al.,
2003; Ide and Romary, 2001). We found them to be very
similar, which strengthened our conviction that any model
used to represent linguistic information should follow these
requirements.

4. Proposal
Our proposal consists of a client-server architecture. The
clients are NLP tools while the server consists of a
centralised repository of linguistic information and data
sources represented under a data model. Each NLP tool
can interact with the server in two ways:

• By using a remote interface independent of the tool’s
programming language;

• By using a module in its programming language that
abstracts the communication and protocol details be-
tween the client and the server, and offers an imple-
mentation of the data model. The use of the server is
simpler using the client library than using the remote
API, but the use of the client library requires an imple-
mentation of the client library for each programming
language used.

4.1. Data Model
The data model is able to represent and relate various types
of linguistic information produced by several NLP tools.
Besides representing the different linguist phenomena, the
model simplifies the use of linguistic information.
The entities composing the data model, described in Fig.1
are:

Figure 1: Data Model class diagram.

• Repository: a centralised linguistic repository that
stores the output of several NLP tools, and organises
that information into layers. Each layer is univocally
identified inside the repository. There are two types of
layers: SignalData and Analysis;

• Data: an abstraction of a data type that can be used by
the Repository, e.g. String;

• SignalData: an abstraction of a raw data source, e.g. a
text, abstracting details such as its physical location or
its data type. All SignalData have a minimal granular-
ity unit. In a text that unit might be a character, while
in an audio file it might be the sample;

• Index: a point in a SignalData using its minimal unit;

• Region: defines a region in a SignalData, using a pair
of indexes. The Region encapsulates the details about
the specifics of SignalData and Index elements;

• Analysis: linguistic information other than SignalData
elements produced by an NLP tool. An Analysis may
be open or closed indicating whether the tool has al-
ready finished the addition of data into the Repository.
An Analysis can only be changed if it is open. The
Analysis is responsible for the creation of Segmenta-
tions, Relations and Classifications;

• Segment: a linguistic element, e.g., a word. A Seg-
ment may contain two Data elements: the original data
and the derived data. The original data corresponds to
a linguistic element identified in a SignalData, while
the derived data corresponds to a possible transforma-
tion performed over the original data. A Segment may
be ambiguous, meaning that it has a set of Alterna-
tive elements for the linguistic element that it identi-
fies. It may be hierarchic, meaning that it has a Parent
Segment and Child Segments. A Segment has a set of
disjunct Classification elements, where each Classifi-
cation assigns a set of characteristics to the Segment.
It also has a set of Relations, that establish links be-
tween two Segments from the same Analysis. A Seg-
ment may belong to a set of CrossRelations, which are
used to establish structural relations between Segments
from different Analyses;

28

• Segmentation: a set of sequentially ordered Segments,
e.g., the words in a sentence. The Segmentation is re-
sponsible for the creation of Segments;

• Relation: a link between two segments. For exam-
ple, the relation between the subject and the verb in a
phrase;

• Classification: a set of characteristics of a Segment or
Relation. For instance, the morphological features of
a word;

• Alternative: a set of Segments representing different
alternatives for an ambiguous linguistic element;

• Cross-Relation: a structural relation between Seg-
ments of distinct Analyses. It is used to navigate be-
tween different layers of information.

Figure 2 shows how the derived data attribute can be used to
represent the separation of a contraction. It shows a Repos-
itory with two layers. The first layer is a SignalData that
contains the text “They’re waiting outside”. The second
layer is an Analysis with two segmentations. The first Seg-
mentation contains a Segment for each token of the Signal-
Data which references a Region in the SignalData. The
second Segmentation shows the use of derived data to rep-
resent the separation of the contraction “They’re”. It con-
tains two Segments with derived data (represented in italic)
one for each word composing the contraction. These seg-
ments still contain the Region referencing the original data,
which allows the access to the original state of the text. To
clarify the example, we have repeated the representation of
the SignalData layer to not overlap the arrows. Note that,
there is only one layer with that SignalData.

Figure 2: Use of derived data example.

Figure 3 shows the representation of an example of classifi-
cation ambiguity. The figure shows a Repository with 3 lay-
ers. The first layer contains the original SignalData while
the second layer contains an Analysis with the segmentation
of the original text into words. The third layer represents
the output of a part-of-speech tagger. Each Segment from
the second layer has several Classifications. In this exam-
ple, each Classification only contains one attribute-value

Figure 3: Classification ambiguity example.

pair: the word’s part of speech. This example shows the as-
sociation of Classifications to Segments from other layers.
Figure 4 shows how CrossRelations can be used to align
different SignalData elements. The figure shows the trans-
lation of the sentence “The red rose is pretty” from English
to Portuguese, “A rosa vermelha é bonita”. The Repos-
itory contains four layers. The first layer corresponds to
the original SignalData containing the English text, where
the possible Indexes are represented as integers under each
character, and the possible Regions identifying the words
are represented inside a box. The second layer is an Analy-
sis which contains the segmentation of that text into words:
it contains one Segment for each word, that uses a Region
(indicated by an arrow from the Segment to the Region in
the SignalData) to refer to the word’s text. The Segmenta-
tion contains those Segments in accordance with the word’s
order in the text. The third layer is a SignalData contain-
ing the translation of the English text from the first layer,
and the fourth layer is an Analysis produced by an English
to Portuguese translator tool, which creates a Segmentation
where each Segment represents a Portuguese word from the
third layer. The representation of the third and fourth lay-
ers is the same as the explained for the first two layers.
The alignment between the two texts is achieved by adding
CrossRelations between Segments from the corresponding
Analyses. The CrossRelations are represented as dotted ar-
rows between Segments.

4.2. Server Architecture

The server architecture consists of a shared data style. This
architecture has the advantages of allowing clients to be
added without the server knowledge, and of allowing the
integration of the data produced by all the tools. The lin-
guistic information, described using the data model, is man-
aged by the server. The server is organised in three layers:
the data layer, the service layer, and the remote interface
layer. Each layer can only use the adjacent layers through
their interfaces. The layered approach promotes portability,
and maintainability since the role of each layer is well iden-
tified, and the implementation of each layer can be changed
without affecting the other layers.

29

Figure 4: Data alignment example.

4.2.1. The Data Layer
The data layer contains the logic of the application, and
uses the data model to represent the linguistic information.
Besides representing all the linguistic information, the Data
Layer is also responsible for guaranteeing the persistence of
all linguistic information stored in the server.

4.2.2. The Service Layer
The service layer (Fowler, 2002) defines the server’s bound-
ary by providing a set of methods and coordinates the
server’s response to each method. It is used by the Remote
Interface Layer, which handles the specific protocol details,
and encapsulates the Data Layer. The Service Layer is re-
sponsible for hiding the details regarding the representation
of the domain elements of the Data Layer. It transforms the
domain elements into Data Transfer Objects (DTO) which
will be passed to the client. A DTO (Fowler, 2002) is an
object with no semantics, and is used to pass information
between the client and the server. Each DTO can hold two
kinds of information from domain objects: i) identification
information used to access domain objects; ii) read-only in-
formation that may be required by the client.
The Service Layer is also responsible for providing meth-
ods that allow the creation of iteration facilities on the client
side. Moreover, and since the Service Layer is a single en-
try point into the server,it is an ideal place to perform log-
ging and authentication actions.
The Service Layer together with the DTOs works as a Re-
mote Facade (Fowler, 2002) thus diminishing the number
of remote calls required for certain operations.

4.2.3. The Remote Interface Layer
The remote interface layer provides the methods that are
available to client tools according to a selected protocol. It
communicates with the Service Layer, and is responsible
for serialising the DTOs provided by the Service Layer into
their external representation, which will be sent across the
connection. It is also responsible for assembling the DTOs
back, and pass them to the Services Layer.

4.3. Client Library Architecture

The use of the client library allows an NLP tool to abstract
from details concerning the communication with the server,
and the data exchange protocol. It also provides some high
level interfaces that may simplify the integration of NLP
tools. The client library uses a layered architecture, each
layer is described in the rest of this subsection.

4.3.1. The Client Stub Layer
The client stub layer is responsible for communicating with
the server under the chosen protocol, through the server’s
Remote Interface layer. All the other layers of the client
library depend and use this layer. This way the other lay-
ers are independent of the specific communication protocol
that is being used.

4.3.2. The Data Model Layer
The data model layer implements the data model. It allows
NLP tools to use the data model as their object model, thus
simplifying their creation. Since the concepts used by NLP
tools are usually similar, by using the data model we de-
sire to avoid the definition of an equivalent one every time a
new tool is created. In addition, by using only the interfaces
provided by the Data Model layer its concrete implementa-
tion can be changed without changing the tool. This way,
an NLP tool can be used as a stand-alone tool or as a client
tool connected to the shared repository just by changing the
implementation of the Data Model Layer.
The Data Model layer elements are proxies(Gamma et al.,
1995) for the elements of the Data Model in the server. The
methods performed on those elements are delegated into the
corresponding elements in the server.
The repository can be used concurrently by several NLP
tools, so it is possible that a tool consumes information that
is being produced by another tool at the same time. If the
consumer tool is faster than the producer tool and depletes
the data that is being produced, the consumer tool may fin-
ish its processing due to a lack of data before what was
expected. To avoid this situation the iterators on the client
side have a blocking behaviour. The method hasNext()
only returns false when the Analysis that contains the data
that is being iterated is closed and there are no more ele-
ments to iterate. However, this policy can result in a dead-
lock to the consumer tool if the producer tool ends abruptly
without closing its Analysis. So, we introduced a time limit
for which a client method can be blocked in the method
hasNext() .

4.3.3. The Extra Layers Layer
The extra layers layer provides extensibility to the client
library. It represents new layers that can be added on top
of previous ones, enabling the creation of domain specific
layers, which may simplify the creation of new NLP tools.
For example, a part-of-speech tagger could use a layer that
provides the concepts of word, phrase and text, with meth-
ods such as nextWord() , and addGender(Word w) .
The usage of Extra Layers can also provide semantic mean-
ing to the linguistic information kept in the Repository for
a given NLP system.

30

5. Poetry Learning Aiding System
The Poetry Learning Aiding System (Araújo, 2004)is a di-
dactic NLP system for learning the concepts of Portuguese
poetry as well as aiding the creation of poems. The sys-
tem major functionalities are the characterization of poems
and the suggestion of words to complete a verse. Figure 5
shows the system’s user interface. The user can add a poem
contained in a text file to be characterized, or ask for a sug-
gestion to end the last verse of the current poem.

Figure 5: Poet User Interface example.

The system is composed by several tools, some of them
were already developed in our group, while others where
developed specifically for this system. The initial input of
the system is a text file containing the source poem where
verses are separated by blank lines. The system contains
the following tools:

• The poem structure identifier - This tool places the
original poem in the repository and creates two analy-
ses. One containing the segmentation of the poem into
verses and the other containing the separation of the
poem into lines. These two analyses are aligned us-
ing cross-relations (each line is cross-related with the
corresponding verse);

• A word tokenizer and part of speech tagger - This tool
segments the poem into words (these new segments
are aligned with the sentence segments) and assigns
each word’s possible part of speech tags as several
classifications;

• Syllable segmentation and phonetic transcriber - This
tool segments each word into its grammatical sylla-
bles (kept aligned with the corresponding words) and
adds a classification for each syllable containing its
phonetic transcription;

• Poem characterization tool - This tool classifies the
poem based on the information produced by the pre-
vious tools. It uses for instance, the number of sylla-
bles of each sentence, the number of sentences of each
verse and the the type of rhyme of each verse;

• Word suggester - This tool suggests a word to end the
last line of the last verse. It uses a n-gram model that
based on the pos tags of the last words of the last line
suggests the part of speech required. Then based on

the phonetic termination of the last words from the
other lines in the verse suggests a word to end the
verse. This suggestion may be restrained to a certain
pos tag or to a certain phonetic termination if required.

Figure 6 shows an example of the repository during the exe-
cution of the system before the execution of the poem char-
acterization. At this stage all information required for the
next two tools is cross-related in the repository.

Figure 6: Poet Repository state example.

This system is the first being created using the repository
and it allowing us to test the feasibility of the framework.
The existing tools (pos-tagger and the phonetic transcriber)
where integrated using converters from their existing for-
mats into the repository data model format. The new tools
were implemented using the data model as their object
model, avoiding some issues which are usually the devel-
oper’s responsibility, as the definition of an object model,
and the definition of an IO interface. Moreover, having the
different levels of information cross-related the creation of
the poem characterization tool and the word suggester was
simplified, since instead of having several input files from
each tool and having to merge all information, each tool ac-
cesses one particular level and then navigates through the
information using the existing cross-relations.

6. Results and Future work
We implemented our framework in Java (around 57
classes) using the XML-RPC protocol provided by the
APACHE XML-RPC package. This protocol was chosen
because of its simplicity and because it does not impose any
restrictions on the programming language used by client

31

Merging FrameNet and PropBank in a corpus of written Dutch

Paola Monachesi∗, Jantine Trapman ∗

∗ Utrecht University, Uil-OTS
Trans 10, 3512 JK Utrecht, The Netherlands

{Paola.Monachesi, Jantine.Trapman}@let.uu.nl

Abstract
We discuss the development of a schema for the semantic annotation of a corpus of written Dutch. Our focus is on the annotation of
semantic roles. We rely on the proposals made within initiatives such as PropBank and FrameNet. Our aim is to reconcile the PropBank
approach to role assignment which is essentially corpus based and syntax driven with the more semantic driven FrameNet approach
which is based on a network of relations between frames. A comparison with similar initiatives such as Omega is carried out.

1. Introduction
The creation of semantically annotated corpora has lagged
dramatically behind. As a result, the need for such re-
sources has now become urgent. Several initiatives have
been launched at the international level in the last years,
however, they have focussed almost entirely on English and
not much attention has been dedicated to the creation of se-
mantically annotated Dutch corpora. The Flemish-Dutch
STEVIN-programme has identified semantic annotation as
one of its priorities.1 Within the project Dutch Language
Corpus Initiative (D-Coi) we are developing guidelines for
the semantic annotation of Dutch and our focus is on two
types: semantic role assignment and temporal and spatial
semantics.2 In this paper, however, we will only be con-
cerned with semantic role annotation.
During the last few years, corpora with semantic role an-
notation have received much attention, since they offer rich
data both for empirical investigations in lexical semantics
and large-scale lexical acquisition for NLP and Semantic
Web applications. Several initiatives are emerging at the in-
ternational level and within the D-coi project we have taken
the following ones into account:

• PropBank (Kingsbury et al. 2002) which aims at
adding a layer of semantic annotation to the Penn En-
glish TreeBank;

• FrameNet (Johnson et al. 2002) which is a corpus-
based lexicon-building project that documents the
links between lexical items and the semantic frame(s)
they evoke;

Our aim is to reconcile the PropBank approach to role
assignment which is essentially corpus based and syntax
driven with the more semantics driven FrameNet approach
which is based on a network of relations between frames.
In this paper, we will discuss two pilot studies we have car-
ried out to evaluate the feasibility of this approach: one
aiming at the annotation of sentences containing predicates
belonging to theCommunicationframe while the other one
takes the (adjunct) middle construction into consideration.
Furthermore, the approach sketched here which aims at
mergingcertain features of FrameNet and PropBank will be

1http://taalunieversum.org/taal/technologie/stevin/
2http://lands.let.ru.nl/projects/d-coi/

compared with the efforts made within the Omega project
(Philpot et al. 2005) which deals with thealignmentof sev-
eral resources among which FrameNet and PropBank.

2. The Dutch language Corpus Initiative:
description of aims and goals

The realization of an appropriate digital language infras-
tructure for Dutch is one of the objectives of the STEVIN
programme which has been recently launched in The
Netherlands. In particular, the need for a large corpus
of written Dutch, comprising 500-million-words has been
identified as one of the top priorities. This corpus should be
tailored to the needs of scientific research and commercial
applications and should improve the development of other
resources and tools. Applications such as information ex-
traction, question-answering, document classification, and
automatic abstracting that are based on underlying proba-
bilistic techniques should benefit from it.
All texts in the corpus will conform to standards for char-
acter encoding and markup. Furthermore, the corpus will
be linguistically annotated. Given its size, linguistic anno-
tation is only feasible if automatic or semi-automatic pro-
cedures can be employed: post-editing can be undertaken
only for a subset of the data. For the various annotation lay-
ers, annotation schemes must be decided upon and the aim
is to revise and adapt the protocols which have been devel-
oped for the Spoken Dutch Corpus (Oostdijk et al. 2002)
.
A pilot study is being carried out to this end: the Dutch
language Corpus Initiative is a project launched within the
STEVIN programme whose aim is a blueprint for the con-
struction of the 500-million-word corpus. The project is
concerned with issues related to the design of the corpus
and the development (or adaptation) of protocols, proce-
dures and tools that are needed for sampling data, text reg-
ularization, converting file formats, marking up, annotat-
ing, post-editing, and validating the data. Within the D-coi
project, a 50 million word pilot corpus will be compiled,
parts of which will be enriched with (verified) linguistic
annotations. The pilot corpus is intended to demonstrate
the feasibility of the approach. It will provide the neces-
sary testing ground on the basis of which feedback can be
obtained about the adequacy and practicability of various
annotation schemes and procedures, and the level of suc-
cess with which tools can be applied.

32

3. Semantic annotation in D-coi

One of the innovative aspects of the D-coi project is that
it will focus not only on the revisions of those proto-
cols which have been already developed within the Spoken
Dutch Corpus for PoS tagging, lemmatization and syntac-
tic annotation but it will also explore the possibility of in-
tegrating an additional annotation layer based on semantic
information. This annotation layer was not present in the
Spoken Dutch Corpus.
The need for semantically annotated corpora has now be-
come urgent. Several initiatives have been launched at the
international level in the last years, showing that the time
is ripe for activities in this direction. However, they have
focussed almost entirely on English and not much attention
has been dedicated to the creation of semantically annotated
Dutch corpora. One of the goals of the D-Coi project is
the development of a protocol for such an annotation layer.
Only a small part of the corpus will be annotated with se-
mantic information (i.e. 3000 words), in order to yield in-
formation with respect to its feasibility. A more substantial
annotation effort could be carried out in the framework of
the 500 million word corpus. In this follow-up project other
types of semantic annotation might also be taken into con-
sideration, as well as their interaction with other levels like
PoS tagging and syntactic analysis. We are therefore tak-
ing this interaction into consideration when developing the
protocol.
For the moment, we are only dealing with two types of se-
mantic annotation and their interaction, that is semantic role
assignment and temporal and spatial semantics. The reason
for this choice lies in the fact that semantic role assignment
(i.e. the semantic relationships identified between items in
the text such as the agents or patients of particular actions),
is one of the most attested and feasible types of semantic
annotation within corpora. On the other hand, temporal
and spatial annotation was chosen because there is a clear
need for such a layer of annotation in applications like in-
formation retrieval or question answering. In the rest of this
paper, however, we will focus only on semantic role assign-
ment.

