
Preprocessing and Tokenisation Standards in DELPH-IN Tools

Benjamin Waldron∗, Ann Copestake∗, Ulrich Schäfer†, Bernd Kiefer†

∗University of Cambridge Computer Laboratory
15 JJ Thomson Avenue

Cambridge CB3 0FD, UK
{bmw20, aac10}@cl.cam.ac.uk

†Language Technology Lab
German Research Center for Artificial Intelligence (DFKI) GmbH

Stuhlsatzenhausweg 3
D-66123 Saarbrücken, Germany

{ulrich.schaefer, bernd.kiefer}@dfki.de

Abstract
We discuss preprocessing and tokenisation standards within DELPH-IN, a large scale open-source collaboration providing multiple
independent multilingual shallow and deep processors. We discuss (i) a component-specific XML interface format which has been used
for some time to interface preprocessor results to the PET parser, and (ii) our implementation of a more generic XML interface format
influenced heavily by the (ISO working draft) Morphosyntactic Annotation Framework (MAF). Our generic format encapsulates the
information which may be passed from the preprocessing stage to a parser: it uses standoff-annotation, a lattice for therepresentation of
structural ambiguity, intra-annotation dependencies andallows for highly structured annotation content. This workbuilds on the existing
Heart of Gold middleware system, and previous work on RobustMinimal Recursion Semantics (RMRS) as part of an inter-component
interface. We give examples of usage with a number of the DELPH-IN processing components and deep grammars.

1. Introduction
The standard assumption about natural language parsing is
that input data must be initially divided into chunks suit-
able for analysis (generally sentences) with each chunk fur-
ther split into tokens. The tokenization step is generally
defined to return a sequence of strings. There are sev-
eral complications to this simple story when we consider
processing real documents. Data which we wish to parse
comes in many formats, possibly textual (e.g., raw text,
HTML, SGML or XML markup, PDF), but possibly audio
or video. Markup on the original input which is irrelevant
for sentence parsing may nevertheless be useful for further
processing (e.g., paragraph boundaries) and thus should be
preserved so that it is available alongside the information
extracted from parsing. Furthermore, it may be impossible
in general for tokenization to produce a unique correct out-
put without access to information usually associated with
deeper processing. Finally, the assumption that tokens are
strings does not allow for preprocessing which returns fur-
ther information (e.g., named entity recognition, POS tag-
ging or morphological analysis). Thus a general text inter-
face should:

1. take into account document markup (e.g., via markup-
aware tokenizer rules which provide the possibility to
strip and recover markup as needed)

2. provide grounding in the text document under consid-
eration (e.g., via standoff pointers)

3. provide an adequate representation for token ambigu-
ity (e.g., a lattice)

4. provide a representation of adequate power for de-
scription of token content (e.g., feature structures).

Obviously it is also desirable to adopt commonly accepted
standards such as Unicode and XML. Ideally, it should be
possible to use the tokenization component in generation
as well as for analysis, although we will not discuss that
further here.
In this paper, we present a preprocessing and tokenization
standoff-annotation standard which has been designed for
use in DELPH-IN1, a loose international collaboration of
researchers developing open-source software components
for language processing. DELPH-IN components include
deep parsers (currently the LKB (Copestake, 2002) and
PET (Callmeier, 2000)) which run deep grammars for var-
ious natural languages (e.g., the English Resource Gram-
mar (Flickinger, 2002), JACY2, NorSource3) and a range
of tools for shallower processing. In previous work asso-
ciated with DELPH-IN, in the Deep Thought project, the
Heart of Gold system (Callmeier et al., 2004) for the inte-
gration of shallow and deep linguistic processors was devel-
oped along with the Pet Input Chart (PIC) XML interface
format. Our current work extends this to provide a more
general approach.

