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Abstract
This paper reports a large-scale non-probabilistic pgreiperiment with a deep LFG parser. We briefly introduce drsqr we used,
named S LFG, and the resources that were used together with it. Thenpegtrqguantitative results about the parsing of a multi-ionil
word journalistic corpus. We show that we can parse moreéhmaillion words in less than 12 hours, only 6.7% of all sene&sn@aching
the 1s timeout. This shows that deep large-coverage ndmapilistic parsers can be efficient enough to parse verglaogpora in a
reasonable amount of time.

1. Introduction forest, both on its root nodeglbal disambiguation) and on

The parsing of large corpora is usually performed withSélected internal nodegdftial disambiguation). The list of
surface stochastic parsers. Indeed, it is usually thotngit t individual heuristics that are apphe.d depend onthe name of
deep parsers, especially when they do not rely on probthe node (the corresponding non-instantiated non-teimina
abilistic models, are not efficient enough to parse multj-Symbol).
million word corpora in a reasonable amount of time. The input of the parser is a DAG of inflected forms (all

However, this paper reports experiments on parsing forms being known by the lexicon, including special forms
large raw French journalistic corpus (5.5 million tokens) representing unknown tokens in the raw text). This lattice
with a deep non-probabilistic parser that relies on the LFGs converted by théexer in a lexeme lattice (a lexeme being
formalism. Parsing such a large corpus with a sophisticatefiere a CFG terminal symbol associated with underspecified
formalism such as LFG requires of course a very fast parsef-structures).

For these experiments, we useHlS-G, an efficient LFG Apart from the use of partial disambiguation, parsing

parser described in (Boullier and Sagot, 2005). We werefficiency is achieved thanks to several techniques such
able to parse the whole corpus in only 15 hours of effectiveas compact data representation, systematic use of struc-
parsing time, with only 12.6% of sentences reaching thdéure and computation sharing and lazy evaluation. We also
1s-timeout. use and heuristic and almost non-destructive pruning dur-

The LFG for French used in this experiment is still un- ing parsing.
der development. Its current version allows us to give a Moreover, various robustness techniques are applied
complete and consistent parse (in the sense of LFG) footh at the constituents level and at the functional level
53.4% of all sentences. Moreover, error recovery mECha(CFG error recovery, robust Computation of functional
nisms at all levels allows us to build incomplete, inCOI’lSiS-structures,___)_ When no f-structure is found, or when the
tent or partial parses for the remaining sentences. timeout is reached, we can launch aver-segmentation
. mechanism that splits the sentence into smaller parts. This

2. Parser, grammar and lexicon mechanism has 5 possible levels of granularity, so as to en-

The experiment reported here was performed with thesure that the parser gives an output for all input sentences.
SxXLFG parser generator and a large-coverage LFG gramthese techniques allow to gather in almost all cases (par-
mar for French. tial) useful information.

SXLFG is a new LFG parser generator (Boullier and  The experiment reported here uses approximately the
Sagot, 2005) that relies on a two-stage architecture: thggme grammar as in (Boullier and Sagot, 2005), which is
first step is performed by a context-free parser that gathan evolution of the grammar developed by Lionel Clement
ers all possible constituent structures for the input s&®e oy his XLFG system (Cléement and Kinyon, 2001). It is
into a shared parse forest. Then functional structures arg large-coverage grammar for French which contains 251
evaluated on this forest. _ rules and 894 functional equations. Recent (yet unpub-

More precisely, the context-free parser that is the core Ofished) experiments on a smaller journalistic corpus for
SXLFG is Earley-like parser that relies on underlying left- \yhich a chunked reference is availabteave led for labeled
corner tables and is an evolution of (Boullier, 2003). Thechunks, with the same grammar and the same parser, to a
set of analyses produced by this parser is represented byRecision of 73.2% and a recall of 74.5%. This shows that

shared parse forest. In fact, this parse forest may itself bgye grammar is large-coverage but must still be improved.
seen as a CFG whose productions are instantiated produc- The lexicon we used is the latest version of (Lex-

tions of the CFG backbone. The evaluation of the func-
tional equations is performed during bottom-up traversals
of this forest. A disambiguation module, which discards The “generallemonde” corpus which is one of the 43 corpora
unselected f-structures, may be invoked on any node of thesed during the French parsers evaluation campaign namgg.EA
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ique des formes flechies du fran@igSagot et al., 2006), parsing time, including the evaluation of features streesu
which contains morphosyntactic and syntactic informationagainst the number of trees produced by the CF parser.
for more than 500,000 entries corresponding to approxi- Coverage results are given in Table 1. They show that
mately 400,000 different tokens (words or components obur grammar is indeed a large-coverage grammar, since

multi-word units). more than 60% of the corpus is successfully parsed, despite
of the fact that it is a deep LFG grammar.
3. Corpus and pre-parsing processing They show also that only 6.7% of all sentences are not