4. Semantic role assignment in D-coi

During the last few years, corpora enriched with semantic
role information have received much attention, since they
offer rich data both for empirical investigations in lexical
semantics and large-scale lexical acquisition for NLP and
Semantic Web applications. Several initiatives are emerg-
ing at the international level to develop annotation systems
of argument structure, within the D-coi project we intend
to exploit existing results as much as possible and to set the
basis for a common standard. We want to profit from ear-
lier experiences and contribute to existing work by making
it more complete with our own (language specific) contri-
bution given that most resources have been developed for
English.
The following projects have been evaluated in order to as-
sess whether the approach and the methodology they have
developed for the annotation of semantic roles could be
adopted for our purposes:

• PropBank (Kingsbury et al. 2002);

• FrameNet (Johnson et al. 2002);

Given the results they have achieved, we have taken their
insights and experiences as our starting point. In the rest of
this section, we will consider them more in detail in order to
evaluate their strengths and weaknesses and to assess which
features of the existing systems we want to include in the
scheme for the semantic annotation of the D-coi corpus.

4.1. PropBank

PropBank aims at adding a layer of semantic annotation to
the Penn English TreeBank (Marcus et al. 1993). It pro-
vides a semantic representation of argument structures that
are labeled consistently in such a way that the data are us-
able for automatic extraction. The set of argument labels is
a very restricted one, as Table 1 shows. The PropBank lexi-
con, which was added first to facilitate annotation and later
evolved into a resource on its own, is constructed following
a ‘bottom-up’ strategy: starting from the various senses of
a word, a framefile is created for every verb. Such a frame-
file contains thus all possible senses of the verb plus a set
of example sentences that illustrate the context in which the
verb can occur. For each sense of the verb, a roleset and ex-
ample sentences are available. Therefore, when a verb has
two senses its framefile contains two different rolesets as is
the case withleavefrom (Babko-Malaya 2005):

(1) a. Frameset leave.01move away from
Arg0: entity leaving
Arg1: place left
Mary left the room

b. Frameset leave.02give
Arg0: giver
Arg1: thing given
Arg2: beneficiary
Mary left her daughter-in-law her pearls in her
will

To create a framefile, relevant sentences are extracted from
the corpus. Based on those sentences, the most frequent
and/or necessary roles are selected and one or more role-
sets are formed. In this way, the most common senses of
the verb are stored in the framefile. An interesting feature
of the PropBank project is that the corpus has been anno-
tated automatically with 83% accuracy and then corrected
by hand on the basis of the developed lexicon. Furthermore,
the goal of the ptoject is to provide training data for super-
vised automatic role labelers. This is a desirable objective
since it will be possible to annotate corpora of the size of
D-coi with semantic role information only if the the process
is semi-automatic.

4.2. FrameNet

Contrary to PropBank, FrameNet does not annotate a com-
plete corpus, but one that contains example sentences that
illustrate all possible syntactic and semantic contexts of the
lexical items taken into consideration. Besides the corpus,
two other components can be distinguished in FrameNet,
that is a set of lexical entries and a frame ontology.The
development of the ontology is based on the frames. A

33

Arg0 extern argument (proto-Agent)
Arg1 intern argument (proto-Patient)
Arg2 indirect object / beneficiary / instrument / attribute / end state
Arg3 start point / beneficiary / instrument / attribute
Arg4 end point
ArgA external causer

Table 1: PropBank argument labels

frame represents a certain prototypical situation which is
described by the frame definition. Every frame contains
also a list of frame elements and a set of lexical units that
can evoke the frame. The term lexical unit is used for a
word in combination with one of its senses (Johnson et al.
2002). The frame elements fulfill a certain semantic role
within the situation that is evoked by one of the lexical
units. For every lexical unit a set of sentences is selected
that illustrate all possible occurences of the lexical unit; all
possible semantic roles are annotated in these sentences.
For example, the verbleavewould evoke the frameDepart-
ing which is (partly) shown below:

• Departing
An object (the Theme) moves away from a Source.
The Source may be expressed or it may be understood
from context, but its existence is always implied by the
departing word itself.

• Frame Elements: Source, Theme, Area, Depictive,
Distance, Manner, Goal etc.

A sentence annotated with semantic roles on the basis of the
FrameNet information, would receive the following repre-
sentation:

(2) [Theme We all] left [Source the school] [Time at four
oclock].

Although FrameNet is still under development, its approach
has been adopted for the annotation of semantic roles for
languages other than English. An example is provided by
the German projectSaarbr̈ucken Lexical Semantics Anno-
tation and analysis(SALSA) (Erk et al. 2003), but there
are also projects based on FrameNet for languages such
as Spanish, French and Japanese. However, SALSA dis-
tinguishes itself from the others by the fact that it is not
restricted to building a lexicon but it annotates the com-
plete German Tiger corpus (Brants et al. 2002) using the
FrameNet dictionary and adapting it to German. Unlike
FrameNet, SALSA is not committed to always assigning a
single sense (frame) to a target expression, or a single se-
mantic role to a constituent but either more than one or an
Underspecifiedsense tag can be assigned in case of vague-
ness or ambiguity.

4.3. Comparing approaches

The main differences we have noticed between FrameNet
and Propbank are related to the methodology employed in
the construction of the lexicon and the way the lexicon is
structured. More generally, the classification attested in
PropBank is based onword senseswhich are grouped in

the ‘shallow’ framefiles while the FrameNet classification
is driven by theconceptswhich are structured in the ontol-
ogy of frames and thus based on hierarchically structured
semantic classes.
Furthermore, the two projects differ with respect to the
granularity of the role labels employed. FrameNet uses la-
bels which immediately reflect the semantic role of the con-
stituent and its annotation is rich in information. PropBank
labels require more careful investigation about the meaning
of the constituent in question. The difference is clearly il-
lustrated in the following examples by (Palmer et al., 2005):

(3) FrameNet

a. [Buyer Chuck] bought[Goods a car] [Seller from
Jerry][Payment for 1000 dollars].

b. [Seller Jerry] sold [Goods a car] [Buyer to
Chuck][Payment for 1000 dollars].

(4) PropBank

a. [Arg Chuck] bought [Arg a car][Arg from
Jerry] [Arg for 1000 dollars].

b. [Arg Jerry] sold [Arg a car][Arg to
Chuck][Arg for $1000].

In (3a) and (3b) the labels immediately and clearly reflect
who is buying and who is selling, but that is not the case
in (4a) and (4b); there the seller and the buyer carry dif-
ferent labels depending on the verb. On the other hand,
FrameNet does not immediately indicate that the subject in
both cases is the Agent, as in the PropBank notation which
uses the Arg0 tag to label it. The subject is not necessarily
the Agent, as shown by the passive sentences below:

(5) PropBank

a. [Arg A car] was bought[Arg by Chuck].

b. [Arg A car] was sold[Arg to Chuck][Arg by
Jerry].

c. [Arg Chuck] was sold[Arg a car][Arg by
Jerry].

(6) FrameNet

a. [Goods A car]was bought[Buyer by Chuck].

b. [Goods A car] was sold[Buyer to Chuck][Seller

by Jerry].

c. [Buyer Chuck] was sold[Goods a car][Seller by
Jerry].

34

The examples above also indicate that the PropBank
scheme maintains a more direct relation with the syntactic
structure of the sentence than the FrameNet one.
The FrameNet labels are rather rich in information, how-
ever, they might not always be transparent for users and an-
notators. On the other hand, the advantage of the PropBank
appoach is that by employing neutral labels, less effort is
required from annotators to assign them. Furthermore, it
creates the basis for the development of semi-automatic an-
notation of role labels, which is a necessary requirement if
we want to annotate large corpora.

5. Merging approaches
In developing a scheme for the semantic annotation of the
D-coi corpus, we are faced with several options.
We could assume the FrameNet approach and develop a
Dutch lexicon based on the English (and German) one and
employ it for the annotation of the Dutch corpus. We
would thus follow the strategy employed within the SALSA
project and we could even exploit their results given the
similarity between Dutch and German. A disadvantage of
this choice is related to the fact that in order to annotate the
corpus further we are bound to construct new frames (with
their definitions and their frame entities) manually and this
is a rather expensive process. Furthermore, we believe that
the labels used to identify the frame entities are not very
transparent and difficult for annotators to use.
The other possibility would be to employ the PropBank ap-
proach which has the advantage of providing clear role la-
bels and thus a transparent annotation for both annotators
and users. Furthermore, the annotation process could be at
least semi-automatic. However, a disadvantage of this ap-
proach is that we would have to give up the classification of
frames in an ontology which could be very useful for cer-
tain applications, especially those related to the Semantic
Web.
Within the D-coi project, we have chosen for a third option
which wants to reconcile the rather pragmatic PropBank ap-
proach to role assignment which is essentially corpus based
and syntax driven with the more semantic driven FrameNet
approach which is based on a network of relations between
frames. More generally, we would like to adopt the con-
ceptual structure of FrameNet, but not necessarily the gran-
ularity of its role assignment approach. With respect to role
assignment, we would lile to adopt the annotation approach
of PropBank.3

In order to assess the feasibility of our approach we have
carried out two pilot studies. The former one is based on the
integration of PropBank and FrameNet with respect to what
we consider a language independent phenomenon such as
the classification of verbs of communication while the latter
one considers a more language specific phenomenon, such
as the classification of (adjunct) middle verbs. The goals
behind these pilots are:

3A risk we take is that we will end up with a semantic an-
notation layer which is too similar to the syntactic representa-
tion which is assumed in D-coi. This will be an extension of
that developed for the Spoken Dutch Corpus, that is a depen-
dency structure which carries information about heads, comple-
ments and modifiers.

• to assess whether it is possible to merge FrameNet
frames with PropBank role labels and whether this
merging has to be manual or whether it is possible to
make it at least semi-automatic;

• to investigate to which extent we can use resources al-
ready developed for other languages;

• to assess whether we can extend existing resources
on the basis of our language specific annotation and
whether we should include the language specific fea-
tures in the original resource;

• to investigate whether it is possible to extend the
merged resources by exploiting the best features of
both and in this way facilitate the process.

5.1. Merging FrameNet and PropBank: the
Communication frame

As previously discussed, FrameNet provides a rich se-
mantic representation of language because its lexicon not
only encodes word senses but also relations among words.
Words can be related to each other on the basis of the frame
they share, but also because a relationship among frames is
established (Fillmore et al. 2004)). The ontological rela-
tions add extra information to word senses.
In FrameNet, every frame has its own definition which dis-
tinguishes it from other frames while the frame elements
can be the same across frames due to (partial) inheritance.
However, there is a great variety of elements that are frame
specific creating thus a quite complex structure which is not
always very transparent for annotators and users. Further-
more, by taking into account theCommunication Frame,
which comprises a mother frame with six daughters, we
have noticed that the inheritance relation is not as strict as
we had assumed.
Our aim is thus to reduce the FrameNet frames to a sim-
pler form in which the set of frame elements is restricted
to a number of elements that is comparable with the Prop-
Bank arguments. Since the interpretation of a PropBank
argument label depends on the word senses of the individ-
ual word, we wanted to make their interpretation more uni-
form as well. This can be achieved by assuming Levin’s
classes and diathesis alternation (Levin 1993) and the re-
visions implemented within VerbNet (Kipper et al. 2002).
Verbs within the same Levin class, sharing the same diathe-
sis alternations, should have the same roleset. Thus, the
second step is to group together those verbs that share the
same FrameNet frame, the same Levin class and diathesis
alternation and assign this group one roleset; this roleset is
derived from PropBank by selecting the most common ar-
guments from one group of verbs. Regrouping the verbs
this way decreases the number of rolesets in comparison
with the number of PropBank rolesets. The advantage is
that we can determine rolesets using a simple algorithm
that results in an intersection of the FrameNet and the Levin
classification (cf. also (Giuglea and Moschitti 2004)). As-
signing rolesets to these newly created classes takes less
effort than manual role assigment for every individual verb.
We then compared this roleset with the frame elements that
are normally used.

35

As a test case we took the frameCommunicationwhich has
six daughters:Communication-manner, Communication-
noise, Communication-response, Gesture, Reassuring
and Statement. For example, the verbs comprised
in Communication-noisebelong to four different Levin
classes with the majority of the verbs belonging to the class
Verbs of Manner of Speaking. These are verbs likebabble,
bellow, croon, hiss, wail, whineetc. A general roleset for
this group could be:

PropBank FrameNet

Arg0: speaker, communicatorSpeaker
Arg1: utterance Message
Arg2: hearer Addressee

Table 2: Roleset forCommunication-Noise

The alignment in the case of the communication verbs
was rather straightforward and it seems to suggest that in-
deed this methodology might be appropriate, the question
is whether this would be in general the case and whether we
would encounter more difficulties with other predicates. It
is for this reason that we worked out another case based on
a language specific construction, that is adjunct middles.

5.2. (Adjunct) middles in Dutch

The second test case we have taken under consideration in-
volves the argument structure of the middle construction in
Dutch and thus the annotation of sentences in which this
construction is attested (Trapman 2005). The middle con-
struction can be characterized by an active sentence which
receives a passive interpretation, as exemplified by (7b).
Example (7a) represents the active equivalent of (7b). Even
though the verb in (7b) exhibits active morphology, the ob-
ject represented byzijn laatste romanin (7a) fills the sub-
ject position in (7b) and the sentence receives a passive in-
terpretation:

(7) a. De winkel verkocht zijn laatste roman helemaal
niet.
’ The store didnt sell his last novel at all.’

b. Zijn laatste roman verkocht helemaal niet.
’His last novel didn’t sell at all.’

It should be noticed that the Agent represented byde winkel
doesn’t surface in (7b) but it is still present since the sen-
tence receives a generic interpretation. Another property
of the middle construction is that the verb is always fol-
lowed by a modifier. The modifier can be an adjective, but
also negation or simply stress. It has a dyadic character: it
pertains to the subject and at the same time it implies the
presence of an Agent.
Dutch differs from English in that the middle construction
is attested not only with objects surfacing in the subject po-
sition but also with adjuncts appearing in this position. Ex-
ample (8a) shows an active sentence containing a middle
verb and an adjunct which is a prepositional phrase. In the
next sentence, which receives a middle interpretation, the
Agent is not present and the adjunct is in the subject posi-
tion. Notice that the preposition has disappeared as well:

(8) a. Hij zit lekker op deze stoel.
’He sits well on this chair.’

b. Deze stoel zit lekker.
’This chair sits well.’

This kind of middle formation is subject to certain restric-
tions. First, adjunct middle formation occurs almost only
with intransitive verbs. (Peeters 1999) divides them in three
classes:

• verbs of position (sit, rest, lean etc);

• verbs of physical activity, implying no locomotion
(knit, shake, write etc.);

• (agentive) verbs of manner of motion (expressing no
directional endpoint) (travel, skate, walk etc.).

Second, there are only three types of adjuncts that are suit-
able for middle formation: adjuncts that represent an instru-
ment, a location or an external circumstance (Peeters 1999).
Sentences (9a), (9b) and (9c) give an example of each type:

(9) a. Deze stoel zit lekker.
’This chair sits comfortably.’

b. Deze zee vaart rustig.
’This see sails peacefully.’

c. Regenweer wandelt niet gezellig.
’Rainy weather does not walk pleasantly.’

The semantic annotation of the adjunct middle construction
represents an interesting challenge both for FrameNet and
PropBank. The examples given below are an attempt to
annotate sentence (9a), (9b) and (9c) with FrameNet and
PropBank role labels:4

(10) FrameNet

a. [Goods Zijn laatste roman] verkocht helemaal
niet (CNI: Seller) .

b. [Location Deze stoel] zit lekker (CNI: Agent).

c. [Area Deze zee] vaart rustig (CNI: Driver).

d. [Depictive? Regenweer] wandelt niet prettig
(CNI: Self-mover).

(11) PropBank

a. [Arg Zijn laatste roman] verkocht
[ArgM−MNR helemaal niet].

b. [? Deze stoel] zit [ArgM−MNR lekker].

c. [? Deze zee] vaart[ArgM−MNR rustig].

d. [? Regenweer] wandelt[ArgM−MNR niet pret-
tig].

These few examples immediately reveal an important dif-
ference between FrameNet and PropBank: the former
adopts a more fine grained distinction in role labelling
which is driven by semantics while the latter adopts a less
fine grained distinction which is syntactically driven. In

4CNI: Constructionally licensed Null Instantiation. This
means that the external argument frame element is unexpressed
(Johnson et al. 2002).

36

the case of the adjunct middles, we notice that PropBank
doesn’t offer us the means to label the constituent located
in the subject position. Even if the role set contains an ar-
gument label that is suitable, this label represents only a
location, sometimes an instrument, but it is never possible
to represent all three types of adjunct middle correctly us-
ing the available role set. In this case, FrameNet gives a
more satisfactory result but even the more exhaustive rep-
resentation of FrameNet is not sufficient to represent every
type of adjunct middle. Example (10d) represents an ad-
junct middle with an adjunct of external circumstance on
subject position. We have labeled it as a Depictive, but it is
not quite correct since the definition of Depictive is ‘Depic-
tive phrase describing the actor of an action’. This points at
an internal circumstance, but for now this label is the best
alternative that is available.5

To conclude, this construction poses problems both for
FrameNet and for PropBank, thus the merging approach
doesn’t provide a solution since we are dealing with a lan-
guage specific phenomenon which needs a language spe-
cific solution. Actually, even linguistic theory doesn’t pro-
vide us with a clear answer on what the role of the element
in subject position is supposed to be. This case can be con-
sidered a typical example of how D-coi could contribute to
the further development of language resources by extend-
ing the available notation on the basis of language specific
input. However, we still need to investigate how the mod-
ifications due to the language specific phenomena relate to
the original annotation scheme.

