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Abstract
There has been an increasing interest in utilizing a wide variety of knowledge sources in order to perform automatic tagging of speech
events, such as sentence boundaries and dialogue acts. In addition to the word spoken, the prosodic content of the speech has been proved
quite valuable in a variety of spoken language processing tasks such as sentence segmentation and tagging, disfluency detection, dialog
act segmentation and tagging, and speaker recognition. In this paper, we report on an open source prosodic feature extraction tool based
on Praat, with a description of the prosodic features and the implementation details, as well as a discussion of its extension capability.
We also evaluate our tool on a sentence boundary detection task and report the system performance on the NIST RT04 CTS data.

1. Introduction

Recently, there has been an increasing interest in utiliz-
ing a wide variety of knowledge sources in order to label
speech with event tags, such as sentence boundaries and di-
alogue acts. In addition to the words spoken, the prosodic
content of the speech can be quite valuable for accurate
event tagging. Shriberg and Stolcke (2004) have pioneered
the “direct modeling” approach to exploit prosodic infor-
mation in a variety of spoken language processing tasks
such as sentence segmentation and tagging (Liu et al., 2004;
Liu et al., 2005a), disfluency detection (Liu et al., 2005b),
dialog act segmentation and tagging (Ang et al., 2005), and
speaker recognition (Sonmez et al., 1998). An advantage
of this approach is that no hand segmentation or intermedi-
ate labeling of the prosody is required (although if it were
available it could be used). Instead the prosodic features
are extracted directly from the speech signal given its time
alignment to a human generated transcription or to auto-
matic speech recognition (ASR) output. A prosody model
can then be trained using these features and combined with
a language model to build an event detection system.

Many of the past efforts on speech event detection uti-
lize simple prosodic features such as pause duration (Gotoh
and Renals, 2000). By contrast, the above direct modeling
efforts utilize a large number of features extracted using a
proprietary prosodic feature extraction suite developed at
SRI (Ferrer, 2002) to good effect. SRI’s feature extraction
tool is Unix script-based, combining ESPS/Waves for basic
prosodic analysis (e.g., preliminary pitch tracking and en-
ergy computation (get_FO0)) with additional software com-
ponents, such as a piecewise linear model (Sonmez et al.,
1998) for pitch stylization. In this paper, we describe and
evaluate an open source prosodic feature extraction tool*
based on Praat (Boersma and Weeninck, 1996) to extract a
wide variety of prosodic features for event detection tasks
that was inspired by the SRI suite. By creating this tool, we
hope to provide a framework for building stronger baseline
comparisons among systems and to support more effective
sharing of prosodic features.

1Thistool can be downloaded at f t p: / / f t p. ecn. pur due. edu/
har per/ praat - prosody. t ar. gz, dong with a manual (Huang et
al., 2006).

Figure 1 illustrates how our prosodic feature extraction
tool is used by an event detection system. As illustrated in
Figure 1 (a), the goal of an event detection system is to de-
termine at a particular point in the speech (usually a word
boundary given forced alignment) whether to label it with
an event (e.g., sentence unit boundary) or not. Figure 1 (b)
shows an event tagging system that combines a language
model (LM) with a prosody model, whose features are pro-
vided by our prosodic feature extraction system shown in
Figure 1 (c). The rest of the paper is organized as follows.
We briefly describe the prosodic features implemented in
our tool in section 2, and present the implementation details
and discuss some potential extension directions in section
3. In section 4, we evaluate the tool on the sentence bound-
ary detection task using the NIST RT04 CTS data. The last
section summarizes this work.