The corpus we parsed in this experiment is a Iargealready parsed before the 1 second timeout. A 0.5s time-

French journalistic corpus consisting of more than 6 millio out would have allowed to parse the whole & million word

tokens of theMonde diplomatique (a token being defined as corpus in only 32’50QS (9 houfspith only 10'1% of sen-
a sequence of characters separated by a white space, aﬁ%pces reaching the tlmequt. A more aggressive 0.1s time-
having added white spaces around punctuation rarks out Ioeads to a total parsing time of 13,000s (3.6 hours),
is a raw corpus (i.e., it includes all meta-information,tfoo 23.8% of sentences remaining unparsed.
notes, typographic signs, and so on). .
To be able to parse such a raw corpus, we need, 5. Conclusion
as said before, to transform it into a correct input for ~We have shown that itis possible to parse large raw cor-
the parser, i.e., an (ambiguous) lattice of known wordspora with a deep non-probabilistic large-coverage parser
This task was performed with thex®ipe pre-parsing such as 8LFG, which builds complex and linguistically
processing chain (Sagot and Boullier, 2005). This sys'elevant syntactic structures. Indeed, we were able tepars
tem includes Sequentia”y named-entity recognition, tok-a French journalistic corpus of more than 6 million words
enization and sentence boundaries detection, lexicomeawain less than 12 hours with an LFG parser, only 6.7% of all
named-entity recognition, spelling correction, and non-sentences reaching the 1s timeout. More aggressive time-
deterministic multi-words processing, re-accentuatiod a ©Outs lead to even lower total parsing times.
un-/re-capitalization. This allows to build in a few hours large corpora with
The result of this processing is a set of 300,000 sencomplex syntactic annotation. We are beginning to make
tences, each sentence being represented by a word lattidése of such corpora to automatically detect erroneous and
The average sentence |ength is 21.3 words, and a reparmiSSing information in our resources, to train Statlsttagl-
tion of sentences lengths is shown in Figure 1. The wholders and hypertaggers, and to learn syntactic and semantic
set of lattices include approximately 7.5 million tranmits ~ collocations. These are only some of the possible applica-
(the average amount of transitions per input token is 1.2). tions to such corpora.
Note that no tagging is performed before parsing.
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2L exicon of French inflected forms

3But not around characters such as dots or commas when they
are not used as punctuation marks

“We can not be very precise for the following reason: the gran-
ularity of our time measurement is 10ms. Hence, a sentertbe wi
a parsing time of 20ms was parsed in fact in 20 to 29ms. There-
fore, we added 5ms to all parsing times lesser than the timeou
which led to a total parsing time of 42,097s. What is sure & th
the exact total parsing time is between 40,698s and 43,497s.

SWe performed this experiment on a on an AMD Athlon 2100+
architecture (1.7 GHz) running Linux. 8See footnote 4
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Figure 1: Repartition of sentences of the test corpus whefr length. We show the cardinal of classes of sentences of
length10: to 10(: + 1) — 1, plotted with a centeregd-coordinate {0(: + 1/2)).
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Figure 2: CFG ambiguity (medians are computed on classesndésces of length0: to 10(i + 1) — 1 and plotted with a
centereds-coordinate {0(: + 1/2)).

Total number of sentences 300,000
Recognized by the CFG backbone 290,827 96.9%
CFG parsing required error recovery 9,173 3.1%
Complete and consistent f-structure 181,948 60.4%
Almost complete and consistent f-structure23,055 7.7%
Partial f-structures 68,078 22.7%
No f-structure found 6,769 2.3%
(over-segmentation launched)

Parser error (to be fixed) 11 0.004%
Timeout (1s) 20,190 6.7%

Table 1: Coverage results fox& FG on a French journalistic corpus of 5.5 million tokens. Coetghess and consistency
are standard LFG notions. We say that a sentenakrigst complete and consistent if all strict sub-structures of the main
f-structure (the f-structure associated to the root of thestituency tree) are complete and consistent, but if then ma
f-structure itself is not.
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Figure 3: Total parsing time w.r.t. the number of trees inftirest produced by the CF backbone (medians are computed
on classes of sentences whose number of trees lies betw&eand10%+2 — 1 and plotted with a centeredcoordinate
(10%°+1)). As explained in footnote 4, we added 5ms to all parsingsiesser than the timeout, because of the 10ms
granularity of the parsing time measurement.
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Figure 4: Total parsing time w.r.t. the length of the senéefrmumber of transitions in the input DAG of the sentence ;
medians are computed on classes of sentences whose nunitesolies between0?’ and10%*2 — 1 and plotted with

a centeredc-coordinate {0%°T1)). See also footnote 4. Note that these results measurdtaimaausly the grammar’s
characteristics andX3.FG's performance.
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