6. Omega: a comparison
The approach sketched in this paper aims at an integration
of PropBank and FrameNet, that is we would like to adopt
the conceptual structure of FrameNet and to merge it with
the role assignment procedure of PropBank. There seem
to be similarities with the integration of language resources
which has taken place within the Omega project (Philpot et
al. 2005).
Omega, is a 120,000-node terminological ontology con-
cived as the reorganization and synthesis of different lan-
guage resources which include WordNet and Mikrokosmos
(O’hara et al. 1998), a conceptual resource originally de-
veloped to support translation. A more recent addition to
the ontology has assigned frame information to each word
sense of a predicate based on FrameNet and PropBank lex-
icons. However, due to lack of detailed description of the
methodology adopted it is hard to evaluate whether the ap-
proach sketched here and the one developed within Omega
are equivalent.
It seems to us that Omegaaligns different resources, in-
cluding thus FrameNet and PropBank while we aremerg-
ing certain specific features of FrameNet (i.e. ontology of
frames) with others of PropBank (role labelling approach).
It would be relevant to assess whether the two methodolo-
gies provide ultimately the same results. A relevant test

5It should be noted that the original classification of (Peeters
1999) cannot be traced back in FrameNet. Instead, the 56 mid-
dle verbs that were investigated have a direct inheritance or
use relationship with one of the frames ofMotion, Posture and
Intentionally-act.

case in this respect would be how to extend an ontology
such as Omega, which is the result of the alignment of sev-
eral resources. That is, whether all the resources will be ex-
tended separately and then subsiquently aligned or whether
specific features of a given resource are exploited in order
to extend further the resources it is aligned with. The latter
would be the case in our approach since we would like to
exploit the semi-automatic role assignment of PropBank to
annotate new predicates and combine it with the conceptual
structure of FrameNet: through inheritance roles are shared
among predicates belonging to the same frame.
In oder to carry out a more detailed comparison between
our approach and that of Omega, we plan to carry out a
pilot study which will employ Omega to annotate the D-
coi corpus. A possibility would be to exploit the alignment
already established in Omega among Wordnet, FrameNet
and PropBank so that the semantic annotation of the Dutch
corpus could be achieved automatically through an addi-
tional alignment of the Dutch equivalent of Wordnet, that
is either the Dutch Wordnet developed within Euroword-
net (Vossen 1999) or the new lexical resource which will
be developed within CORNETTO, which is one of the new
projects launched within the STEVIN programme.

7. Integration of annotation schemas in
D-coi

As already mentioned, within the D-coi project a choice has
been made, with respect to which types of semantic anno-
tation should be developed: annotation of semantic roles as
well as of temporal and spatial semantics. This choice has
been motivated both by pragmatic reason (i.e. semantic role
assignment is one of the most attested and feasible types of
semantic annotation within corpora) and by the need for
such a layer of annotation within several applications such
as Semantic Web, informational retrieval or question an-
swering.
At the moment, we keep the two annotation levels sepa-
rately, to make it easy to produce alternative annotations
of a specific type of semantic information without need to
modify the annotation at the other level. By keeping the dif-
ferent types of annotation separately, it will be possible to
enable progress on techniques for one type of semantic pro-
cessing without need to wait for the development of high-
performing systems for other aspects of semantic interpre-
tation. However, we are aiming at a comprehensive annota-
tion scheme which should ensure compatibility among the
various types of semantic information. The need would be
even more urgent if in a follow-up project, it will be possi-
ble to integrate the results obtained with respect to semantic
annotation in current STEVIN projects. It would desirable
to incorporate the results of COREA,6 which deals with an-
notation of coreference and CORNETTO which will build
a lexical semantic database for Dutch with rich vertical
and horizontal semantic relations and with concepts aligned
with the English Wordnet.
Since all linguistic levels interact closely in order to de-
termine the meaning of a whole sentence, the meaning of
an expression will be characterized not only by its word

6http://www.cnts.ua.ac.be/ hoste/corea.html

37

meanings, but also by the manner in which they are put to-
gether: syntactic structure plays thus a relevant role. In the
D-coi project, the two different types of semantic annota-
tions will be carefully integrated with the other layers of
annotation, that is syntactic and morphological. Allowing
semantic annotation to proceed in parallel with the other
levels of annotation is a great advantage. There are sev-
eral examples of treebanks which were extended with se-
mantic information at a later stage such as PropBank or the
Prague Dependency Treebank. While these additions are
possible, as discussed in (Simov and Osenova 2004), they
are not trivial since they often require modifications in the
previous annotations, such as changing the labels or some
design principles. With D-coi, we are in the privileged posi-
tion of developing these annotations in parallel, taking thus
into account possible interactions and being able to exploit
the available information. The guidelines developed in this
respect can constitute the basis for further research as well
as a reference for similar initiatives.
In particular, our input sentences are syntactically analysed
in another layer using the Alpino parser,7 in this way the
meaning of an entity (expression, sentence) will not only
be characterized by the meaning of the constituting words,
but also by the manner in which these are put together. Note
that for example in temporal semantics the interaction of a
verb and other constituents (especially their prepositional
and/or nominal heads) is crucial in order to decide whether
the verb is refering to a bounded or an unbounded event.
PoS information is also still available at the syntactic level,
for example with respect to temporal information associ-
ated with the verbal forms. Similarly, in the case of seman-
tic role labelling, the syntactic structure encoded will guide
the assignment of the role labels, this is the case in the dis-
tinction between arguments and modifiers.

8. Conclusion
In order to develop a scheme for the annotation of semantic
roles within the D-coi project, we want to built on the re-
sults of similar initiatives. Particularly relevant for our pur-
poses are projects like PropBank, FrameNet, SALSA and,
more recently, Omega. In this paper, we have discussed
their properties, their methodologies and assessed their ap-
proaches, in order to decide which one would be the most
suited for our needs. However, in order to make a choice,
it is crucial to establish which criteria play a role in the de-
velopment of a (semantic) annotation scheme.
One criterion is the kind of applications which will make
use of our corpus. This means that further research should
be carried out to investigate what do applications in the area
of Information Extraction, Semantic Web, QA etc. require
from a linguistic resource of this kind. Apart from being
useful, we believe that such an annotation scheme should
provide an appropriate representation of language. There-
fore, a relevant question is whether a shallow semantic an-
notation such as that provided by PropBank will suffice or
whether we need a richer scheme, as the one in FrameNet.
However, adding more fine grained semantic information
will take more effort while the necessary means might not

7http://odur.let.rug.nl/ vannoord/alp/

be available. Finally, linguistic theory might play a rele-
vant role in the choices we make and one wonders whether
it is possible to be as theory neutral as possible. We be-
lieve that our proposal to merge the PropBank approach to
role assignment which is essentially corpus based and syn-
tax driven with the conceptual structure of FrameNet, takes
the criteria mentioned above into consideration.
Furthermore, we have attempted a comparison between our
approach and the alignment carried out within the Omega
project and we have focussed on the distinction between
alignment and merging. In our opinion these are two dif-
ferent operations. Alignment means to link two differ-
ent schemes with each other, but keeping them as separate
modules. This may cause problems if one of the modules
is modified which makes the alignment either incomplete
or maybe even not useful anymore. Merging implies align-
ment but goes one step further by integrating one scheme
into the other, or perhaps collapsing two schemes into a
third, new scheme. This requires careful consideration
about which properties the new scheme will inherit from
its sources and which additional actions have to be taken to
make it satisfactory.

9. References
O. Babko-Malaya. 2005.Guidelines for Propbank framers.
S. Brants, S. Dipper, S. Hansen, W. Lezius, and G. Smith.

2002. The TIGER treebank. InProceedings of the Work-
shop on Treebanks and Linguistic Theories. Sozopol.

K. Erk, A. Kowalski, S. Pado and M. Pinkal. 2003.Towards
a Resource for Lexical Semantics: A Large German Cor-
pus with Extensive Semantic Annotation. InProceedings
of ACL 2003, Sapporo.

C. Fillmore, J. C.F. Baker and H. Sato. 2004. FrameNet as
a net. InProceedings of LREC, Volume 4, 1091-1094.
Lisbon, Elra.

A. Giuglea and A. Moschitti. 2004. Knowledge Discovery
using FrameNet, VerbNet and PropBank. InProceedings
of the Workshop on Ontology and Knowledge Discover-
ing at ECML 2004, Pisa.

C. R. Johnson, C. J. Fillmore, M. R. L. Petruck, C. F. Baker,
M. J. Ellsworth, J. Ruppenhofer, and E. J. Wood. 2002.
FrameNet: Theory and Practice.

P. Kingsbury, M. Palmer and M. Marcus. 2002. Adding Se-
mantic Annotation to the Penn TreeBank. InProceedings
of the Human Language Technology Conference. HLT-
2002. San Diego, California.

K. Kipper, M. Palmer, and O. Rambow. 2002. Extend-
ing PropBank with VerbNet semantic predicates. Unpub-
lished manuscript, presented at Workshop on Applied In-
terlinguas, AMTA-2002, October.

B. Levin.1993. English Verb Classes and Alternations: A
Preliminary Investigation. University of Chicago Press,
Chicago.

M. Marcus, B. Santorini, and M. Marcinkiewicz. 1993.
Building a large annotated corpus of English: The
Penn treebank.Computational Linguistics, 19(2):313-
330, June.

T. O’Hara, K. Mahesh and S. Nirenburg. 1998. Lexical ac-
quisition with WordNet and the Mikrokosmos Ontology.
Proceedings of the COLING/ACL Workshop on Usage

38

of WordNet in Natural Language Processing Systems.
Montreal, Canada.

N. Oostdijk, W. Goedertier, F. van Eynde, L. Bovens, J.P.
Martens, M. Moortgat, and H. Baayen. 2002. Experi-
ences from the Spoken Dutch Corpus Project. In M. Gon-
zalez Rodriguez and C. Paz Saurez Araujo, editors,Pro-
ceedings of LREC-2002, pages 340-347.

M. Palmer, D. Gildea, P. Kingsbury. 2005. The Proposition
Bank: A Corpus Annotated with Semantic Roles,Com-
putational Linguistics, 31:1.

A. Philpot, E. Hovy and P. Pantel. 2005.The Omega Ontol-
ogy. University of Southern California.

R. J. Peeters. 1999. The adjunct middle construction in
Dutch. In:Leuvense Bijdragen, 88, pp. 355-401

K. Simov and P. Osenova. 2004. A Treebank-Driven Ap-
proach to Semantic Lexicons Creation. InProceedings of
the Third Workshop on Treebanks and Linguistic Theo-
ries. Tübingen, Germany.

J. Trapman. 2005. Where FrameNet meets the Dutch Spo-
ken Corpus: in the middle. Bachelor thesis. Utrecht Uni-
versity. 2005.

P. Vossen. 1999. EuroWordNet Final Report. EuroWordNet
(LE-4003 and LE-8328) Deliverable D041, University of
Amsterdam.

39

XML-Based Representation of Multi-Layered Annotation in the PDT 2.0

Petr Pajas, Jan Štěpánek

Institute of Formal and Applied Linguistics
Charles University in Prague, Faculty of Mathematics and Physics

Ke Karlovu 3, 121 16 Praha 2, Czech Republic
E-mail: {pajas,stepanek}@ufal.ms.mff.cuni.cz

Abstract
In this paper we introduce a generic XML-based data format called PML (Prague Markup Language), which was specifically designed
for the needs of representing rich multi-layered linguistic annotation and other data sources such as annotation dictionaries. PML is the
main data format for the upcoming release of version 2.0 of the PDT (Prague Dependency Treebank). We first present the fundamental
concepts and ideas behind the format, then describe how the annotation of PDT is represented in PML, and finally outline our plans for
further improvement.

1. Introduction
During the last phases of the Prague Dependency Tree-
bank 2.0 (PDT 2.0)1 production, a final decision about
the distribution format had to be made. In PDT 1.0 (Ha-
jič et al., 2001), the prior version of the treebank, several
legacy formats were used (namely a SGML based format
named CSTS and an application specific text format named
FS). Their common major disadvantage was that they fol-
lowed the all-in-one approach where the data as well as
all layers of annotation were intermixed in a single docu-
ment. This becomes unacceptable for PDT 2.0 where two
separate layers of annotation featuring dependency trees
(namely the analytical and the tectogrammatical layer) are
present. After investigating other possibilities and various
existing data formats, including TEI (Sperberg-McQueen
and Bournard, 2005), Annotation Graphs (Bird and Liber-
man, 2001), works of Ide and Romary (Ide and Romary,
2003) and the preliminary output from the ISO/TC 37/SC
4 (Ide and Romary, 2001) initiative, we have concluded
that none of them (at least at that time) meets the specific
demands of representing such a rich annotation as that of
PDT 2.0. We thus decided to implement an entirely new
data format.
Rather than following the unfortunate habit of creating a
project-specific format, we came to a decision for seeking
a more generic solution, to be potentially reused by us in
our future projects as well as by others for their specific
purposes. Based on our present experience with PDT 2.0,
we have recognized some demands on data representation
which seemed universally applicable within treebanking
and other NLP-oriented projects. Some of the most fun-
damental of these demands that we carried in mind when
designing the first version of PML are summarized in the
following assorted list:

Uniformity of representation: Same or analogous con-
structions should be represented in uniform or anal-
ogous ways.

Following the stand-off annotation principle: Layers of
annotation should be cleanly separated, both one from

1See (Hajič et al., in preparation).

the other as well as from the original data set to which
the annotations relate. This allows for making changes
only to a particular layer without affecting the other
parts of the annotation and data.

Unified cross-referencing and linking system:
Both links to external document and data resources
and links within a document should be represented
coherently. It should be noted that a variety of types
of external links is required by the stand-off approach.
By following the same principles in all related data
resources (data, tag-sets, and dictionaries), we may
achieve their tighter interconnection.

Linearity and structure: The data format ought to be able
to capture both linear and structured types of annota-
tion. Linear type includes e.g. word and sentence or-
der (in case of written text) or temporality (in case of
speech data). As for the structural annotation, our pri-
mary concern is to allow capturing tree-like structures
in a way that naturally mirrors their logical nesting.

Structured attributes: The representation should allow
for associating the annotated units with complex and
descriptive data structures, with expressive power sim-
ilar to that of feature-structures.

Handling ambiguity: The vague nature of the language
often leads to more than one linguistic interpreta-
tion and hence to alternative annotations. This phe-
nomenon occurs on many levels, from atomic values
to compound parts of the annotation, and should be
treated in a unified manner.

Human-readability: It appears necessary to retain certain
level of human-readability of the data representation.
It is useful not only in the first phases of the annota-
tion process, when the tools are not yet mature enough
to reflect all evolving aspects of the annotation, but
also later, especially for emergency situations such as
unexpected data corruption, etc. It also helps the pro-
grammers while creating and debugging new tools.

Extensibility: On a general level, the format should be ex-
tensible to allow new data types, link types, and sim-

40

ilar properties to be added. The same should apply to
all specific annotation formats derived from the gen-
eral one, so that one could incrementally extend the
vocabulary with markup for additional information.

XML based: XML (the eXtensible Markup Language) is
a widely deployed format very easy to build on. Using
XML as the underlying data representation allows us
to make use of existing validation tools and schema
languages for XML.

2. The format
PML (The Prague Markup Language), as of the specifica-
tion released on the PDT 2.0 CD-ROM (in preparation), is
our first step towards the new generic XML based data for-
mat. It proved capable of representing rich linguistic anno-
tation of texts, such as morphological tagging, dependency
trees, etc. in adequate and straightforward way.
The full specification of PML as well as various technical
aspects are given in (Pajas and Štěpánek, 2005). In this
paper, we only briefly introduce its internal conception.
The fundamental feature of PML is that it uses a meta-
language called PML schema language to provide a uni-
form way of defining individual XML-based vocabularies,
or data formats, for specific applications. Each of these in-
dividual vocabularies, which we call PML applications, is
thus formally described in an XML document called PML
schema. PML schema provides not only syntactic infor-
mation about data types and declarations of data structures,
nesting, etc. like other schema languages such as DTD,
W3C XML Schemas, Relax NG, but also elementary se-
mantical information about the data which may help the
processing tools “understand” the data. This semantical in-
formation is inserted into the declaration via so called PML
roles which we discuss later in this paper.
When launching a new annotation project, one typically
makes a decision about the annotation schema and underly-
ing mathematical models used for representing the linguis-
tics phenomena studied by the project. As both annotation
schema and the underlying mathematical model are most
often specified rather vaguely, the actual representation of
the annotation very much depends on the data format used.
From this perspective, the concept of PML schema also
serves (to a reasonable extent) as a formal description of an
annotation schema for a single layer of annotation with def-
inition of all data types and structures involved and decla-
rations of roles they play in the abstract annotation schema.
XML documents conforming to a PML schema are called
instances of the PML schema or rather of the particular
PML application the schema represents.
To illustrate these concepts, imagine the relations between
an annotation schema, PML schema, PML application, and
a PML instance, to be analogical to the relations between
the abstract idea of a book, the DocBook XML DTD, the
XML vocabulary that DocBook XML represents, and a par-
ticular XML document conforming to the DocBook DTD,
respectively.
Standard validation schemata, such as Relax NG, can be
derived from a PML schema automatically (using a XSLT
stylesheet). Hence, formal consistency of instances of the

PML schema can be verified using conventional XML-
oriented tools.
All PML schemata are defined in the XML names-
pace http://ufal.mff.cuni.cz/pdt/pml/schema/,
whereas all instances share a common dedicated XML
namespace http://ufal.mff.cuni.cz/pdt/pml/.

2.1. Data types
PML identifies several basic types of abstract data struc-
tures (or annotation constructions) and offers a unified way
of representing them in XML. These include:
attribute-value structures (AVS) i.e. structures consist-

ing of attribute-value pairs. To avoid confusion with
XML attributes, we usually refer to attributes of an
attribute-value structure as members.

lists allowing several values of the same type to be aggre-
gated in either an ordered or unordered list.

alternatives used for aggregating alternative annotations,
ambiguity, etc. From the technical point of view, al-
ternatives are very similar to unordered lists, however,
the difference lies in the semantics. If A is a value
of a list type and B1, . . . , Bn are the lists members,
then the whole tuple is considered to be the value of
A, i.e. A = {B1, . . . , Bn}. With alternatives, the sit-
uation is different. If the value of A is an alternative
of B1, . . . , Bn, then each of Bi should be considered
as a possible value of A individually, that is A = Bi

for all i = 1, . . . , n (in fact, A = Bi can be true for
only one i = 1, . . . , n, yet we do not know or cannot
decide which one of them it is, hence the ambiguity).

sequences representing sequences of values of different
types and also providing rudimentary support for
XML-like mixed content. Whereas lists are homo-
geneous (all list members are of the same type), se-
quences are not. They consist of an ordered sequence
of XML elements from a given list or text content (as
specified in the PML schema). The type of each ele-
ment in a sequence is implied by its tag name. Also,
unlike list members, elements in a sequence may be
further annotated using XML attributes.

links providing a unified method for cross-referencing
within a PML instance and linking both among vari-
ous PML instances (which includes links between lay-
ers of annotation) and to other external resources (in
the present revision, these resources have to be XML-
based).

enumerated types which are atomic data types whose val-
ues are literal strings from a fixed finite set. A special
case of enumerated type is a constant, where the set of
possible values is a singleton.

cdata types representing all character-based data without
internal structure or whose internal structure is not ex-
pressed by means of XML elements, etc. These types
are further specified by a format field, in order to al-
low validation and optimal in-memory representation,
distinguishing between numbers, identifiers, arbitrary
character data, etc.