2. Standoff Annotation
Linguistic annotation may be generated automatically (the
situation we are interested in here) or manually. Annota-
tions may be inline or standoff (Thompson and McKelvie,
1997). Inline annotation is simpler and provides a con-
venient and straightforward way to annotate many docu-
ments. It is particularly suitable to unambiguous manual
annotation. However, in the case of XML documents, it

1http://www.delph-in.net/
2http://wiki.delph-in.net/moin/JacyTop
3http://www.ling.hf.ntnu.no/forskning/norsource/

2263

presupposes that the annotated output can be treated as tree-
structured, which may be inconvenient or impossible. In
contrast, in standoff annotation, each layer of annotations
is kept in a separate space; the original data is left unaltered
and the standoff document contains structures which are
grounded via pointers into the original document. In such
a framework, complex annotations with non-tree structure
are possible, and a clear distinction exists between markup
found in the original document and annotations in the sep-
arate standoff document. If parsing is treated as providing
standoff annotation, document markup remains available to
discourse-level processing.
Standoff annotations have been used successfully in other
work: e.g., NITE (Carletta et al., 2003); GATE (Cun-
ningham et al., 2002); WHITEBOARD (Frank et al.,
2003); TEI (Sperberg-McQueen and Burnard, 2004). The
Deep Thought project, which used and developed various
DELPH-IN technology, experimented with a limited form
of standoff annotation in the form of character position in-
formation encoded as part of RMRS (Copestake, 2003).
The appropriate pointer scheme for standoff annotation de-
pends on the data format of the original input. For example,
annotations over an audio file may use frame (or time) off-
sets; annotations over text might use character pointers into
the source. In this paper, our primary focus is standoff an-
notation over XML documents — we assume that other text
formats will mapped to XML in a prior stage. In the next
section, we discuss XML standoff pointers in more detail.

2.1. Choice Of Standoff Pointer Implementation

A variety of approaches to standoff pointers in XML have
been investigated and have different strengths and weak-
nesses: XML ID tags are coarse-grained, requiring that the
source document contain markup elements around every-
thing of interest (and crucially they cannot overlap); byte
offsets are fine-grained but not robust to changes in the
character encoding; character offsets are simple to use, al-
though not robust to changes elsewhere in the document;
XPointer4 is very powerful, but its full machinery unneces-
sary for our purposes.
We take a hybrid approach to choice of standoff pointer:
existing non-XML-aware processing components can often
easily be converted to produce character pointers, but for
XML-aware components, it is easier to work with a pointer
scheme aware of the XML tree structure. A mapping be-
tween the two pointer schemes provides the necessary in-
terconversion.
An XML text document may be considered at a num-
ber of levels: (i) at one level, the document consists of
a sequence of bytes, to be interpreted with respect to
some coding scheme (specified in the XML header; e.g.,
encoding=’ISO-8859-1’); (ii) at a higher level, an
XML document is considered a sequence of Unicode char-
acters; (iii) at an even higher level, the document is a collec-
tion of abstract nodes forming a tree structure (in which cer-
tain distinctions in the input, such as sequences of whites-
pace, have been collapsed). Non-XML-aware processing
components consider an input document as a sequence of

4http://www.w3.org/TR/WD-xptr

Raw Text:”<p>Come <i>here</i>!</p>”

Unicode character points:

.<.p.>.C.o.m.e.∆.<.i.>.h.e.r .e .< ./ .i .> .! .< ./ .p .> .

Figure 1: character pointers (points shown as ‘.’ and num-
bered from the left, starting from 0)

ROOT(/)

. p(/1) .

. TEXT(/1/1) .

.C.o.m.e.x∆.

i(/1/2)

. TEXT(/1/2/1) .

.h.e.r.e.

. TEXT(/1/3) .

.!.

xpoint at x is:“/1/1.4”

Figure 2: xpoint-based pointers (points shown as ‘.’)

bytes or characters. XML-aware processing components
work with the XML tree.
We use ‘character’ pointers refer to points between the se-
quence of Unicode characters (see fig. 1); ‘xpoint-based’
pointers refer to points in the abstract XML tree (see
fig. 2). Our xpoint-based pointers are derived from the
xpoint scheme detailed in the XPointer specification. Any
point may be uniquely referenced by specifying an XML
node (via XPath) paired with an offset (Unicode charac-
ter offset inside a text node; XML node offset otherwise).
Points within XML attribute values can also be specified in
this way. XPath allows multiple expressions to refer to the
same node in a particular document; by appropriate choice
of XPath expression, it is possible to trade simplicity of
pointer scheme against robustness. For example, suppose
the<p> element in fig. 2 contained attributeid=’p23’.
Point x could be specified by one of: “/1/1.4” or
“/p/text()[1].4” or “//[@id=’p23’]/1.4” (in
order of robustness to changes to the raw document).