2. FeatureDescription

The features described here have been inspired by SRI’s
prosodic feature extraction suite (Ferrer, 2002); however,
our implementation differs in that we utilize the function-
ality of Praat. For example, pitch tracking is performed by
Praat’s autocorrelation based pitch tracking function rather
than using ESPS'Waves, and the pitch stylization is accom-
plished by Praat’s pitch stylization function, rather than
the piecewise linear stylization algorithm in SRI’s model.
Since we have been focusing on various types of boundary
detection tasks, all of the prosodic features are extracted
around each word boundary.

e Duration features: Duration features are obtained
based on the word and phone alignments of human
transcriptions (or ASR output). Pause duration and its
normalization after each word boundary are extracted.
We also measure the duration of the last vowel and the
last rhyme, as well as their normalizations, for each
word preceding a boundary. The duration and the nor-
malized duration of each word are also included as du-
ration features.

o F, features: Praat’s autocorrelation based pitch
tracker is used to obtain raw pitch values. The pitch
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Figure 1: A scheme for combining words and prosodic content for event tagging. (a) A sentence boundary detection task.
(b) An integration diagram of a prosodic model and a language model (LM) for event tagging. (c) The procedures used for
prosodic feature extraction. Note that Forced Alignment is not a part of the tool, and so appears outside of box c.

baseline and topline, as well as the pitch range, are
computed based on the mean and variance of the log-
arithmic Fy values. Voiced/unvoiced (VUV) regions
are identified and the original pitch contour is stylized
over each voiced segment. Several different types of
Fy features are computed based on the stylized pitch
contour.

— Range features: These features reflect the pitch
range of a single word or a window preceding or
following a word boundary. These include the
minimum, maximum, mean, and last Fy values of
a specific region (i.e., within a word or window)
relative to each word boundary. These features
are also normalized by the baseline Fp values, the
topline Fy values, and the pitch range using linear
difference and log difference.

Movement features: These features measure the
movement of the Fy contour for the voiced re-
gions of the word or window preceding and the
word or window following a boundary. The min-
imum, maximum, mean, the first, and the last
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stylized Fp values are computed and compared
to that of the following word or window, using
log difference and log ratio.

Slope features: Pitch slope is generated from
the stylized pitch values. The last slope value
of the word preceding a boundary and the first
slope value of the word following a boundary are
computed. We also include the slope difference
and dynamic patterns (i.e., falling, rising, and un-
voiced) across a boundary as slope features, since
a continuous trajectory is more likely to correlate
with non-boundaries; whereas, a broken trajec-
tory tends to indicate a boundary of some type.

e Energy features: The energy features are computed
based on the intensity contour produced by Praat.
Similar to the Fy features, a variety of energy related
range features, movement features, and slope features
are computed, using various normalization methods.

e Other features: We add the gender type to our feature
set. Currently the gender information is provided in



a metadata file, rather than obtaining it via automatic
gender detection.

3. Implementation and Extension

We have implemented the prosodic feature extrac-
tion tool using Praat’s programmable scripting lan-
guage (Boersma and Weeninck, 1996). A very important
reason that we chose Praat as our platform is that it pro-
vides an existing suite of high quality speech analysis rou-
tines, such as pitch tracking. Additional reasons for using
Praat include:

1. Praat is a public domain, widely used speech analysis
toolkit that is supported on a variety of platforms (e.g.,
Windows, Macintosh, Linux, and Solaris).

2. It provides a variety of valuable data structures, such
as TextGrid, PitchTier, and Table, to represent various
types of information used for extracting prosodic fea-
tures.

3. Itprovides a built-in programmable scripting language
for calling Praat’s commands and extending its capa-
bility.

4. Additions to Praat functionality can be immediately
adopted into the tool. This is especially useful for in-
corporating new prosodic features.

Hence, Praat is an ideal platform for building a pub-
lic domain prosodic feature extraction tool that can be used
and extended by a wide variety of researchers. In the rest
of this section, we describe our tool implementation and
discuss some potential ways in which the tool could be ex-
tended.