41

2.2. PML Roles
As already mentioned, PML introduces a concept of so
called PML roles, which is orthogonal to the concept of
data typing. PML roles are assigned to a particular anno-
tation construction (be it a specific member of an AVS, an
element of a sequence, its attribute, etc.) defined in the
PML schema.
The information provided by PML roles identifies a con-
struct as a bearer of additional higher-level property of the
annotation, such as being a node of a tree, being a unique
identifier, etc. This information can be used by tools such
as annotation editors, like TrEd (Hajič et al., 2001), to de-
termine an adequate way of presenting the PML instances
to users.
The set of roles available in the current version of PML
specification was only chosen to cover the needs of the an-
notations of PDT 2.0 and is therefore very incomplete from
the general point of view. So far, the following roles are
defined:

TREES is a role indicating that members of a list or se-
quence with this role represent dependency or con-
stituency trees.

NODE identifies a node of a dependency or constituency
tree (this role may be assigned to structures or
sequence-members).

CHILDNODES identifies node member representing a list
of child-nodes of the node in a dependency or con-
stituency tree (this role is only applicable to a member
of a list type in a structure with role NODE or to a se-
quence in an element of role NODE).

ID is a role assigned to members or attributes uniquely
identifying a particular parent construct (an XML el-
ement, structure, sequence, etc.) in the PML in-
stance. Applications may use this information to pro-
vide look-up indexes for particular constructs. All val-
ues with role ID within a PML instance should be dis-
tinct.

KNIT is a role which can be used to mark certain links
interconnecting two annotation layers as suitable for
merging the two layers into a single annotation by em-
bedding the referred construct of the lower annotation
layer into the referring construct of the higher annota-
tion layer.

ORDER is a role assigned to node members whose numer-
ical value can be used to define a total ordering of a
tree.

Of course other roles come to mind when one considers rep-
resenting in PML other types of annotation, lexicons, and
other linguistic data sources. We currently evaluate both
possible extensions to the current set of PML roles as well
as the possibility to open the set of roles entirely to the user.

2.3. Layering and Links
In PML, individual layers of annotation can be stacked one
over another in a stand-off fashion. Typically, each layer of

annotation has its own PML schema. The interconnection
between annotation layers is represented by (preferably ID-
based) links.
Presently, PML only provides guidelines for ID-based link-
ing and cross-referencing. Other types of links may be rep-
resented in PML on a per-application basis.
Since PML is specifically designed for the purposes of rep-
resenting linguistic data and resources, where each file typ-
ically contains many links to only a few external resources,
we have decided to adopt indirect linking model for link-
ing to external documents. It works as follows: Every PML
instance starts with a standard header which, among other,
contains a section where all referenced external documents
are listed, in the following form:

<references>
<reffile id="a" name="adata"

href="doc73.a"/>
<reffile id="v" name="vallex"

href="vallex.xml"/>
</references>

Each <reffile> element contains information about one
referenced document, namely an ID assigned to the docu-
ment within the referencing instance, an optional symbolic
name of the particular type of resource (e.g. of the anno-
tation layer or lexicon it represents), preferably one that is
stable over all instances of this particular layer of annota-
tion, and the URL of the document. Links to these doc-
uments from an instance containing the above declaration
could look like in the snippet below:

...
<a>

<lex.rf>a#doc73-w5</lex.rf>
<aux.rf>

<LM>a#doc73-w3</LM>
<LM>a#doc73-w4</LM>

</aux.rf>

<t_lemma>chodit</t_lemma>
<functor>PRED</functor>
<val_frame.rf>v#f2234</val_frame.rf>

...

The above snippet contains four PML references, the first
three of which lead to elements with IDs doc73-w5,
doc73-w3, and doc73-w4 in the document doc_73.a,
while the last one leads to an element with ID f2234 in the
document vallex.xml. We can see on this example that
instead of repeating URLs of target documents, each target
document is specified using the ID (a and v in this case) as-
sociated with it in the references section of the header
of the instance.
By a convention, not a requirement of the current PML
guidelines, all names of AVS members containing cross-
references have the suffix .rf. Note also, that in the above
example, the second and third links are aggregated as list
members of a single AVS member named aux.rf.
We conclude this section with an example on how pointers
into non-XML data, such as audio file, can be represented
in PML.

42

...
<references>
<reffile id="au1" href="spk1_129.ogg"/>
...

</references>
...
<w id="w-12941_01-p1s1w1">
<token>_SIL_</token>
<audio>

<time_start>600000</time_start>
<time_end>4700000</time_end>
<file.rf>au1</file.rf>

</audio>
</w>

...

2.4. Examples
To give the reader a better idea about the actual XML repre-
sentation of the concepts discussed so far, we now present
as an example a simplified version of the PML schema for
PDT 2.0 analytical layer and a corresponding instance.

<?xml version="1.0" encoding="utf-8"?>
<pml_schema xmlns=
"http://ufal.mff.cuni.cz/pdt/pml/schema/">
...
<root name="adata">
...
<element name="trees"

role="#TREES"
required="1">

<list type="a-root.type" ordered="1"/>
</element>
</root>

<type name="a-root.type">
<structure role="#NODE" name="a-root">
...
<member name="children"

role="#CHILDNODES">
<list type="a-node.type" ordered="1"/>

</member>
</structure>
</type>

<type name="a-node.type">
<structure role="#NODE" name="a-node">
<member name="id" role="#ID"

as_attribute="1" required="1">
<cdata format="ID"/>

</member>
<member name="m.rf" role="#KNIT"

type="m-node.type"/>
<member name="afun" required="1">
<choice>
<value>Pred</value>
<value>Sb</value>
<value>Obj</value>
...

</choice>
</member>
<member name="ord"

role="#ORDER" required="1">
<cdata format="nonNegativeInteger"/>

</member>

...
<member name="children"

role="#CHILDNODES">
<list type="a-node.type" ordered="1"/>

</member>
</structure>
</type>
...

We see that this PML schema defines the root element as
a container for a list of trees represented by attribute-value
structures of the a-root type. In PDT 2.0 the roots of the
dependency trees are technical nodes which do not map to
actual tokens of the annotated sentence. We have therefore
skipped all declarations of its subsidiary members, except
for the memberchildrenwhich comprises a list of nodes
immediately descending from the technical root. These
nodes are attribute-value structures of the type a-node
whose members include the following: id for capturing a
unique ID of the node (notice that the declaration requires
that the id member is serialized into XML as attribute), an
ID-based link m.rf associating an a-node with the corre-
sponding unit (word) on the morphological annotation layer
suitable for “knitting”, e.g. embedding into the a-node AVS,
member afun for analytical function, ord whose integer
value defines total order on all nodes of the tree, and finally,
as above, a list of child-nodes of the type a-node. A cor-
responding instance might look as follows:
<?xml version="1.0" encoding="utf-8"?>
<adata
xmlns="http://ufal.mff.cuni.cz/pdt/pml/">
<head>
<schema href="adata_schema.xml" />
<references>
<reffile id="m"

name="mdata"
href="sample4.m.gz"/>

</references>
</head>
...
<trees>
<LM id="a-d79p1s1">
...
<children>
<LM id="a-d79p1s1w2">
<m.rf>m#m-d79p1s1w2</m.rf>
<afun>Pred</afun>
<ord>2</ord>
<children>
<LM id="a-d79p1s1w1">
<m.rf>m#m-d79p1s1w1</m.rf>
<afun>Sb</afun>
<ord>1</ord>
</LM>
<LM id="a-d79p1s1w3">
<m.rf>m#m-d79p1s1w3</m.rf>
<afun>AuxP</afun>
<ord>3</ord>
<children>
<LM id="a-d79p1s1w4">
<m.rf>m#m-d79p1s1w4</m.rf>
<afun>Obj</afun>
<ord>4</ord>

</LM>

43

</children>
</LM>

</children>
</LM>

</children>
</LM>
...

</trees>
</adata>

In the head section, the instance is associated with a corre-
sponding PML schema and documents on the lower layers
of annotation. Notice that all list members are uniformly
represented by elements LM.
The following figure presents an analytical tree represented
by the preceding PML instance as rendered by the annota-
tion tool TrEd (Hajič et al., 2001). Note that the actual word
forms appearing as labels under the nodes are obtained by
following the links to the morphological layer.

a-d79p1s1
AuxS

P
�
ím � �

í
Sb

vstoupilo
Pred

v
AuxP

platnost
Obj

Figure 1: Visual representation of the example tree.

3. Representation of PDT 2.0
PDT 2.0 comprises of four layers of annotation, namely
word layer (w-layer), morphological layer (m-layer), ana-
lytical layer (a-layer) and tectogrammatical layer (t-layer).
Thus, in order to represent them in PML, we have defined
four PML schemata, one for each layer.
The lowest layer is the word layer. It segments the text
into documents (there is one document per file) and para-
graphs, each of which consists of a flat sequence of tokens.
Each document, paragraph, and token on the w-layer has a
unique identifier and also a pointer to the original source of
the data, which in the particular case of PDT 2.0 are docu-
ments in a SGML based format used by the Institute of the
Czech National Corpus.
The morphological layer attaches to each w-layer token a
structure comprising of morphological form, lemma, and
tag (Zeman et al., 2005). The m-layer also introduces
segmentation on sentence boundaries. Each morphologi-
cal form may relate to zero or more tokens of the w-layer.
The case where a form relates to no w-layer token only oc-
curs in cases where the sentence was originally misspelled
and a certain token (usually a punctuation mark) otherwise
required by grammar rules was completely skipped in the

original text. The relation between the m-layer and w-layer
is represented as links from a m-layer PML instance into
the corresponding instance of the w-layer.
Annotation on the analytical layer (Hajič, 1998) in
PDT 2.0, as already mentioned in Section 2.4., consists of
a sequence of (analytical) trees pertaining to sentences of
the m-layer. There is a 1:1 correspondence between nodes
of the analytical tree and forms on the m-layer, represented
by links from an a-layer instance into the corresponding m-
layer instance.
Annotation on the tectogrammatical layer (Sgall et al.,
1986) consists of a sequence of (tectogrammatical) trees
each of which pertains to a certain analytical tree. The map-
ping between analytical and tectogrammatical trees is 1:1.
However, the mapping between nodes of a tectogrammat-
ical tree and nodes of the corresponding analytical tree is
in general N :M (with 0 possible both for N and M), and
in some cases the later mapping even crosses tree bound-
aries (it never crosses a document/file boundary, though).
Again, these relations are represented by links from t-layer
instances into the corresponding a-layer instances.
Tectogrammatical and analytical trees are dependency
trees, represented in PML commonly as nested attribute-
value structures. In this representation, a node of a tree is
an AVS with the PML role NODE. Each node has a ded-
icated member with the PML role CHILDNODES, which
contains a list of child-nodes of the node. Because of the
auxiliary character of root nodes of the dependency trees of
PDT 2.0, the structure representing the technical root of the
tree is of a different type then the rest of the nodes (i.e. has
a different set of members).
The dependency trees both on the a-layer and t-layer are or-
dered trees, although the semantics for these two orderings
is very different. The ordering of nodes of analytical trees
is rather technical and simply mirrors the ordering of the
underlying m-layer, while the ordering on the tectogram-
matical trees is an integral part of the tectogrammatical an-
notation and has a strong linguistic interpretation based on
communicative dynamism. The implementation of the or-
dering in PML is, however, common for both cases. Each
node has a dedicated member with PML-role ORDER and
integer value type. The value of this member represents the
position of a particular node in the total order of the tree it
belongs to.
The t-layer further contains annotation of coreference, rep-
resented in PML as ID-based links between tectogrammat-
ical nodes (from an indexing word or pronoun to its an-
tecedent).
Another part of the t-layer annotation which is worth men-
tioning here because of the specific way which was chosen
for representing it in PML is the annotation of quoted parts
of the sentences, which aggregates tectogrammatical nodes
into so called quotation sets, consisting of nodes pertaining
to a part of the text in quotes. The annotation further distin-
guishes between several types of quoting, such as citation,
direct speech, use of meta-language, etc. Each tectogram-
matical node may belong to zero or more quotation sets.
We represent quotation sets in PML by means of “color-
ing” nodes that belong to a quotation set, which technically
means the following: Each node has a memberquotwhich

44

is a list of structures, each of which consists of two mem-
bers, the first being an ID (“color”) identifying a quotation
set and the second a value determining the type of the quo-
tation. In this representation, a node belongs to a quotation
set if and only if the ID of the quotation set is listed in the
quot attribute of the node.
The solution used for annotation of quotation sets has the
obvious advantage that it does not introduce any new an-
notation structure parallel to the tectogrammatical tree. On
the other hand, it has some undeniable disadvantages, too,
namely the following:

1. although each quotation set has its own unique ID, it
is not represented by any explicit object. Instead, the
ID serves as an artificial name of a common property
of nodes belonging to the same quotation set.

2. the information about the type of the quotation is re-
peated with each member of the quotation set, al-
though it is constant over the quotation set. Hence,
it falsely appears as a property of an individual node
rather than property of the set it belongs to.

It should be noted that no other part of the tectogram-
matical annotation actually relates to the annotation of the
quotation-sets. Hence introducing an extra annotation layer
stacked over the t-layer would seem to be a cleaner solu-
tion in this case. In Section 5.6. below, we discuss several
criteria for choosing an adequate representation in similar
situations.

4. Current limitations and problems
Although PML proved mature enough to capture all as-
pects of annotation as complex as the four annotation lay-
ers of PDT 2.0, we have observed several problems that we
should deal with to improve applicability of PML to other
resources.
On the technical level, the fact that mutli-layered annota-
tion of a particular piece of data is divided into several PML
instances (one per layer) with internal links from one to an-
other causes that PML instances are not copy safe. Using
relative filenames works around the problem as long as all
related PML instances are always copied together. Simi-
lar problem of this kind arises when PML-encoded files are
compressed with gzip (e.g. in order to fit on a CD-ROM),
even in case that all tools used in further processing are
able to handle gzip-compressed files transparently. The
reason is that gzip compression adds a .gz suffix to each
file, which also breaks internal links. All this complicates
implementation of functions such as Save As in GUI appli-
cations working with PML documents.
On the data-representation level, there are several limita-
tions that we are aware of and will try to eliminate in a
future revision of the PML specification. These include:
no direct support for versioning, no support for inclusion
of raw XML data from a foreign namespace, no support for
modularization of large PML schemata, no type inheritance
or ambiguity (e.g. it is not possible to specify that, say, a
section either contains a list of other sections or a list of
paragraphs without allowing both at the same type). We
outline possible solutions to these limitation in the follow-
ing section.

5. Future improvements
5.1. Modularity
The PML schemata for PDT 2.0 are strict and intended
as an output format. Since PML is being adopted as the
base format for several further projects building on top
of PDT 2.0, there is a natural demand for new schemata
that would be more open and therefore suitable for stor-
ing intermediate annotation data. Since we want to pre-
vent over-using the “copy-and-modify” strategy where each
project maintains its own modified copy of the original
PML schemata, we plan adding extensive modularization
support to PML. It includes:

Versioning of both the PML specification (i.e. the schema
language) as such as well as of individual PML
schemata.

Inclusion of one PML schema into another. This will also
eliminate present duplication of schema code, which is
currently a necessity in cases where one layer of anno-
tation allows for embedding some units from another
layer (PML role KNIT).

Overriding allows the top-level PML schema to selec-
tively override declarations of certain types within the
included PML schema, greatly reducing the amount
of duplication of declarations when deriving a new
PML schema from an existing one. Since both inclu-
sion and overriding can be handled by a PML schema
pre-processor, it is completely transparent to existing
applications.

Type inheritance for AVS data types. Currently, the set
of structure members and their value types, as speci-
fied in a PML schema, is strictly unambiguous, which
makes it very difficult to define complex type hierar-
chies. If PML provided basic support for type inheri-
tance for attribute-value structures, then one could use
abstract types to specify common properties of data
structures of a certain kind and then use them as a ba-
sis for deriving specific types, with the important as-
pect that values of all the derived types could be used
equally as instances of the abstract type.

5.2. Per-instance typing
We are also evaluating the possibility of adding certain level
of support for instance-driven typing. In this approach, sim-
ilar to inheritance, but not limited to AVS-based data types,
the exact type of a certain data field is not fully specified by
the PML schema but may be on some level freely controlled
by the instance.

5.3. Foreign XML namespaces
In certain situations it seems useful to allow preserving
non-PML XML markup as direct part of the annotation.
One of such cases is when there is an existing widely
recognized XML vocabulary representing a given type of
information. For example, should some formal repre-
sentation of mathematical expressions and formulae be
part of the annotation, then directly embedding MathML

45

(http://www.w3.org/Math/) vocabulary into the PML anno-
tation would seem the most natural solution. In order to
make such a thing possible, we only need to identify for-
eign XML fragments as a new PML data type.

5.4. Metadata
Since PDT 2.0 data are not accompanied by much meta-
data, recommendations for a uniform representation of
such information have not been included in the first ver-
sion of the PML specification. In order to fill this gap,
we consider adding support for associating PML doc-
uments with meta-data encoded using some of the ex-
isting meta-data and resource description vocabularies,
specifically Dublin Core (http://dublincore.org) and RDF
(http://www.w3.org/RDF/).

5.5. Lexicon support
PDT 2.0 annotation is based on several annotation dic-
tionaries such as morphology and PDT Valency Lexicon
ValLex, (Hajič et al., 2003). We currently experiment with
representing these types of resources in PML. Although
lexicon data can often be represented as a tree-like hier-
archy, these trees, unlike those occurring in syntactic an-
notation, do not involve recursion. In fact, their nodes are
better viewed as items of (usually ordered) lists, often in-
dexable for random access according to various index keys.
We currently evaluate extending the set of PML roles by
dedicated roles suited exactly for lexicon purposes, such as
the following:

ITEM intended for structures representing lexicon items,
such as words or phrases.