3. Interface formats within DELPH-IN
Firstly we outline the PIC XML interface format which has
been in use for some time within DELPH-IN. PIC provides
an XML input format tailored to the needs of the PET deep
parser. It utilises: (i) standoff pointers (character counts in
the source document); (ii) two types of annotation (word,
named entity); (iii) an implicit lattice; (iv) for the annota-
tion content, a variety of XML elements/attributes chosen
to mesh with the data structures of the deep processor. The
PIC format is generated using XSLT mappings from other
formats. PIC documents reference grammar-specific types.
Secondly we describe a more generic XML interface format
(SMAF) which was derived from MAF (Clement and de la
Clergerie, 2005). This is intended to be independent of the
parser and grammar. SMAF utilises: (i) choice of stand-
off annotation scheme; (ii) a number of annotation types

2264

for specific purposes; (iii) a lattice; (iv) intra-annotation de-
pendencies; (v) a range of representations for the content of
individual annotations. The mapping from annotation con-
tents into grammar data structures is specified in grammar-
specific configuration files. SMAF is designed for the situa-
tion where multiple processors are to be flexibly integrated,
as, for instance, in the SciBorg project5. It allows for lev-
els of interface other than tokenization and morphology, al-
though these will not be discussed further here.

3.1. PIC implementation

The PIC (PET XML Input Chart) format has been used with
the deep HPSG parser PET within the Heart of Gold system
(Callmeier et al., 2004; Schäfer, 2005). Heart of Gold is a
middleware for the integration of deep and shallow natural
language processors on the basis of XML standoff annota-
tion that can be flexibly configured and easily accessed by
applications.
Heart of Gold uses XSLT (Clark, 1999) for combining and
integrating XML markup. The general idea has been pre-
sented and motivated in (Schäfer, 2003). XSLT can be used
to convert between the various XML formats, and to com-
bine and query standoff annotations. In particular, XSLT
stylesheets may also be used to resolve conflicts resulting
from multi-dimensional markup, choose among alternative
readings, follow standoff links, or decide which markup
source to give higher preference.
The PIC format contains the original input text to be parsed,
the character span information of the words, optional part-
of-speech information (e.g., to allow guessing of the type of
unknown words) with weights in case of multiple readings,
and a construct for combining simple items to complex
ones, e.g., multi-words named entities or chunks. Further-
more, types and, more generally, typed feature structures
can be ‘injected’ via PIC directly into the deep parsers’
chart by specifying feature paths with associated values.
In the following, we give an example (for sentence’When
will LREC 2006 take place?’) of two preprocessing compo-
nents, a PoS tagger and a named entity recognition (NER)
component. Their output triggers generic entries of words
unknown to the HPSG lexicon to increase robustness. Both
preprocessing components independently produce standoff
markup from the input text. The markup is transformed
and combined into a single PIC markup document which is
then passed to the deep HPSG parser running the English
Resource Grammar.
Similar setups as for English have also been implemented
for German, modern Greek and Japanese preprocessing
components and HPSG grammars in the Heart of Gold.
SProUT (Drożdżyński et al., 2004), the NER component
used for these languages, produces typed feature structure
markup (Lee et al., 2004) (Figure 3), and transforms it to
the PET input chart format using XSLT stylesheets that
are automatically generated offline from the SProUT out-
put feature structure specifications (Schäfer, 2005).
The various PoS taggers either directly produce the PIC
format or use small, manually developed transformation
stylesheets. Figure 6 shows the PET input chart generated

5http://www.sciborg.org.uk/





































ne-event
CSTART "10"

CEND "18"
VARIANT *top*
SURFACE "LREC 2006"
PREPOSITIONS*list*
EVENTNAME "LREC 2006"

NE-CONCEPT ActiveConference
NE-OBJID "obj 89404"

NE-ABBID "LREC 2006"





































Figure 3: SProUT named entity recognition output.

by combining PoS tagger output (<w> elements) and NER
(in element<ne>).
Finer-grained information (e.g., gained from integrating
ontology information in the NER resources as described in
(Schäfer, 2006)) that is not relevant for robust HPSG pars-
ing, can be by-passed as an RMRS structure. The RMRS
(Figure 4) is generated from the SProUT output using an-
other automatically generated stylesheet, and can be com-
bined with the deep RMRS (Figure 5) in a post-parsing
transformation.