3.1. Implementation

Given a corpus with audio and time aligned words and
phones as input, our tool first extracts a set of basic el-
ements (e.g., raw pitch, stylized pitch, VUV) represent-
ing duration, Fy, and energy information, as is shown in
Figure 1 (c). Then a set of duration statistics (e.g., the
means and variances of pause duration, phone duration, and
last rhyme duration), Fy related statistics (e.g., the mean
and variance of logarithmic Fj values), and energy related
statistics are calculated. Given the duration, Fy, and energy
information, as well as the statistics, it is straightforward
to extract the prosodic features at each word boundary, ac-
cording to the definition of features in (Ferrer, 2002) and
our tool documentation (Huang et al., 2006). We describe
below how to obtain and represent these basic elements in
Praat. Table 1 summarizes their use in the computation of
the prosodic features.

e Word and Phone Alignments: A forced alignment
system? is used to determine the starting and ending
times of words and phones. In our tool these align-
ments are represented in TextGrid Interval Tiers.

2This is separate from our feature extraction tool. Researchers can
choose from a variety of systems, such as Aligner (Wightman and Talkin,
1997), ISIP ASR (Sundaram et a., 2000), and SONIC (Pellom, 2001).

Table 1: The use of raw files for extracting various features.

Duration Fo Energy

Features | Features | Features
Word 4 4 4
Phone Vv X x
Vowel Vv X X
Rhyme Vv X x
VUV X 4 X
Raw Pitch X Vv X
Stylized Pitch X N X
Pitch Slope X Vv X
Raw Energy X X Vv
Stylized Energy X X Vv
Energy Slope X X Vv

e Vowel and Rhyme: The starting and ending times
of vowels and rhymes are determined from the phone
alignments. As to rhyme, we only consider the last
rhyme, which is defined to be the sequence of phones
starting from the last vowel and covering all the re-
maining phones in a word. Vowels and rhymes are
also represented in TextGrid IntervalTiers.

e Fo: We rely on Praat’s autocorrelation based pitch
tracking algorithm to extract raw pitch values, using
gender dependent pitch range. The raw pitch contour
is smoothed and the voiced/unvoiced regions are deter-
mined and stored in a TextGrid Interval Tier. Praat’s
pitch stylization function is used to stylize raw Fj
values over each voiced region. Both raw Fp values
and stylized Fy values are represented in PitchTiers.
The pitch slope values are generated based on the styl-
ized pitch contour, and are stored in a TextGrid Inter-
valTier.

e Energy: Intensity values are computed for each frame
and stored in an IntensityTier. Since there is no inten-
sity stylization function in Praat, we choose to rep-
resent intensity values in a PitchTier, and apply the
pitch stylization function to stylize the intensity con-
tour. Note that stylization is performed on the en-
tire intensity contour, in contrast to the pitch case, for
which this applies only in voiced regions. The raw and
stylized intensity values are stored in PitchTiers, and
the slope values are stored in a TextGrid Interval Tier.

3.2. Extension

As we discussed above, the major advantage of building
a prosodic model based on Praat is the capability of tak-
ing advantage of Praat’s existing built-in speech analysis
algorithms and other Praat scripts that have been written
as extensions. In addition, because Praat is a public do-
main tool, there is the promise of future extensions to Praat
functionality. Although features we have implemented have
been used for a variety of event detection tasks, they are not
necessarily equally effective for all tasks. Hence, it is im-
portant to have flexibility to easily add new features into the
system.
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Take jitter and shimmer for example. Jitter is the cycle-
to-cycle variability in frequency of vocal fold vibration.
Shimmer is the cycle-to-cycle variability in amplitude of
the vocal fold vibration. These two measurements have
been investigated as voice quality measurements for patho-
logical speech. Liu (2003) used a variety of prosodic fea-
tures (i.e., duration, pitch, and energy features) together
with some voice quality measures for word fragment iden-
tification in conversational speech. She found that jitter
was the most frequently queried voice quality feature in
the decision tree created for the task. There are existing
algorithms in Praat for computing both jitter and shimmer;
therefore, it would be a simple matter to implement a jitter
and shimmer extraction script and add it into our tool. In
fact, Liu obtained the jitter values from Praat.

Take Fujisaki analysis for another example. The Fu-
jisaki model (Fujisaki and Kawai, 1988) is a parametric su-
perpositional model widely used in the area of speech syn-
thesis. In this model, the fundamental frequency contour
is decomposed into phrase components and accent compo-
nents over the base frequency. One can imagine that the
phrase components are informative of phrase or sentence
boundaries, thus could be used in some boundary detec-
tion tasks. Although Fujisaki analysis has yet to be imple-
mented in Praat, if it were, it would be a simple matter to
add a Fujisaki analysis into our tool in order to provide an
additional set of features.