INDEXABLE specifically marks large lists for which ap-
plications might want to provide lookup support.

INDEXKEY marks AVS members as intended lookup keys
in indexable lists (similarly, INDEXSUBKEY for
lookup subkeys).

5.6. Representing class membership
At the end of Section 3., we have already mentioned some
problems related to choosing adequate annotation model
and representation for set membership (in the particular
case of quote sets) and suggested introducing an extra anno-
tation layer as a possible solution. In general, there can be
found several criteria for choosing an appropriate approach
to annotation of membership relation:

• Does each class represent a specific property of its
members? Can these properties be associated with
meaningful labels? If so, and the set of labels is fi-
nite and known in advance, then the labels should be
listed in the PML schema and, in the annotation, at-
tached to the class members. Otherwise it is advisable
to add an extra layer representing the classes.

• Are the classes pairwise disjoint? If yes, then in or-
der to assure more easily that each object belongs to
at most one class, it is better to link from objects to
classes.

• Should all the annotated objects belong to some class?
If so, then, to assure that each object belongs to at least
one class, the links should again lead from objects to
classes. Also, the most common class (if there is one)
could be taken as default, in case the classes are pair-
wise disjoint at the same time.

• If the classes are assumed to merge or divide often dur-
ing the annotation process, then it is probably advis-
able to link from the class layer to the object layer.

• The expected number of classes and the number of ob-
jects belonging to at least one class should be consid-
ered. If both the numbers are low (compared to the
total number of objects) then it is easier to link from
classes to objects.

5.7. More atomic types
As already mentioned, in order to provide an extensive set
of atomic data formats, we consider adopting external li-
braries of simple type borrowed from validation languages
such as W3C XML Schema.

5.8. Intermediate layers
It has been noted that the PML-based formats of PDT 2.0
are designed as output formats and are not very suitable
for the annotation process. One of the places where this
becomes apparent, at least from the perspective of ma-
chine processing, is the fact that the annotation of sentence
boundaries is part of the morphological layer. Although
it is, at least in theory, possible that a sophisticated mor-
phological tagger was responsible for breaking the token
stream into sentences (note that for some languages such as
Arabic certain knowledge of the morphological structure is
necessary for both tokenization and segmentation), in prac-
tice it is most common that this step is done separately, prior
to morphological tagging (or sometimes even prior to anal-
ysis). This results in demand for isolation of segmentation
in an intermediate layer, produced by the segmentation tool
and loaded up together with the word-layer by the morpho-
logical tagger. PML schema of such a layer could be as
simple as:

<?xml version="1.0" encoding="utf-8"?>
<pml_schema xmlns=
"http://ufal.mff.cuni.cz/pdt/pml/schema/">
<root name="sb">

<element name="start.rf">
<list ordered="1">
<cdata format="PMLREF"/>

</list>
</element>

</root>
</pml_schema>

The corresponding instance would then look like (each link
simply pointing to the first token in a sentence):

<?xml version="1.0"?>
<sb xmlns=
"http://ufal.mff.cuni.cz/pdt/pml/">
<head>

<schema href="sb_schema.xml"/>

46

<references>
<reffile id="w" href="sample0.w"/>

</references>
</head>
<start.rf>

<LM>w#w-d56p1s1w1</LM>
<LM>w#w-d56p2s1w1</LM>
<LM>w#w-d56p2s2</LM>
...

</start.rf>
</sb>

A similar approach can be used to define a generic PML
schema for annotation of segment alignment in multi-
lingual corpora, only in that case the list would consist of
pairs (or vectors) of links with targets being segments (sen-
tences, paragraphs, etc.) of data in the individual languages.

5.9. Generating API
The strict nature of data-typing in PML and its formal dec-
laration in form of a PML schema allows us to create so-
phisticated code-generating tools which would transform
the PML schema into API libraries in various program-
ming languages providing optimal in-memory representa-
tion, parser, serialization, indexing, and other convenient
routines, ready-to-use and tailor-made just for the data con-
forming to the particular PML schema.

6. Conclusion
We have introduced a new generic data format suitable for
multi-layered annotation as well as various other NLP ap-
plications. We also reviewed how the format was applied
to capture the rich structural annotation of the Prague De-
pendency Treebank 2.0. In the last part we have pointed
out some current limitations and discussed in detail several
areas in which we plan to further extend and refine the spec-
ification of the format.

7. Acknowledgment
This paper was written with the support of the grant GA
AV ČR 1ET101120503 (Integration of language resources
in order to extract information from natural language texts).

8. References
Steven Bird and Mark Liberman. 2001. A formal frame-

work for linguistic annotation. Speech Communication,
33(1,2):23–60.

Jan Hajič, Eva Hajičová, Petr Pajas, Jarmila Panevová, Petr
Sgall, and Barbora Vidová Hladká. 2001. Prague De-
pendency Treebank 1.0 (Final Production Label). CD-
ROM. CAT: LDC2001T10.

Jan Hajič, Jarmila Panevová, Zdeňka Urešová, Alevtina Bé-
mová, Veronika Kolářová-Řezníčková, and Petr Pajas.
2003. PDT-VALLEX: Creating a Large-coverage Va-
lency Lexicon for Treebank Annotation. In E. Hinrichs
J. Nivre, editor, Proceedings of The Second Workshop on
Treebanks and Linguistic Theories, pages 57–68. Vaxjo
University Press.

Jan Hajič, Barbora Vidová-Hladká, and Petr Pajas. 2001.
The Prague Dependency Treebank: Annotation Struc-
ture and Support. In Proceedings of the IRCS Workshop
on Linguistic Databases, pages 105–114, Philadelphia,
USA. University of Pennsylvania.

Jan Hajič, Marie Mikulová, Alla Bémová, Eva Ha-
jičová, Jiří Havelka, Veronika Kolářová-Řezníčková, Lu-
cie Kučová, Markéta Lopatková, Petr Pajas, Jarmila
Panevová, Magda Razímová, Petr Sgall, Jan Štěpánek,
Zdeňka Urešová, Kateřina Veselá, and Zdeněk Žabokrt-
ský. in preparation. The Prague Dependency Treebank
2.0. CD-ROM. http://ufal.mff.cuni.cz/pdt2.0/.

Jan Hajič. 1998. Building a Syntactially Annotated Cor-
pus: The Prague Dependency Treebank. In Eva Ha-
jičová, editor, Issues of Valency and Meaning: Studies in
Honour of Jarmila Panevová, pages 106–132. Karolinum
- Charles University Press, Prague.

Nancy Ide and Laurent Romary. 2001. Standards for lan-
guage resources. In Proceedings of the IRCS Workshop
on Linguistic Databases, pages 141–149, University of
Pennsylvania, Philadelphia, 11-13.

Nancy Ide and Laurent Romary. 2003. Encoding syntac-
tic annotation. In A. Abeillé, editor, Building and Using
Parsed Corpora. Kluwer, Dordrecht.

Petr Pajas and Jan Štěpánek. 2005. A Generic XML-Based
Format for Structured Linguistic Annotation and Its Ap-
plication to Prague DependencyTreebank 2.0. Techni-
cal Report TR-2005-29, ÚFAL MFF UK, Prague, Czech
Rep., December.

Petr Sgall, Eva Hajičová, and Jarmila Panevová. 1986. The
Meaning of the Sentence and Its Semantic and Pragmatic
Aspects. Academia/Reidel Publishing Company, Prague,
Czech Republic/Dordrecht, Netherlands.

C. M. Sperberg-McQueen and Lou Bournard, editors.
2005. TEI P5 - Guidelines for Electronic Text Encoding
and Interchange. The TEI Consorcium, January.

Dan Zeman, Jiří Hana, Hana Hanová, Jan Hajič, Barbora
Hladká, and Emil Jeřábek. 2005. A Manual for Morpho-
logical Annotation, 2nd edition. Technical Report 27,
ÚFAL MFF UK, Praha.

47

Sustainability of Linguistic Resources

Stefanie Dipper†, Erhard Hinrichs‡, Thomas Schmidt∗, Andreas Wagner∗∗, Andreas Witt‡

†Universität Potsdam
dipper@ling.uni-potsdam.de

‡Eberhard-Karls-Universität Tübingen
eh@sfs.uni-tuebingen.de

andreas.witt@uni-tuebingen.de
∗Universität Hamburg

thomas.schmidt@uni-hamburg.de
∗∗Universität Duisburg-Essen
andreas.wagner@uni-due.de

Abstract
This paper describes a new research initiative addressing the issue of sustainability of linguistic resources. This initiative is a cooperation
between three linguistic collaborative research centres in Germany, which comprise more than 40 individual research projects altogether.
These projects are involved in creating manifold language resources, especially corpora, tailored to their particular needs. The aim of
the project described here is to ensure an effective and sustainable access of these data by third-party researchers beyond the termination
of these projects. This goal involves a number of measures, such as the definition of a common data format to completely capture
the heterogeneous information encoded in the individual corpora, the development of user-friendly and sustainably usable tools for
processing (e.g. querying) the data, and the specification of common inventories of metadata and terminology. Moreover, the project
aims at formulating general rules of best practice for creating, accessing, and archiving linguistic resources.

1. Introduction
This paper describes a new DFG1 funded project

(10/2005 – 12/2008) on preparation of language resources
for assuring an accessible dissemination and a sustainable
storing of these corpora. A main aim of the project is
a practical one: resources acquired in long-term projects
from three ‘Collaborative Research Centres’ have to be
converted in one or several formats to be sustainably usable
by researchers and applications. Furthermore it is envis-
aged to provide a unified access for the heterogeneous data
acquired in the different involved projects. In addition to
the preparation of already existing language corpora, gen-
eral methodologies and ‘Rules of Best Practice’ should be
developed.

The paper is structured as follows: Section 2. describes
the resources of the three Collaborative Research Centres.
These Centres are the SFB 538 ‘Multilingualism’ at the
University of Hamburg, the SFB 632 ‘Information Struc-
ture’ at the University of Potsdam and the Humboldt Uni-
versity Berlin, and the SFB 441 ‘Linguistic Data Struc-
tures’ at the Eberhard Karls University Tübingen.

Section 3. describes the technical aspects of the project.
Especially the aspect of a data format usable as a general or
meta-format for the formats in the three SFBs is adressed.
Because of the heterogeneity of the formats we expect that
such a format could serve as a meta-format for a wide range
of XML-based annotation schemes.

Section 4. addresses the use of an appropriate set of
meta data and the integration of formally defined termolo-
gies for enhancing interoperability of the annotated data.

1Deutsche Forschungsgemeinschaft, i.e. the German Research
Foundation.

The paper ends with some remarks on the ‘Rules of Best
Practice’, copyright issues and rights of personality.

2. Annotated resources and annotation
schemes

2.1. Hamburg
2.1.1. Annotated resources

The research centre on multilingualism at the Univer-
sity of Hamburg comprises 14 projects doing research on
diverse aspects of multilingualism. All projects work em-
pirically, basing their analyses on digital corpora of writ-
ten or transcribed spoken language. Apart from the spo-
ken/written distinction, these data differ with respect to
many more dimensions, but very roughly fall in one of the
following categories:

• Longitudinal first language acquisition data of bilin-
gual children - these are mostly transcriptions of video
recordings of child/caretaker interactions;

• Other language acquisition data - this comprises sam-
pled (as opposed to longitudinal) L1 acquisition data
of mono- or bilingual children as well as data from
L2 learners and from children with specific language
impairments;

• Multilingual spoken communication data - this in-
cludes, for instance, transcribed radio broadcasts of
Inter-Scandinavian communication, transcriptions of
interpreter-mediated doctor/patient communication,
Japanese/German expert discourse (e.g. business or
academic communication) and semi-structured inter-
views with bilingual speakers from the Faroe Islands;

48

• Historical texts - examples of these are Old Swedish
and Old Danish bible translations, 19th century letters
by Irish emigrants and Old French legal documents;

• Modern texts - this comprises a parallel corpus of En-
glish and German business texts as well as a parallel
corpus of popular science writing.

Apart from this conceptual diversity, the data in their
original form also exhibited a great diversity on the techni-
cal level, in particular with respect to their storage formats
(ranging from RDB-like over text-based to binary formats)
and the tools with which they could be created, edited and
analysed. Since this diversity made data exchange and data
reuse extremely difficult, the EXMARaLDA system was
developed to give these data a common structural backbone
and thus to facilitate data exchange and data reuse as well
as the construction of multi-purpose transcription and query
tools.

2.1.2. Annotation schemes
Building on the idea of the annotation graph framework

(Bird and Liberman, 2001), EXMARaLDA uses a time-
based data model. This means that the primary relation
between any two entities in a data set is established via
their reference to a timeline, and not via their position in
some other structure like, for instance, an ordered hierar-
chy. All non-temporal relations, like hierarchical inclusion
or entity/feature relations, are regarded as secondary fea-
tures that can be derived from this temporal structure. EX-
MARaLDA defines a basic and an extended data model for
working with linguistic data.

The basic data model (a “Basic-Transcription”) is a
variant of the “Single Timeline, Multiple Tiers” model
which is also used by a number of other systems or tools
like Praat, ELAN, the TASX annotator or ANVIL. In gen-
eral, these kinds of data model organise individual descrip-
tions (events) into a number of tiers (or layers) and relate
them to one another by assigning each description a start
and an end point from a single, fully ordered timeline. In
addition to that, the basic data model in EXMARaLDA re-
quires that, firstly, no two events within a tier must over-
lap. Secondly, each tier can be assigned a speaker and must
be assigned a category. Categories, in turn, fall into three
types: T(ranscription) for tiers in which verbal behaviour is
described, D(escription) for tiers in which non-verbal be-
haviour is described, and A(nnotation) for tiers in which
stretches of transcribed speech are further categorised. This
data model has proven adequate for the process of data cre-
ation as well as for many data visualisation tasks. In par-
ticular, its theory-neutrality makes it applicable for a wide
range of researchers, its comparative simplicity facilitates
the construction of intuitive user interfaces, and its similar-
ity to the models of other systems (mentioned above) makes
data exchange between EXMARaLDA and these systems a
fairly straightforward matter.

The extended data model (a “Segmented-
Transcription”) caters for more complex tasks like
querying and extensively annotating data, as well as
for additional types of visualisation and for long term
archiving. On top of the temporal structure encoded in

the basic data model, it allows for the representation of
additional linguistic structure. Most importantly, this
means a segmentation of transcribed speech events into
words and entities like turns, utterances or intonation
units. Since these linguistically motivated units and the
temporally motivated units in a Basic-Transcription do
not have a uniform relation to one another (i.e. neither
do their boundaries coincide in a regular way nor is one
systematically included in the other), encoding them both
in one document requires additional structural complexity.
This is attained by allowing for a bifurcating, partially
ordered timeline instead of the fully ordered one in the
basic data model. In practice, the additional linguistic
structure in a Segmented-Transcription is calculated au-
tomatically from the transcription convention regularities
used in describing the temporal structure. Since different
transcription conventions exhibit different such regulari-
ties, (and because they also define different linguistic units
to begin with), data expressed in the extended data model
is more dependent on specific linguistic theories than data
expressed in the basic data model. For a more extensive
discussion of EXMARaLDA’s data model, see (Schmidt,
2005a) and (Schmidt, 2005b).

2.2. Potsdam / Berlin
The research centre SFB 632 at Potsdam University and

Humboldt University Berlin investigates various facets of
Information Structure (IS). IS concerns the means exploited
by the speaker to structure discourse and utterances in order
to convey information in a way that is optimised for the
hearer in the given context. Languages differ a lot with
regard to the means to express IS: by intonation, particles,
word order, etc. The exact nature and interplay of many of
these factors, however, is yet to be determined.

2.2.1. Annotated resources
The SFB consists of 13 individual research projects

from disciplines such as theoretical linguistics, psycholin-
guistics, first and second language acquisition, typology,
and historical linguistics. Following the overarching ob-
jective of providing a clearer picture of information struc-
ture, several of these projects are involved in collecting and
analysing empirical data: Two projects examine the phe-
nomenon of focus in different Western African languages;
both carry out field studies for collecting data, which later
is being annotated. One project investigates the role of IS
in diachronic change, based on manuscripts of Old High
German and Old English. Another project is developing a
typology of the means for expressing IS. To this end, they
have developed a language-independent questionnaire that
is used to collect language data relevant for IS from speak-
ers of typologically diverse languages, such as Hungarian,
Greek, Georgian, Prinmi, Niue, Teribe, and Yucatec Maya;
see, e.g., (Götze et al., to appear). Data sets elicited by
the questionnaire consist of question-answer pairs, map-
task dialogues, and short scenario descriptions. Finally,
two projects focus on rhetorical and co-reference relations
to address the relationship between discourse structure and
IS.

According to the specific research interests of the indi-

49

vidual projects, this data is annotated at different levels, ac-
cording to SFB-wide common guidelines. Diachronic data
is annotated by morpho-syntactic features and givenness in-
formation; the Old High German translation of Tatian is fur-
thermore word-aligned to the Latin source text. Typologi-
cal data is annotated by phonetic/phonological information
(breaks, pitch-range, tones, etc.), morpheme-to-morpheme
translations, part of speech, syntactic constituents and their
thematic roles, animacy, etc. Discourse-related data is
enriched by annotations according to Rhetorical Structure
Theory (RST) (Mann and Thompson, 1988), co-reference
and syntax annotations.

Currently, the corpora of these projects consist of sev-
eral hundreds of data sets (for each of the languages of
the typological data) and 20,000 German sentences (for
discourse-related data).

2.2.2. Annotation scheme
To promote the active exchange of research hypotheses,

the data is being collected in a single, uniform database,
ANNIS. The database has to deal with highly heteroge-
neous data: First, primary data itself is heterogeneous, dif-
fering with respect to size (e.g., single sentences vs. en-
tire articles), modality (monologue vs. dialogue), and lan-
guage. Second, the annotations require data structures of
various types (attribute-value pairs, trees, pointers, etc.).
And finally, data is annotated by means of different, task-
specific annotation tools: phonological, morphological and
IS-related information, such as givenness, is annotated by
EXMARaLDA, syntax by annotate, discourse structure by
the RST Tool, and co-reference by MMAX2.2

Prior to import into the database, the data is mapped to
a generic interchange format, PAULA3. This allows us to
represent data annotations from different sources in a ho-
mogeneous way.

In our context, segments that annotations are attached
to quite often overlap. The following example features an
overlap between the phonemic and syntactic levels: at the
phonemic level (= third tier), tokens 1 and 2, de la ‘of the’,
are treated as one unit, whereas at the syntactic level, to-
kens 2–3, la crème glacée ‘the ice-cream’, form an NP con-
stituent, cf. tier 4.

Token de la crème glacée
Gloss some the cream iced

Phonemic dla krEm glase
Syntax P NP

To account for such overlapping segments and for the
heterogeneity of the data in general, PAULA uses an XML-
based standoff architecture such that each annotation type is
stored in a separate file. Annotations refer to the source text
or to other annotations, by means of XLinks and XPoint-
ers. Building on proposals like in LAF (Linguistic Annota-

2http://www.rrz.uni-hamburg.de/exmaralda/;
http://www.coli.uni-saarland.de/projects/
sfb378/negra-corpus/annotate.html;
http://www.wagsoft.com/RSTTool/;
http://mmax.eml-research.de/.

3Potsdamer AUstauschformat für Linguistische Annotation,
Potsdam Interchange Format for Linguistic Annotation.

tion Framework (Ide et al., 2003)), PAULA defines generic
XML elements like <mark> (markable), <feat> (fea-
ture), <struct> (structure), and <rel> (relation), which
allows us to represent, e.g., annotations attached to sim-
ple tokens as well as discontinuous segments, directed re-
lations encoding anaphoric relations, and graphs to encode
TIGER-like syntax trees or RST trees; for more details on
the format, see (Dipper, 2005).

Currently, PAULA is used to represent data annotated
by phonetic/phonological information, part of speech, mor-
phology and lemma, syntax, rhetorical relations, anaphoric
relations, and information structure.

For manual inspection of the data at multiple levels, we
have developed the database ANNIS, (Dipper et al., 2004).
ANNIS supports the concurrent visualisation of different
types of annotations. The discourse view gives an overview
on the discourse, while the table view enables easy and in-
teractive access to multilayer annotations. The tree view
displays syntactic structures.

The query facility of ANNIS offers a rich set of search
operators that apply to primary data and annotations. It sup-
ports the use of wildcards and operators like precedence
and dominance. Complex queries can be formulated by
means of negation, logical “&” and “|” (‘or’). Query re-
sults are displayed with the matching data (text and/or an-
notations) highlighted.

2.3. Tübingen
The principal concern of the collaborative research cen-

tre SFB 441 at University of Tübingen are the empiric data
structures which feed into linguistic theory building. In or-
der to approach this general issue from a considerable va-
riety of research perspectives, SFB 441 comprises a num-
ber of projects (currently 15) each of which investigates a
particular linguistic phenomenon, either concerning gen-
eral methodological issues, or with regard to a particular
language or language family. The respective research inter-
ests range from syntactic structures (such as coordination)
in German and English, local and temporal deictic expres-
sions in Bosnian/Croatian/Serbian or Portuguese and Span-
ish, to semantic roles, case relations, and cross-clausal ref-
erences in Tibetan, to mention just a few.

2.3.1. Annotated resources
As empirical basis for their research, many projects cre-

ate electronically accessible collections of linguistic data
and prepare them to fit their particular needs. In most cases,
these collections are corpora. However, a couple of projects
deal with data (e.g. lexical information) which are more ad-
equately represented by an Entity-Relationship based data
model and thus are implemented in relational databases.

All data collections built within SFB 441 projects are
assembled in one repository called TUSNELDA4. Espe-
cially, the different corpora are integrated into a com-
mon XML-based environment of encoding, storage, and
retrieval. This integration is particularly challenging due

4TUebinger Sammlung Nutzbarer Empirischer Linguistischer
DAtenstrukturen, Tübingen collection of reusable, empirical, lin-
guistic data structures.

50

to the heterogeneity of the individual corpora, which differ
with regard to the following aspects:

• languages (e.g. German, Russian, Portuguese, Ti-
betan,...)

• text types / data types (e.g. newspaper texts, di-
achronic texts, dialogues, treebanks, ...)

• categories of information covered by the annotation
/ annotation levels (e.g. layout, textual structure,
morpho-syntax, syntax, ...)

• underlying linguistic theories

The size of the individual corpora ranges from about
10,000 (Spanish/Portuguese spoken dialogues) to approx.
200 million words (German newspaper texts, automatically
chunk-parsed). (Wagner, 2005) provides an overview of the
corpora built by the individual SFB 441 projects.

2.3.2. Annotation scheme
Despite the diversity of the corpora in TUSNELDA,

they all share the same generic data model: hierarchical
structures. It is most appropriate to encode the phenomena
captured in the TUSNELDA corpora by means of nested hi-
erarchies, augmented by occasional “secondary relations”
between arbitrary nodes in these hierarchies. This distin-
guishes TUSNELDA fundamentally from corpora whose
annotation is based on other data models such as timeline-
based markup of speech corpora or multimodal corpora (see
especially subsection 2.1.). Such corpora encode the exact
temporal correspondence between events on parallel layers
(e.g. the coincidence of events in speech and accompanying
gesture or the overlap of utterances) whereas hierarchical
aspects are secondary. In TUSNELDA, however, hierar-
chical information (e.g. textual or syntactic structures) is
prevalent, while capturing the exact temporal coincidence
of different events in general is not of primary relevance in
the research conducted within SFB 441.

Consequently, the annotation scheme developed for
TUSNELDA encodes information as embedded (rather
than standoff) annotation, immediately modelling hierar-
chical structures by XML hierarchies. Essentially, this de-
cision rests on two major considerations. Firstly, this pro-
cedure makes it possible to utilise standard XML-aware
tools (such as XML editors, format conversion tools, XML
databases, or query engines), which are optimised for pro-
cessing hierarchical XML structures so that they are well
suited for embedded annotation, while providing at best
rudimentary support for standoff annotation. Secondly, em-
bedded annotation indeed is sufficient for encoding the data
captured by the TUSNELDA corpora. Standoff annotation
would be necessary if the structures to be encoded formed
overlapping hierarchies, which cannot be modelled within
a single XML document. However, the structures primarily
encoded in the TUSNELDA do not overlap but can be in-
tegrated into a single hierarchy. For example, whereas syn-
tactic structures constitute sub-sentential hierarchies, text
structures define super-sentential hierarchies. Hence, these
structures can be captured straightforwardly within a sin-
gle XML document structure. Concurrent hierarchical units

occur only marginally and are not of primary importance.
These units concern the (physical) layout structure of the
annotated texts, e.g. page boundaries. Such boundaries
are marked by milestone elements (e.g. <pb/> for a page
break), which do not violate the well-formedness of the
document.

The following example, taken from the Tibetan Cor-
pus in TUSNELDA (Wagner and Zeisler, 2004), illustrates
the annotation of syntactic constituent structure, argument
structure, and cross-clausal reference within an embed-
ded environment. Syntactic constituents are encoded by
the elements <clause>, <ntNode> (non-terminal node),
and <tok> (token); their catogories are specified by
<clauseCat>, <ntNodeCat>, and <pos> elements, re-
spectively. Additional descriptions concerning individual
constituents may be encoded within <desc> elements. A
special case of such a description is the specification of the
argument structure of a verb token. Especially, the subcate-
gorisation frame realised in the current clause is encoded as
<realFrame>, where each complement is represented by a
<realComplement>. In the example, the first complement
is not overtly realised within the clause (status=”empty”).
However, it is implicitly given by the context, i.e. it cor-
responds to the first complement of the previous clause.
This correspondence is modelled by a <ref> (reference)
element including a pointer (target) to the corresponding
complement.

<clause>
<ntNode>

<tok>
<orth>khra·phru·gu</orth>
<pos>NOM:anim∼pers</pos>

</tok>
<ntNodeCat>NP</ntNodeCat>
<desc>

<case>Abs</case>
</desc>

</ntNode>
<tok id=”v6”>

<orth n=”2”>med-tshug</orth>
<pos>VFIN</pos>
<desc>

...
<realFrame>

<realComplement id=”v6c1”
status=”empty”>

<role>POSS</role>
<ref target=”v5c1”> </ref>

</realComplement>
<realComplement id=”v6c2”>

<role>EXST2</role>
</realComplement>

</realFrame>
</desc>

</tok>
<clauseCat>simple</clauseCat>

</clause>

3. Technical aspects
The description of the three ‘Collaborative Research

Units’ in Hamburg, Potsdam, and Tübingen demonstrates

51

the large variety of language data and research interests.
Consequently, different annotation schemes are used in
these projects. In a way, this is a common situation in nearly
every annotation related project and several standard solu-
tions, e.g. the use of XSLT-based conversions, exist for
dealing with this problem. But since this variety is also
due to the variety of the given original data, i.e. audio,
video, already annotated text, and raw text, we have to deal
with a more fundamental problem. The different annotation
schemes are based on different basic annotation methodolo-
gies. While some of the projects, especially projects in the
SFB “Multilingualism”, are using a graph-based methodol-
ogy, others, especially the projects in the SFB “Linguistic
Data Structures”, use embedded markup where several an-
notation levels are mapped on a single annotation layer.5

3.1. Development of data formats
The data formats of the diverse collections of linguistic

data should be converted to a uniform data format. This
format must conform to widely accepted public standards.
Furthermore, the data format must be supported by a wide
variety of – ideally non-proprietary – software. Conse-
quently the standards XML and Unicode have been cho-
sen as a starting point. But using these standards does not
suffice for a sustainable representation and storing of the
data. Indeed, most of the existing data already use these
standards.

XML and Unicode can be regarded as a base level of
annotation. Two other important aspects of data formats
for linguistic annotation are the use of the appropriate tag-
sets or annotation vocabularies and the use of a suitable data
model for corpus annotation.

In the recent years, several general corpus annota-
tion standards have been developed, e.g. TEI (Sperberg-
McQueen and Burnard, 1994) or XCES (Ide et al., 2000).
But, since in concrete projects specialised annotation
schemes are important, further developments became nec-
essary. The ISO TC37/SC4 developed an infrastructure,
the already mentioned “Linguistic Annotation Framework
(LAF)”, to allow for combining general-purpose annotation
formats (a dump-format) with specific annotation schemes
(Ide et al., 2003).

Moreover, LAF defines a user extensible set of Data
Categories and a user extensible Data Category Registry al-
lowing for linking a corpus-specific annotation to a generic
format. We intent to follow the LAF approach by combin-
ing the existing annotations, a generic annotation format
(see below) and a linguistic terminology or ontology. (see
also subsection 4.2.)

One of the main tasks of the project will be the devel-
opment and implementation of a generic annotation format,
i.e. a data model for the existing language data. The model
must be applicable for all the language data already anno-
tated in the projects involved.

5In this distinction a layer (or tier) is a technical realisation of
an annotation, e.g. a single XML-file or a named directed path in
an annotation graph, whereas level refers to an abstract level of
description, e.g. in linguistics the levels of morphology, syntax,
or semantics. (Bayerl et al., 2003)

In linguistics, hierarchical annotations are essential for
embedding syntactic information in a corpus. Conse-
quently a large percentage of the corpus data, especially
the TUSNELDA data (see subsection 2.3.), require a hier-
archical data model.

Graph based annotations, on the other hand, are the pre-
dominant data model for transcriptions of audio and video
data and are the base of the EXMARALDA format. (see
subsection 2.1.) Consequently, also these annotations must
be represented in the uniform data format.

The data represented in PAULA (see subsection 2.2.)
combine characteristics of hierarchical annotations and
graph-based models. This is a typical situation for linguis-
tic data annotated according to the standoff methodology
(see (Thompson and McKelvie, 1997), (McKelvie et al.,
2001)).

The variety of the data formats is a common situation
for projects dealing with linguistic resources. Finding a
meta-format suitable for covering all the data formats of
the involved projects is a major task for the sustainable rep-
resentation of corpus data. What is needed is a data format
suitable for hierarchically annotated corpora as well as for
graph based annotations.

As a starting point for such a format, we are currently
evaluating the Nite Object Model (NOM, see (Carletta et
al., 2003)).

3.2. Development of methods and tools for data
distribution and data access

It is intended to produce and generate several distribu-
tions of language data. These distributions are optimised
for distributing a whole collection of data, for a sustainable
storing and for querying the data. The following methods
of distribution are planned:

1. A human readable hardcopy of all corpus data;

2. An electronic version distributed as an offline medium
(e.g. DVD);

3. A query interface accessible via the Internet.

For generating a printed version of the corpora XSLT
stylesheets will be developed. The generated printable ver-
sions of the corpora can be archived and offered by li-
braries. For the electronic distributions (points 2 and 3)
tools are to be implemented for the linguistic search in the
data.

As described in section 2., in the SFBs involved query
mechanisms for the respective data collections are already
realised. However, the SFB’s query mechanisms do have
another focus, namely: power (the possibility of specifying
complex search criteria), efficiency (short response time),
and ease of use (input interfaces and output formats, should
be comprehensible for linguists without advanced technical
knowledge). Unfortunately, the criterion of sustainability
is quite often in opposition to these criteria. For this reason
new query mechanisms will be developed. For achieving
a sustainable query interface, new tools will be based on
XSLT and XQuery, since we expect these standards to be
supported by software for a relatively long time.

52

4. Data Integretion
For an accessible storing of language corpora, the cor-

pora must contain additional information. This additional
information can be subdivided into two classes: (1) Infor-
mation on the corpus itself, e.g. information on the partic-
ipants of a conversation, the languages, the names of the
transcribers, and (2) information on the meaning of the an-
notations, e.g. the tag w is used for annotating a word.
The first class is traditionally termed “metadata”. The sec-
ond class of additional information is traditionally provided
with the help of tag set documentations. At the moment,
however, there is a tendency to use more or less formal ap-
parata for this, namely terminologies or ontologies.

4.1. Metadata
It is intended to compile a comprehensive set of meta-

data. This set must adequately describe all the corpora of
the SFBs. This implies that all the metadata already in use
will be integrated and if necessary extended. Of course,
in a second step the individual corpora are to be classified
according to the extended set of metadata.

The metadata should be compatible with existing lin-
guistic metadata standards, especially with IMDI6 and the
the metadata set of OLAC7. However in different aspects
the new set of metadata will be more specific.

4.2. Integration of terminologies
As already recognized by several researchers the prob-

lem of combining existing, real annotation vocabularies
with a repository of linguistic categories is a crucial one
(Ide et al., 2003). Since we expect standard based solutions
to meet the need of sustainability most appropriately, we in-
tend to use and/or to produce a data repository on the base
of OWL (McGuinness and van Harmelen, 2004), such as
the resource GOLD8.

We would like to start with an ontology such as GOLD
and to successively extend the existing ontology with sub-
ontologies9 for all the annotated phenomena in the projects
of the SFBs. Since it has been shown that GOLD is ex-
tensible and therefore applicable for diverse kinds of lin-
guistically motivated annotation vocabularies (Goecke et
al., 2005), we are quite confident, that GOLD is a good
candidate for an appropriate base ontology for linguistic
categories. A first study on the integration of the GOLD-
Ontology will be presented in (Chiarcos et al., to appear).

Following the LAF proposal, in a second step a map-
ping from the annotation vocabularies to the ontology will
be defined and implemented.

5. Outlook
This paper has focussed on data models, data for-

mats and software tools for sustainable linguistic resources.

6ISLE (International Standard for Language Engineering)
Meta Data Initiative, see (Wittenburg et al., 2002)

7Open Language Archives Community, see (Bird and Simons,
2004)

8General Ontology for Linguistic Description, see (Farrar and
Langendoen, 2003)

9These specific sub-ontologies are named Community-specific
extensions (COPEs) in the GOLD-Terminnology)

There are, however, less technical aspects that have an
equally relevant impact on sustainability. On the one hand,
this concerns the way individual researchers or research
projects approach their data handling in the first place -
a lot of problems that arise with respect to sustainability
of linguistic data could be avoided or at least mitigated if
some basic agreement on a set of best practices (e.g. use
of open standards and non-proprietary software, or a mini-
mum set of metadata) could be achieved on a broad basis in
the research community. Suggestions for such rules of best
practice have been made, e.g. (Bird and Simons, 2003), and
the project described here intends to elaborate on this work
and contribute to its spreading in the research community.
On the other hand, insecurities about questions of copy-
right and of individual rights of persons recorded for lin-
guistic studies often constitute a major obstacle to making
linguistic corpora available to a broader public. Here too,
the project aims to investigate possible ways of overcom-
ing these obstacles and to formulate rules of best practice.
A more comprehensive description of these tasks will be
provided in (Chiarcos et al., to appear).

6. References
Petra Saskia Bayerl, Harald Lüngen, Daniela Goecke, An-

dreas Witt, and Daniel Naber. 2003. Methods for the
semantic analysis of document markup. In C. Roisin,
E. Munson, and C. Vanoirbeek, editors, Proceedings of
the ACM Symposium on Document Engineering (Doc-
Eng 2003). pp. 161 - 170), pages 161 – 170.

Steven Bird and Mark Liberman. 2001. A formal frame-
work for linguistic annotation. Speech Communication.

Steven Bird and Gary Simons. 2003. Seven dimensions of
portability for language documentation and description.
Language, 79:557 – 582.

Steven Bird and Gary Simons. 2004. Building an open lan-
guage archives community on the dc foundation. In Di-
ane I. Hillmann and Elaine L. Westbrooks, editors, Meta-
data in practice, pages 203 – 222. American Library As-
sociation., Chicago.

Jean Carletta, Jonathan Kilgour, Timothy J. O’Donnell,
Stefan Evert, and Holger Voormann. 2003. The NITE
Object Model Library for Handling Structured Linguis-
tic Annotation on Multimodal Data Sets. In Proceedings
of the EACL Workshop on Language Technology and the
Semantic Web (3rd Workshop on NLP and XML).

Christian Chiarcos, Erhard Hinrichs, Timm Lehmberg,
Georg Rehm, Thomas Schmidt, and Andreas Witt. to
appear. From project data to sustainable archiving of lin-
guistic corpora. In Paper accepted at the E-MELD work-
shop 2006, Ypsilanti.

Stefanie Dipper, Michael Götze, Manfred Stede, and Till-
mann Wegst. 2004. ANNIS: A linguistic database for
exploring information structure. In Shinichiro Ishihara,
Michaela Schmitz, and Anne Schwarz, editors, Inter-
disciplinary Studies on Information Structure (ISIS),
volume 1, pages 245–279. Universitätsverlag Potsdam,
Potsdam, Germany.