4. Evaluation
4.1. Setup

In order to examine the effectiveness of our tool, i.e., the
quality of the features extracted by the tool on event tagging
tasks, we evaluated the extracted features on SU detection
task using the NIST RT04 CTS data. The RT04 CTS data
has a training set drawn from the Switchboard corpus, two
development sets with one drawn from both Switchboard
and Fisher and another from Fisher, and an eval set drawn
from Fisher. To evaluate the in-domain and out-of-domain
effects, we have chosen to train our prosody model on the
entire training set and evaluate on the Switchboard part®
of the first development set and the Fisher data in the eval
set. Table 2 summarizes the data used in our experiments.
SONIC?’s aligner (Pellom, 2001) was used to produce the
word and phone alignments given the word boundaries in
the official NIST RT04 RTTM files as reference. Pronunci-
ations were created for all out of vocabulary (OOV) words.

| [ #SU | #words |  Source |
train 64K 480K Switchboard
dev 6K 35K Switchboard
eva 5K 34K Fisher

Table 2: The size and source of experimental data.

A standard CART style decision tree was used to train
the prosody models (an example tree is given in Figure 2).
In order to address the imbalanced data problem (since

3In our experiment, one conversation from Switchboard was elimi-
nated from the dev set due to atranscription problem.

there are fewer SU events than non-events at interword
boundaries; overall only 13.3% word boundaries in the
training set are also sentence boundaries), we used a down-
sampled training set in which SU and non-SU classes had
equal prior probabilities. Additionally, we employed en-
semble bagging to reduce the variance of the prosodic clas-
sifiers. Using this method, several random downsampled
training sets were generated, and each was resampled mul-
tiple times and corresponding classifiers were combined via
bagging®. This has been found to improve the performance
of the prosody model on the CTS SU detection task (Liu et
al., 2005a; Liu, 2004).

PAUSE_DUR < 3.5:
FOK_WIN_DIFF_LOLO_NG < 0.0093418:
| WORD_DUR < 35.5:
| FOK_WORD_DIFF_LOLO_NG < 0.0070514:
I | LAST_RHYME_NORM_DUR_PH_ND <-14.353: 1
I | LAST_RHYME_NORM_DUR_PH_ND >=-14.353:
I I I AVG_PHONE_DUR_Z <0.033767: 0
I I | AVG_PHONE_DUR_Z >=0.033767:
I 11 1 WORD_DUR<19.5: 0
111 1 WORD_DUR>=195: 1
| FOK_WORD_DIFF_LOLO_NG >= 0.0070514: 0
WORD_DUR >= 35.5:
| FOK_WORD_DIFF_LOLO_NG < 0.0071925: 1
| FOK_WORD_DIFF_LOLO_NG >= 0.0071925:
| FOK_WIN_DIFF_LOHI_N < -0.22393: 1
| FOK_WIN_DIFF_LOHI_N >=-0.22393:
| | FOK_WORD_DIFF_ENDBEG < 0.047089:
| I | AVG_VOWEL_DUR_ZSP <1.512: 0
| I | AVG_VOWEL_DUR_ZSP >=1.512: 1
| | FOK_WORD_DIFF_ENDBEG >= 0.047089: 1
OK_WIN_DIFF_LOLO_NG >=0.0093418:

| LAST_RHYME_NORM_DUR_PH_ND <-15.931: 0

| LAST_RHYME_NORM_DUR_PH_ND >=-15.931: 1
'AUSE_DUR >=3.5:
PAUSE_DUR < 42.5:
WORD_DUR < 28.5:
| FOK_WORD_DIFF_HIHI_NG < 0.0092524:
| | FOK_DIFF_LAST_KBASELN < 99.307:
| | | FOK_DIFF_MEAN_KBASELN < 14.179: 1
I | | FOK_DIFF_MEAN_KBASELN >= 14.179: 0
| | FOK_DIFF_LAST_KBASELN >=99.307: 1
| FOK_WORD_DIFF_HIHI_NG >= 0.0092524: 1
WORD_DUR >=28.5: 1
PAUSE_DUR >=42.5: 1