Stefanie Dipper. 2005. XML-based Stand-off Representa-
tion and Exploitation of Multi -Level Linguistic Annota-

53

tion. In Proceedings of Berliner XML Tage 2005 (BXML
2005), pages 39–50, Berlin, Germany.

Scott Farrar and Terry Langendoen. 2003. A linguistic on-
tology for the semantic web. GLOT International, 7(3).

Daniela Goecke, Harald Lüngen, Felix Sasaki, Andreas
Witt, and Scott Farrar. 2005. Gold and discourse:
Domain- and community-specific extensions. In Pro-
ceedings of the E-MELD workshop on Morphosyntactic
Annotation and Terminology: Linguistic Ontologies and
Data Categories for Language Resources., Cambridge,
MA.

Michael Götze, Stavros Skopeteas, Thorsten Roloff, and
Ruben Stoel. to appear. Towards an exploration infras-
tructure for a cross-linguistic production data corpus. In
Proceedings of the Sixth International Tbilisi Symposium
on Language, Logic and Computation, Batumi, Georgia.

Nancy Ide, Patrice Bonhomme, and Laurent Romary. 2000.
XCES: An XML-based Standard for Linguistic Cor-
pora. In Proceedings of the Second Language Resources
and Evaluation Conference (LREC), pages 825 – 830,
Athens.

Nancy Ide, Laurent Romary, and Eric de la Clergerie. 2003.
International standard for a linguistic annotation frame-
work. In Proceedings of HLT-NAACL’03 Workshop on
The Software Engineering and Architecture of Language
Technology.

William C. Mann and Sandra A. Thompson. 1988. Rhetor-
ical Structure Theory: Toward a functional theory of text
organization. Text, 8(3):243–281.

Deborah L. McGuinness and Frank van Harmelen. 2004.
OWL Web Ontology Language. Technical report, World
Wide Web Consortium.

David McKelvie, Amy Isard, Andreas Mengel,
Morten Baun Møller, Michael Grosse, and Marion
Klein. 2001. The mate workbench — an annotation tool
for xml coded speech corpora. Speech Communication.

Thomas Schmidt. 2005a. Computergestuetzte Transkrip-
tion - Modellierung und Visualisierung gesprochener
Sprache mit texttechnologischen Mitteln. Peter Lang.

Thomas Schmidt. 2005b. Time based data models and the
text encoding initiative’s guidelines for transcription of
speech. Working Papers in Multilingualism, Series B.

C. M. Sperberg-McQueen and Lou Burnard, editors. 1994.
Guidelines for Electronic Text Encoding and Interchange
(TEI P3). Chicago, Oxford: Text Encoding Initiative.

Henry S. Thompson and David McKelvie. 1997. Hyper-
link semantics for standoff markup of read-only docu-
ments. In Proceedings of SGML Europe ’97: The Next
Decade - Pushing the Envelope, Barcelona, Spain.

Andraes Wagner and Bettina Zeisler. 2004. A syntactically
annotated corpus of Tibetan. In Proceedings of LREC
2004, pages 1141–1144, Lisboa, May.

Andreas Wagner. 2005. Unity in diversity: Integrating dif-
fering linguistic data in TUSNELDA. In Stefanie Dip-
per, Michael Götze, and Manfred Stede, editors, Het-
erogeneity in Focus: Creating and Using Linguistic
Databases, volume 2 of ISIS (Interdisciplinary Studies
on Information Structure), Working Papers of the SFB
632, pages 1–20. Potsdam.

Peter Wittenburg, Wim Peters, and Daan Broeder. 2002.
Metadata proposals for corpora and lexica. In Proceed-
ings of the Third Language Resources and Evaluation
Conference (LREC), pages 1321 – 1326, Las Palmas.

54

DEB Tools for Merging Linguistic Resources

Aleš Horák, Karel Pala

Faculty of Informatics, Masaryk University Brno
Botanická 68a, 602 00 Brno, Czech Republic

E-mail: {hales,pala}@fi.muni.cz

Abstract
In this paper we present new tools based on client/server XML database system called DEB II. Thanks to the versatility of the XML
format used, this platform enables us to cover various applications, namely the management of the electronic readable dictionaries,
wordnet-like lexical databases as well as ontologies for Semantic Web applications. In the paper the attention will be paid mainly to
the tool DEBVisDic which allows us to merge different lexical resources and appears as an appropriate tool for future standardization
of wordnet-like databases. First, the main features of the DEB II dictionary writing platform are outlined, and the implementation
strategies of both server and the client part of the DEB II platform are briefly characterized. Second, the tool DEBVisDic, a complete
re-implementation of the successful wordnet editor and browser VisDic used in the Balkanet EU project, is presented and its functionality
is described. We also pay attention to merging lexical data, particularly the list of Czech valency frames VerbaLex, developed separately
in XML format, with Czech Wordnet. We show an example of the merge which also indicates how DEBVisDic can serve as a means for
such kind of integration. We also point out that this type of merge can be extended to other languages as it was done with Bulgarian and
Romanian in Balkanet project.

1. Introduction
There is a need to handle various lexical resources that
take the form of wordnets, ontologies, valency lexicons,
framenets and others. For this purpose researchers seek for
software systems that are able to store dictionary-like data
using XML as the core element. Many dictionary publish-
ing houses operate large systems with the complex func-
tionality of so called lexicographic stations that manipulate
XML in the last years (DPS Longman (McNamara, 2003),
TshwaneLex (Joffe and de Schryver, 2004), iLEX (Erland-
sen, 2004) or ShoeBox (sho,)). However, these and sim-
ilar tools are not able to efficiently merge and manipu-
late resources obtained from data-driven NLP applications.
Therefore, they cannot provide a universal environment for
lexical database management as well as semantic networks
and ontologies.
One of the most popular lexical resources in the NLP field is
the Princeton WordNet (Fellbaum, 1998). It was followed
by multilingual EuroWordNet 1, 2 projects (1998-99) (Eur,
) and Balkanet project (2001-4) (Bal,) in which the word-
nets for 13 languages have been developed (English, Dutch,
Italian, Spanish, French, German, Czech, Estonian, Bulgar-
ian, Greek, Romanian, Serbian and Turkish). Both projects
are taking advantage of the Top Ontology which classifies
the word stock of the mentioned languages and offers a
link to ontologies studied nowadays in the field of Semantic
Web (e.g. SUMO/MILO ontologies).
In the course of the Balkanet project’s work the special-
ized software tools for browsing and editing wordnets have
been designed and implemented, without whose the job
could hardly have been performed. The first browser de-
veloped at Princeton is still used there and can be found
at http://www.cogsci.princeton.edu/˜wn/or
charity.princeton.edu, within the EuroWordNet
project the Polaris (and Periscope) tools have been imple-
mented and used (M., 1998).
For Balkanet project the browser and editor VisDic has
been prepared at the NLP Laboratory at the Faculty of

Informatics Masaryk University (Horák and Smrž, 2003)
since the development of the Polaris tool has been closed
by 1999.
From what has been said so far it may seem that VisDic has
been oriented mainly to the browsing and editing WordNet-
like or other lexical databases. It would be more correct to
say that it can be used for any kind of semantic network,
particularly, we have in mind the networks that are related
to the Semantic Web.

2. The Features of a Common XML
Platform for Lexicographers’ Tools

The DEB platform (DEB II, i.e. its second version) follows
a strict client-server architecture. The actual development
of applications within the DEB platform can be divided into
the server part (the server side functionality) and the client
part (graphical interfaces with only simple functionality).
The server part is built from small parts, called servlets,
which allow a modular composition of all services.
The clients communicate with servlets using HTTP re-
quests in a manner similar to recently popular concept in
web development called AJAX (Asynchronous JavaScript
and XML (Rosenfeld and Morville, 1998)) with the usage
of SOAP protocol (soa,). The data are transported (using
plain HTTP) in RDF, generic XML or plain-text formats or
they are marshalled using SOAP.
The actual data storage backend on the server side is pro-
vided by Berkeley DB XML, which is a native XML
database providing XPath and XQuery access into a set of
document containers. The metadata are stored in widely-
used Berkeley DB embedded database which runs on many
systems and devices ranging from Linux and Windows op-
erating systems to mobile phones. Berkeley DB XML
comes in form of a C++ library with interfaces to many
scripting languages.
Since the client applications are mostly oriented to the
graphical user interfaces (GUI), we have decided to

55

Figure 1: The DEBDict common interface to several dictionaries with different structures.

adopt the concepts of the Mozilla Development Plat-
form (Oeschger, 2002). Firefox Web browser is one of the
many applications created using this platform. Other appli-
cations include Mozilla Thunderbird mail client, Netscape
Web browser, Komodo integrated development environ-
ment or Nvu web page editor.
The Mozilla Cross Platform Engine provides a clear separa-
tion between application logic and definition, presentation
and language-specific texts. The application design is sim-
ple and allows the possibility of concurrent work of differ-
ent team members which leads to significant time savings.
The main “programming language” used for the GUI de-
sign of the DEB clients is called XUL (XML User-interface
Language, pronounced “zool”). XUL is a user interface de-
scription language based on XML. It allows relatively sim-
ple creation of cross platform applications with possibil-
ity of easy customization of design, texts and localization.
XUL itself is aimed only on creation of user interface, e.g.
windows, buttons or toolbars, but it incorporates wide range
of standardized technologies:

• Cascading Style Sheets (CSS) for describing the
graphic appearance of the application,

• JavaScript as a programming language for simple ap-
plication logic,

• Document Object Model (DOM), XSLT and XPath to
work with HTML and XML documents,

• DTD for easy localization,

• RDF as data source.

2.1. The Users’ Interfaces
The DEB clients are written in XUL and JavaScript and
integrate with Mozilla Firefox Web browser. This al-
lows us to use both Mozilla’s user interface engine and its

HTML/XHTML rendering engine as well as built-in com-
ponents for interaction with filesystem on client computers,
XPath interpreter, RDF processor etc.
Due to the feature-rich client architecture the developers
may decide whether certain operations should be done on
the server or on client parts – e.g. XSLT transformation can
be done on both sides.
The particular DEB clients that are currently being imple-
mented within the DEB platform include:

• DEBVisDic – complete new version of the successful
wordnet semantic network editor and browser VisDic,
see the Section 3.

• DEBDict – general dictionary browser. This simple
DEB client demonstrates several basic functions of the
system:

– multilingual user interface (English, Czech, oth-
ers can be easily added)

– queries to several XML dictionaries (of differ-
ent underlying structure) with the result passed
through an XSLT transformation

– connection to Czech morphological analyzer

– connection to an external website (Google, An-
swers.com)

– connection to a geographical information system
(display of geographical links directly on their
positions within a cartographic map) or any sim-
ilar application

The version of DEBDict that is currently running on
our server provides a common interface to 7 dictionar-
ies (see the Figure 1):

56

Figure 2: The DEBVisDic interface.

– the Dictionary of Literary Czech Language
(SSJC, 180.000 entries)

– the Dictionary of foreign words (46.000 entries)

– the Dictionary of Literary Czech (SSC, 49.000
entries)

– the Dictionary of Czech Synonyms (thesaurus,
23.000 entries)

– two dictionaries of Czech Phrasal Words and Id-
ioms (4.000 and 10.000 entries)

– the Diderot encyclopedia (90.000 entries)

As an addition, DEBDict features an interconnection
to several web systems and the geographical system
with the list of the Czech towns and cities.

• PRALED – designed for the development of the Czech
Lexical Database, CLD. This application serves as a
main tool in preparation of the new comprehensive
and exhaustive database of lexicographic information
for Czech language. The user’s part of PRALED
is presently under the development in the Institute
of Czech Language, Czech Academy of Sciences,
Prague. Here DEB II is used as a dictionary writing
system.

• VisualBrowser – the client-server architecture allows
an easy connection of other existing applications to the

DEB server. An example of such application is a direct
interface to the VisualBrowser (Nevěřilová, 2005) tool
that now displays the graphical representation of rela-
tions between elements stored in various DEB server
databases.

3. DEBVisDic – a Tool for Handling
Wordnets

One of our current goals has been to create a tool for work-
ing with two independent resources, the Czech Wordnet
and the Czech verb valency lexicon VerbaLex, enabling
us to merge and standardize the information contained in
them.
DEBVisDic has been conceived as a reimplementation of
the previous tool for wordnet semantic networks editor –
VisDic. VisDic already exploits the XML data format thus
making the wordnet-like databases more standard and ex-
changeable. Moreover, thanks to its general configuration,
VisDic can serve for developing various types of dictionar-
ies, i.e. monolingual, translational, thesauri and multilin-
gually linked wordnet-like databases. The experience with
the VisDic tool during Balkanet project has been extremely
positive (Horák and Smrž, 2004) and it was used as the
main tool with which all 6 Balkanet national wordnets were
developed.
The experience with VisDic has led us to more system-
atic research into the usage of XML data formats within

57

Figure 3: The VerbaLex editing and presentation interface.

the field of the computational lexicography. In parallel, we
also pay attention to the relations between wordnets and Se-
mantic Web. This interest gives us a strong motivation for
studying the properties of the XML data formats and tools
for working with them.

DEBVisDic uses a new windowed interface (see the Fig-
ure 2) that allows a user to arrange the client layout with-
out any limitations. Of course, DEBVisDic contains all
the main features that were present in VisDic, like multiple
views of multiple wordnets, hypero-hyponymic tree brows-
ing, inter-dictionary linking or synset editing. With the
help of the DEB platform reusability, DEBVisDic is sup-
plemented with a number of new features that were so far
accessible only as separate tools or resources such as a con-
nection to a morphological analyzer (for languages, where
it is available), language corpora including Word Sketches
statistics, access to any electronic dictionaries stored within
the DEB server or searching for literals within encyclope-
dic web sites.

The client-server architecture allows an easy connection of
other existing applications to the DEB wordnet server. An
example of such application is a direct interface to the Vi-
sualBrowser (Nevěřilová, 2005) tool that now displays the
graphical representation of the semantic network from the
same database which is displayed in the DEBVisDic tool.

3.1. Using DEBVisDic for Merging Lexical Resources

A good example of merging various lexical data is the work
going on in NLP Lab at FI MU where the data from Czech
Wordnet and Czech Valency Lexicon VerbaLex are com-
bined together. The VerbaLex lexicon is currently being
developed separately and independently of Czech Wordnet
using a particular XML format (see the Figure 4) describing
so called complex valency frames (Hlaváčková and Horák,
2005). However, the entries in VerbaLex are written in form
of Wordnet synsets, which enables combining the data from
both these resources, see the Figure 3.

The Czech Wordnet currently contains a smaller set of va-
lency frames in a plain PCDATA format (see the Figure 5).
The current work is directed to merging the VerbaLex va-
lency frames with the Czech Wordnet synset structures.

The Czech verbs for which valency frames already ex-
ist (approx. 5000) are or will be linked to their English
(Princeton-2.0) equivalents by means of ILI (Inter-Lingual
Index). If Czech and English verbs (synsets) are linked cor-
rectly, the deep valency frames developed for Czech can be
also valid for English (surface valencies are obviously dif-
ferent since Czech is a synthetic language whereas English
is an analytic one).

58

<word_entry>
<headword_lemmata>

<lemma ord=’1’ sense=’1’ aspect=’pf’
aspectual_counterpart_lemma=’dodávat’>dodat</lemma>

...
</headword_lemmata>
<frame_entry frame_index=’1’>

<frame_lemmata>
<lemma sense=’8’ aspect=’pf’>dát</lemma>
...

</frame_lemmata>
<synonym_lemmata>

<lemma aspect=’pf’ sense=’1’>vložit</lemma>
...

</synonym_lemmata>
<example>dok: připojili ke smlouvě své podpisy</example>
<use>prim</use>
<frame_slots>

<slot number=’1’ functor=’AG’ type=’obl’ class=’person:1’>
<form type=’direct_case’ case=’kdo1’ />

</slot>
<slot number=’2’ type=’obl’ functor=’VERB’/>
<slot number=’3’ functor=’INFO’ type=’obl’ class=’info:1’>
<form type=’direct_case’ case=’co4’ />

</slot>
<slot number=’4’ functor=’COM’ type=’obl’

class=’written communication:1’>
<form type=’prepos_case’ prepos_lemma=’k’ case=’čemu3’ />

</slot>
</frame_slots>

</frame_entry>
...

</word_entry>

Figure 4: An example of (a part of) an entry in the VerbaLex XML format for the synset dát:8, vložit:1,
vsunout:1, přidat:2, připojit:1, dodat:1 (i.e. insert:1, infix:1, enter:7, introduce:6 in the Princeton WN)

Synset: dát:8, vložit:1, vsunout:1, přidat:2, připojit:1, dodat:1

<VALENCY>
<FRAME>{dát, vložit, vsunout}

kdo1*AG(person:1)=co4*OBJ(object:1) &do čeho2*OBJ(container:1)
</FRAME>
<FRAME>{dát, vsunout, přidat, vložit, dodat}

kdo1*AG(person:1)=co4*INFO(info:1)
& do čeho2*COM(written communication:1)

%dodal do textu nové poznámky, přidal k článku obrázek
</FRAME>
<FRAME>{dát,přidat, připojit, dodat}

kdo1*AG(person:1)=co4*INFO(info:1)
& k čemu3*COM(written communication:1)

%připojili k smlouvě své podpisy
</FRAME>
<FRAME>{přidat, připojit, dodat}

kdo1*AG(person:1)=co4*OBJ(object:1) ? k čemu3*OBJ(object:1)
%připojil hadici ke kohoutku

</FRAME>

Figure 5: An example of valency frames in the Czech Wordnet for the same synset insert:1, infix:1, enter:7,
introduce:6

4. Why Client-Server Architecture?
In the client-server environment, the server provides differ-
ent interfaces using the same data structure and these inter-
faces can be reused by many client applications. For exam-
ple, several client applications are using the same interface
to query XML dictionaries (with different underlying struc-
ture).
One of the main benefits of developing DEBVisDic on the
DEB platform is the homogeneity of the data structure and

presentation. If the DEBVisDic administrator commits a
change in the data presentation, this change will automat-
ically appear in each client software. And of course, any
data flaws discovered can be instantly corrected, there is no
need to change the client software or provide new data files
to each client.

The data sources can even be implemented with different
structures, that the server transforms seamlessly to a homo-
geneous form, which is then provided to client applications.