|

|

11
11
11
11
11
11
11
11
11
11
11
11 |
11 |
11 |
11 |
11 |
11 |
I Fi

|

|

P

Figure 2: An example of a decision tree for SU detec-
tion. Each line represents a node in the tree, with the
associated question regarding a particular feature (e.g.,
PAUSE_DUR is the pause duration after a word bound-
ary, FOK_WIN_DIFF_LOLO_NG is the log ratio between
the minimum of the stylized Fy within a window before a
word boundary and the minimum of the stylized Fy within
a window after a word boundary, normalized by the pitch
range). The ‘0’ (non-SU) or ‘1’ (SU) at the end of a line
(representing a leaf note) denotes the decision at the corre-
sponding node.

To measure the performance of our models, we used the
Error Rate metric defined by NIST for the DARPA EARS
metadata evaluation for comparison with the literature. The
Insertion Rateand Deletion Rateare also provided to deter-
mine whether there are different patterns of insertions and

4The posterior probabilities provided by decision tree models are nor-
malized to reflect the distribution of SU/non-SU boundaries in the training
Set.
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deletions among different feature sets. The three metrics
are defined below:

1. Insertion Rate = #lnsertions / #9Us in the reference
2. Deletion Rate = #De€letions / #3Us in the reference

3. Error Rate = (#Deletions + #Insertions) / #SUs in the
reference

4.2. Results and Discussion

We started with all of the prosodic features (more than
two hundred) extracted by our tool, and compared in Ta-
ble 3 the performance of the decision tree model trained
using these features to a simple baseline that always se-
lected the majority class (i.e., non-SU). We also included
for comparison the performance of using only pause du-
ration (pause_dur) after a word boundary. As can be ob-
served, using the full set of prosodic features improves per-
formance considerably over the chance baseline, and also
reduces overall error rate compared to using pause dura-
tion alone. Although the improvement on the eval set using
the full feature set against pause duration alone is greater
than on the dev set, the prosody model has a much larger
error than on the dev set, which was drawn from the Switch-
board corpus. This may be caused by the fact that the eval
set is entirely composed of Fisher data, and there are some
differences between the Switchboard corpus and the Fisher
corpus.

Evaluation on dev set
|| Deletion | Insertion | Error

Basdline 100 0 100
pause_dur 41.72 17.75 59.47
full set 51.45 5.88 57.33

Evaluation on eval set
|| Deletion | Insertion | Error

Baseline 100 0 100
pause_dur 41.93 27.10 69.03
full set 56.42 6.17 62.59

Table 3: SU detection results using the full set of prosodic
features, pause duration only, and a baseline obtained by
considering all word boundaries to be non-events.

As pointed out in (Shriberg et al., 2000), the full fea-
ture set contains a high degree of feature redundancy, and
may result in a suboptimal tree due to the greedy nature
of the decision tree. We found that many of the unnormal-
ized Fy and energy features were rarely queried in the finial
decision trees. Hence, in a second experiment, we started
with about 100 features comprised of most of the duration
features, the normalized F} features, the normalized energy
features, and gender type, and tested different combinations
of these features (with gender type always included). The
results are provided in Table 4.

The first observation is that these relatively small sub-
sets of features perform comparably to or better than using
the full feature set with respect to the overall Error Rate.
Among the performance of these different combinations, a
lower overall Error Rate is largely achieved by lowering
the Deletion Rate. In contrast to the literature (Shriberg et

Evaluation on dev set
|| Deletion | Insertion | Error

Basdine 100 0 100
dur 49.41 6.71 56.13
dur+Fy 47.08 8.14 55.23
dur+energy 51.94 6.01 57.94
dur+Fy+energy 49.96 6.60 56.56

Evaluation on eval set

|| Deetion | Insertion [ Error

Basdline 100 0 100
dur 49.98 9.87 59.85
dur+Fy 47.52 11.56 59.08
dur+energy 52.80 8.01 60.82
dur+Fp+energy 51.31 8.88 60.19

Table 4: SU detection results using different combinations
of prosodic features.

al., 2000; Liu, 2004), in which F features were not con-
sidered as effective features (mainly comprised of duration
features) for the SU detection task on CTS data, in our ex-
periment combining Fy features with the duration features
reduces the Error Rate to some degree on both the dev set
(p < 0.013, using the sign test) and the eval set (p < 0.061,
using the sign test). Different training and test data may
account for the discrepancy; however, there are other fac-
tors that may take effect. First, our tool uses different pitch
tracking and pitch stylization algorithms than those in SRI’s
suite, and thus the Fy features are somewhat different. Sec-
ond, the accuracy of word/phone alignments may effect the
quality of Fy features greatly since all these features are
computed around each word boundary. In our preliminary
study, we found that, if the alignments were generated using
only the reference transcription without referring to the ref-
erence word boundaries, then combining Fg features with
duration features worked slightly worse than using duration
features only.

We also observe in Table 4 that, combining energy fea-
tures with the duration features impairs the performance
somewhat compared to using duration features only (p <
0.02, using the sign test), and the performance degrada-
tion of using dur+energy compared to using dur+£j is even
more significant (p < 0.0003, using the sign test). How-
ever, it is incorrect to conclude that certain features such
as the energy-related features are not useful for several rea-
sons. First, as explained by Shriberg and Stolcke (Shriberg
et al., 2000), these features may be useful on their own, but
less useful when combined with other features. Second, the
effectiveness of a certain feature varies across different cor-
pora and tasks. Shriberg and Stolcke (Shriberg et al., 2000)
reported that Fy features contributed 11% to feature usage®
in sentence segmentation using Broadcast News data and
36% for topic segmentation; whereas, F; features were not
among the feature set identified by their feature selection
algorithm in the sentence segmentation task using Switch-
board data. Liu (2003) reported that both energy and Fjy
features were effective for word fragment detection.

Our system has around a 60% Error Rate on the RT04

SFeature usage (Shriberg et al., 2000) is a measure computed as the
relative frequency with which that feature or feature classis queried in the
decision tree.
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evaluation set, which is comparable to Liu’s result for the
RTO3 evaluation set (Liu, 2004), in which the prosodic fea-
tures were extracted by SRI’s suite. Rather than being used
alone, a prosody model is usually integrated with a lan-
guage model for better performance. To complete this eval-
uation, the best prosody model (PM) in Table 4 is combined
with a language model® (LM) trained on the training set of
the RT04 CTS data. Results are given in Table 5. The in-
tegration of the prosody and language models significantly
reduces the Deletion Rate compared to the prosody model
alone, and the Insertion Rate and overall Error Rate com-
pared to each of the models alone.

Evaluation on dev set
|| Deletion | Insertion | Error

Baseline 100 0 100
PM 47.08 8.14 55.23
LM 31.21 12.63 43.84

PM +LM 31.69 4.16 35.86

Evaluation on eval set

| Deletion | Insertion | Error

Basdline 100 0 100
PM 47.52 11.56 59.08
LM 30.83 14.65 45.48
PM + LM 32.18 5.69 37.87

Table 5: SU detection results combining a prosodic model
with a language model.

5. Conclusion

In this paper, we have reported on our open source
prosodic feature extraction tool built based on Praat. This
tool is capable of extracting a variety of duration features,
Fy features, and energy features given an audio recording
and its time aligned words and phones sequences. Imple-
mentation details are described and extension capabilities
are discussed. Evaluation of the prosody model derived
from this tool and its integration with a language model
have demonstrated the effectiveness of our tool on the sen-
tence boundary detection task using NIST RT04 CTS data.
In the future, we will apply this tool to other event tagging
applications, and will also continue to expand the tool’s ca-
pability for the research communities.
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