59

5. Conclusions and Future Directions
We have presented the DEB implementation platform
and its main features. The DEB platform exploits the
client/server architecture and offers several different clients
allowing to perform various lexicographic tasks. The rele-
vant features of the DEB platform are high modularity, con-
figurability and flexibility which results in an easy adapt-
ability for the various tasks. Thanks to them, the DEB plat-
form represents a versatile base, on which the individual
and powerful dictionary writing tools (clients) such as DE-
BVisDic are implemented.
In our view the XML formats within the DEB platform
present a reasonable base not only for merging various lex-
ical resources but also for their future standardization. This
has been convincingly shown in the Balkanet Project where
the VisDic XML format has been employed for building
all 6 Balkanet languages (Bulgarian, Czech, Greek, Roma-
nian, Serbian and Turkish) plus English. In fact, VisDic
tool played the role of the instrument through which the
first wordnet standardization steps have started. It is our
belief that DEBVisDic tool can play the same role in the
near future as well.
The experiments with exploiting Czech valency frames
for building Bulgarian and Romanian frames in Balka-
net project have been evaluated as more than promising,
see (Tufiş et al., 2006) and S. Koeva in (bal, 2004). This
kind of merge is even more inspiring than the former one
and the DEBVisDic tool is enabling us to go beyond the
mere experiments.

Acknowledgements
This work has been partly supported by the Academy of
Sciences of Czech Republic under the projects T100300414
and T100300419, and by the Ministry of Education of CR
within the center of basic research LC05113202.

6. References
Balkanet project website, http://www.ceid.
upatras.gr/Balkanet/.

2004. Balkanet Final Report. University of Pa-
tras, DBLAB. No. IST-2000-29388, led by D.
Christodoulakis.

Jens Erlandsen. 2004. iLEX – an ergonomic and powerful
tool combining, effective and flexible editing with easy
and fast search and retrieval. In EURALEX 2004, Lori-
ent, France. demonstration.

Eurowordnet project website, http://www.illc.
uva.nl/EuroWordNet/.

C. Fellbaum, editor. 1998. WordNet: An Electronic Lexical
Database. The MIT Press, Cambridge, Massachusetts,
London, England.

Dana Hlaváčková and Aleš Horák. 2005. Verbalex – new
comprehensive lexicon of verb valencies for czech. In
Proceedings of the Slovko Conference, Bratislava, Slo-
vakia.

Aleš Horák and Pavel Smrž. 2003. VisDic – wordnet
browsing and editing tool. In Proceedings of the Second
International WordNet Conference – GWC 2004, pages
136–141, Brno, Czech Republic.

Aleš Horák and Pavel Smrž. 2004. New features of word-
net editor VisDic. In Romanian Journal of Information
Science and Technology, volume 7, pages 1–13.

D. Joffe and G-M. de Schryver. 2004. Tshwanelex – pro-
fessional off-the-shelf lexicography software. In Third
International Workshop on Dictionary Writing Systems:
Program and List of Accepted Abstracts, Brno, Czech
Republic. Masaryk University, Faculty of Informatics.

Louw M. 1998. Polaris user’s guide. Technical report,
Belgium.

Michael McNamara. 2003. Dictionaries for all: XML to
final product. In XML Conference 2003, Philadelphia,
USA.

Z. Nevěřilová. 2005. The Visual Browser Project.
http://nlp.fi.muni.cz/projects/
visualbrowser.

Ian et al. Oeschger. 2002. Creating Applications with
Mozilla. O’Reilly and Associates, Inc., Sebastopol, Cal-
ifornia.

Louis Rosenfeld and Peter Morville. 1998. Information
Architecture for the World Wide Web. O’Reilly and As-
sociates, Inc., Sebastopol, California.

The linguist’s shoebox. http://www.sil.org/
computing/shoebox/.

SOAP 1.1 – W3C Simple Object Access Protocol
(SOAP) 1.1 Specification, http://www.w3.org/
TR/SOAP/.

Dan Tufiş, Verginica Barbu Mititelu, Luigi Bozianu, and
Cătălin Mihăilă. 2006. Romanian wordnet: New devel-
opments and applications. In GWC 2006, Jeju Island,
Korea. Masaryk University, Brno.

60

Merging Layered Annotations
Nancy Ide, Keith Suderman

Department of Computer Science
Vassar College

Poughkeepsie, New York 12604-0520 USA
{ide,suderman}@cs.vassar.edu

Abstract
The American National Corpus and its annotations are represented in a stand-off XML format compliant with the specifications of ISO
TC37 SC4 WG1’s Linguistic Annotation Framework. Because few systems that enable search and access of the corpus currently
support stand-off markup, the project has developed a SAX like parser that generates ANC data with annotations in-line, in a variety of
output formats.

1. Introduction
The American National Corpus (ANC) project1 (Ide

and Macleod, 2001; Ide and Suderman, 2004 recently
released its 2nd release consisting of approximately 22
million words of data, representing a variety of genres of
both written and spoken data. The corpus is annotated
with several layers of automatically produced linguistic
information, including sentence and token boundaries,
part of speech using two different POS tagsets (a version
of the Penn tagset2 and the Biber tagset3), and noun
chunks and verb chunks. For a complete description of
the ANC 2nd release and its contents, see
http://AmericanNationalCorpus.org.

ANC primary documents are plain text (UTF-16)
documents and are treated as “read only” resources. All
annotations are represented in stand-off XML documents
referencing spans in the primary data or other annotation
documents, using the XCES4 implementation of the
specifications of ISO TC37 SC4’s Linguistic Annotation
Framework (LAF) (Ide and Romary, 2004). Because few
systems that enable search and access of the corpus
currently support stand-off markup, the project has
developed a parser that generates ANC data with
annotations in-line, in a variety of output formats.

This demonstration will show the “life-cycle” of an
ANC document, from acquisition of a document in any of
a variety of formats (MS Word, PDF, HTML, etc.)
through annotation and final representation in the stand-
off format. The ANC tool for merging annotations of the
user’s choice with the primary data to produce a single
document with in-line annotations will also be
demonstrated.

2. Document Life-Cycle

Documents to be included in the ANC are acquired in
many different formats, including MS Word, PDF,
HTML, Quark Express, etc. Processing involves a series
of steps, which are outlined below.

1 http://AmericanNationalCorpus.org
2http://americannationalcorpus.org/FirstRelease/gatetags.txt
3http://americannationalcorpus.org/FirstRelease/Biber-tags.txt
4http://www.xces.org

2.1. Conversion from original format to
“rudimentary” XML

The ANC receives documents in a variety of different
formats. The first step in processing is to convert the input
documents into XCES XML with basic structural
annotations included. The most common types of file
formats encountered are:

• Microsoft Word. The release of OpenOffice 2 has
greatly simplified the processing of MS Word
documents. OpenOffice uses XSL and XSLT
stylesheets to export files to XML and ships with
stylesheets to generate DocBook and TEI-compliant
formats. We modified the TEI stylesheet to create
XCES XML. OpenOffice’s Java API enables us to
automate and integrate OpenOffice with later
processing steps.

• XML/SGML/HTML. Processing of XML files
typically involves using XSLT to map element names
to XCES. SGML and HTML files typically require
pre-processing to render them into valid XML,
followed by the application of an XSLT stylesheet to
convert them to XCES.

• Quark Express. Several publishers provided
documents prepared for publication using Quark
Express. Quark documents can be exported in XML,
but doing so is worthwhile only if the creator of the
document takes advantage of Quark’s style-definition
facilities (which was not the case for any of the
contributed Quark documents). We therefore exported
the documents in RTF; however, many fonts and
special characters are improperly rendered, and fairly
extensive manual editing was therefore required to
render the files into a format that could be used. Once
edited, the same procedures for MS Word documents
are used to generate XCES.

• PDF. Bitmap PDF files are unusable for our
purposes. Adobe Acrobat can generate plain text from
PDF, although this process loses much of the
formatting information that would be desirable to
retain to facilitate later processing. In some cases,
ligatures and other special characters are improperly
represented in the text version, and it is not always
possible to automatically detect and convert them to
conform to the original. PDF documents with two or

61

more columns cannot, to our knowledge, be extracted
without some mis-ordering of the text in the results.

• Other formats. Other formats in which the ANC has
acquired documents include plain text and plain text
that employed a variety of proprietary markup
languages. These documents are processed on a case
by case basis, using specialized scripts.

2.2. Creation of standoff annotation documents
We have developed several custom processing

resources that plug into GATE to generate standoff
annotations in the XCES implementation of the LAF
format. The last step in our GATE pipeline is to create the
primary text document and generate all the required
standoff annotation files. It is also possible to import
annotations generated by software outside the GATE
environment and render them into the standoff format.

3. Standoff Format
The ANC standoff format for annotations is a simple

graph representation, consisting of one node set and one,
or more, edge sets. The node set is represented by the text
itself, with an implied node between each character. Each
edge set is represented by an XML document and may
contain one or more annotation types: logical structure,
sentence boundaries, tokens, etc.

An ANC header file for each document is used to
associate the source text with the standoff annotation
documents; for example:
<cesHeader>
 ...
 <annotations>
 <annotation type="content"
 ann.loc="en_4065.txt">
 Text content</annotation>

 <annotation type="logical"
 ann.loc="en_4065-logical.xml">
 Logical structure</annotation>

 <annotation type="s"
 ann.loc="en_4065-s.xml">
 Sentence boundaries</annotation>
 <annotation type="hepple"
 ann.loc="en_4065-hepple.xml">
 Hepple POS tags</annotation>
 <annotation type="biber"
 ann.loc="en_4065-biber.xml">
 Biber POS tags</annotation>
 <annotation type="vp"
 ann.loc="en_4065-vp.xml">
 Verb chunks</annotation>
 <annotation type="np"
 ann.loc="en_4065-np.xml">
 Noun chunks</annotation>
 </annotations>
 ...
</cesHeader>

ANC annotation documents are marked up with the
XCES representation of the nodes and edge sets of the
annotation graph. The following shows a segment of the
document containing part of speech annotation:
<cesAna xmlns="http://www.xces.org/schema/2003"

version="1.0.4">
<struct type="tok" from="4" to="6">
 <feat name="base" value="in"/>
 <feat name="msd" value="IN"/>
</struct>
<struct type="tok" from="7" to="11">
 <feat name="msd" value="DT"/>

 <feat name="base" value="this"/>
</struct>
<struct type="tok" from="12" to="19">
 <feat name="base" value="chapter"/>
 <feat name="msd" value="NN"/>
</struct>
...

</cesAna>

Each <struct> element represents an edge in the
graph; values of the from and to attributes denote the
nodes (between characters in the primary text document)
over which the edge spans.

3.1. Annotating discontiguous spans
Presently, the ANC includes standoff annotations that

reference contiguous spans of data in the original
(primary) document. However, we plan to add a wide
variety of automatically-produced annotations for various
linguistic phenomena to the ANC data, some of which
will reference discontiguous regions of the primary data,
or may reference annotations contained in other standoff
documents. This is handled as follows: given an
annotation graph, G, we create an edge graph G’ whose
nodes can themselves be annotated, thereby allowing for
edges between the edges of the original annotation graph
G.

For example, consider the sentence “My dog has
fleas.” The standoff annotations for the tokens would be:
 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6
|M|y| |d|o|g| |h|a|s| |f|l|e|a|s|

<struct … id="t1" from="0" to="2"/>
<struct … id="t2" from="3" to="6"/>
<struct … id="t3" from="7" to="10"/>
<struct … id="t4" from="11" to="16"/>

Now consider the dependency tree generated by
Minipar5 given in Figure 2. The tree can be represented by
annotating the token elements in the standoff annotation
document as follows:

<!-- Define some pseudo nodes -->
<node type="root" id"E0" ref="t3"/>
<node type="clone" id="E2" ref="t2"/>

<!-- Define edges in dependency tree -->
<struct type="subj" id="s1"

from="t3" to="E2"/>
<struct type="s" id="s2"

from="t3" to="t2"/>
<struct type="gen" id="gen"

from="t2" to="t1"/>
<struct type="obj" id="obj"

from="t3" to="t4"/>

5http://www.cs.ualberta.ca/~lindek/minipar.htm

62

Figure 2. Dependency tree generated by Minipar.6

4. Creating In-line Annotation Documents
We have developed an “XCES Parser”7 that

implements the org.xml.sax.XMLReader interface to
create ANC documents containing in-line annotations in
XML (or any other format).

The XCES parser works as follows: annotations to be
loaded are selected with the
org.xml.sax.XMLReader.setProperty() method.
The selected annotation sets are then loaded into a single
list in memory and sorted, first by offset and, if the offsets
are the same, secondly by annotation type. At present, the
ordering of annotation types are hard coded into the
parser; work is underway to make the XCES parser
"schema aware" so that embedding specifications can be
provided by the user. Once the text is loaded and sorted,
the appropriate SAX2 events are generated and dispatched
to the org.xml.sax.ContentHandler (if one has been
registered with the parser) in sequence to simulate the
parsing of an XML document. While the parser will allow
the programmer to specify an ErrorHandler, DTDHandler,
or EntityResolver, at this time no methods from those
interfaces will be invoked during parsing.

In the current version of the XCES parser, when
overlapping annotations are encountered, they are
"truncated". For example:

<s>Sentence one.</s><s>Sentence
two.</s>

becomes
<s>Sentence one.</s><s>Sentence
two.</s>
Work is underway to provide the option to generate

milestones in CLIX/HORSE (DeRose, 2004) format to
represent overlapping hierarchies.

4.1. Using the XCES parser
The XCES parser can be used in three ways:

6 Image generated by
http://ai.stanford.edu/~rion/parsing/minipar_viz.html
7 http://americannationalcorpus.org/tools/index.html#xces-parser

• from the command line. The xces-parser.jar file can
be run as a command line program to print XML with
inline annotation to standard output.

• as the XML parser used by other applications. For
example, Saxon8 can take the name of the parser to
use to parse the source document as a command line
parameter. This allows us to apply XSLT stylesheets
to ANC documents without having to translate them
into XML first.

• as a library for use in other Java applications. For
example, The ANC Tool9 is a graphical front end to
the XCES parser.

4.2. The ANC tool
The ANC Tool provides a graphical user interface for

the XCES parser and is used to convert ANC documents
to other formats. Users specify their choice of annotations
to be included. Currently, the ANC Tool can be used to
generate the following output formats:

• XML XCES format, suitable for use with the BNC’s
XAIRA10 search and access interface;

• Text with part of speech tags appended to each word
and separated by an underscore;

• WordSmith/MonoConc Pro format.

The ANC Tool uses multiple implementations of the
org.xml.sax.DocumentHandler interface, one for
each output format, which the XCES parser uses to
generate the desired output. Additional output formats can
be easily generated by implementing additional interfaces.

Of course, if the target application understands
annotation graphs, there is no need to bother with the
XCES parser or conversion to XML. For example, we
provide several resources for GATE that permit GATE to
open and read ANC documents with standoff annotations,
or to load standoff annotations into an already loaded
document.

5. Next Steps
Currently the XCES parser is a proof of concept rather

than a production grade tool. The parser is being
augmented to invoke all the appropriate methods from the
org.xml.sax.*Handler interfaces and throw the
proper SAXExceptions at the appropriate times. We are
also providing for some level of SAX conformance, rather
than simply “doing what Xerces does”.

A top priority in the development of the XCES parser
is to adapt it to be schema-aware, in order to enable
specification of nesting as well as to allow for including
only some parts of a given annotation in the merged
version. This capability will become increasingly
important as we include annotations for a wider variety of
annotation types. For example, merging annotations such
as those provided by PropBank (Palmer et al., 2005),
NomBank (Meyers, et al., 2004), and TimeML
(Pustejovsky et al., 2003) in some cases demands that
interactions among the various annotations are taken into
account in order to produce a single, coherent merged

8 http://saxon.sourceforge.net/
9 http:// americannationalcorpus.org/tools/anctool.html
10 http://sourceforge.net/projects/xaira

63

annotation that may include only some of the information
from one or more of the separate annotations, include both
annotations from different sources, or create a new
annotation based on information from all three. A schema
dictating the inter-relations coupled with a style sheet to
render the merged document can be used to specify the
information in and format of the result.

6. Conclusion
The ANC has implemented an efficient pipeline for the

processing of text into a corpus of machine usable
documents. For some document types this process is
almost completely automated and can be regarded as a
Corpus-Builder-in-a Box: raw data goes in one end, and a
fully annotated corpus with standoff annotations comes
out the other.

 The use of standoff annotations allows for an accurate
representation of the ANC data as provided by the
contributors and allows us to easily provide several
modular annotation sets that can be included or excluded
by the end user as desired. By providing a SAX like parser
for ANC documents, we are able to leverage a number of
available XML tools without the restrictions imposed by
an XML representation of the documents. For users who
are not interested in XML or standoff annotations, the
plain text version is preserved.

7. References
DeRose, S. J. (2004) Markup Overlap: A Review and a

Horse. In Extreme Markup Languages 2004:
Proceedings.
http://www.mulberrytech.com/Extreme/Proceedings/ht
ml/2004/DeRose01/EML2004DeRose01.html

Ide, N., Romary, L. (2004) International Standard for a
Linguistic Annotation Framework. Journal of Natural
Language Engineering, 10:3-4, pp. 211-225.

Meyers, A., Reeves, R., Macleod, C., Szekely, R.,
Zielinska, V., Young, B., & Grishman. R. (2004) The
NomBank Project: An Interim Report. In HLT-NAACL
2004 Workshop: Frontiers in Corpus Annotation,
Boston, Massachusetts.

Palmer, M., Gildea, D., & Kingsbury, P. (2005) The
Proposition Bank: An Annotated Corpus of Semantic
Roles. Computational Linguistics, 31(1).

Pustejovsky, J., Castaño, J., Ingria, R., Saurí, R.,
Gaizauskas, R., Setzer, A., & Katz. G. (2003)
TimeML: A Specification Language for Temporal and
Event Expressions. In IWCS, International Workshop
of Computational Semantics. Kluwer Academic
Publishers.

64

Author Index

Chanev, Atanas 8
Dipper, Stefanie 48
Graça, João 24
Hinrichs, Erhard 48
Horák, Ales 55
Ide, Nancy 61
Jande, Per Anders 1
Littman, Jessica 8
Mamede, Nuno J. 24
Marinov, Svetoslav 16
Monachesi, Paola 31
Osenova, Petya 16
Pajas, Petr 40
Pala, Karel 55
Pereira, João D. 24
Pustejovsky, James 8
Saurí, Roser 8
Schmidt, Thomas 48
Simov, Kiril 16
Stepánek, Jan 40
Suderman, Keith 61
Trapman, Jantine 31
Wagner, Andreas 48
Witt, Andreas 48