3.2. SMAF implementation

A SMAF document describes a segment (generally, sen-
tence) of the raw input document packaged in a manner
suitable for input to a parser. Relevant annotation levels
for such a description include simple token strings, part-of-
speech tags over simple tokens, complex named-entity to-
kens and morphological descriptions of tokens (when these
are provided by a component external to the parser). The
format borrows from MAF and PIC. It incorporates RMRS-
XML as a possible annotation content.
The following properties are global to a SMAF document:

• documentpoints to the original document (optionally,
the raw data may be embedded in thetextproperty);

• optionally, the standoff pointeraddressingscheme
may be specified (defaults tocharacter pointers);

• a collection of OLAC-compatible metadata (including
an identifier);

• a global span (standoff pointerscfromandcto);

• a lattice containing the annotations themselves as
edges (with specialinit ial andfinal nodes).

The following properties are applicable to anedgeannota-
tion:

• an identifier;

• a type(one oftoken, pos, namedEntity, morphology);

• a span (standoff pointerscfromandcto);

2265

















TEXT When will LREC 2006 take place?
TOP h100

RELS











[

ne-eventrel
LBL h100
ARG0 x100
CARG LREC 2006

]







ne-abbidrel
LBL h101
ARG0 x101
CARG LREC 2006
ARG1 x100













ne-objid rel
LBL h102
ARG0 x102
CARG obj 89404
ARG1 x100













ne-conceptrel
LBL h103
ARG0 x103
CARG Active Conference
ARG1 x100













eventnamerel
LBL h108
ARG0 x108
CARG LREC 2006
ARG1 x100

















HCONS {}
ING {}

















Figure 4: RMRS generated by SProUT with fine-grained named entity information.



































TEXT When will LREC 2006 take place?
TOP h1

RELS





















































basic int m rel
LBL h1
ARG0 e2 tense=future

MARG h3
TPC e4 tense=u







[

prpstnm rel
LBL h3
ARG0 e2 tense=future

MARG h6

]







unspecloc rel
LBL h8
ARG0 e4 tense=u

ARG1 e2 tense=future

ARG2 x9 pers=3
num=sg







[

time n rel
LBL h10

ARG0 x9 pers=3
num=sg

]







which q rel
LBL h11

ARG0 x9 pers=3
num=sg

RSTR h12
BODY h13











namedabb rel
LBL h14

ARG0 x15pers=3
num=sg

CARG LREC 2006











proper q rel
LBL h16

ARG0 x15pers=3
num=sg

RSTR h17
BODY h18

















take v
LBL h10001
ARG0 e2 tense=future

ARG1 x15pers=3
num=sg

ARG2 x19
pers=3
num=sg
gender=n



















udefq rel
LBL h20

ARG0 x19
pers=3
num=sg
gender=n

RSTR h21
BODY h22













place n
LBL h23

ARG0 x19
pers=3
num=sg
gender=n



















































HCONS {h6 qeqh8, h12qeqh10, h17qeqh14, h21qeqh23}
ING {h8 ing h10001}



































Figure 5: Deep RMRS generated by PET with named entity from external NER component.

• deps, a set of edgeids on which the annotation has a
dependency;

• plus the annotation ‘content’ (below).

Annotation content consists of a combination of the follow-
ing elements:

• simpleslot elements, each consisting of anamepart
(such assurface, weight, tagset, tag) paired with a
value string;

• complex feature structure (fs) elements: these may be
typed, and are compatible with the TEI/ISO FSR stan-
dard used by MAF;

• complex RMRS description.

Fig. 7 provides a sample SMAF XML document.
A SMAF document may be generated natively by a pro-
cessing component (such as the DELPH-IN tokenizer), via
a wrapper around an external component (e.g., around the
ChaSen morphological analyser (Asahara and Matsumoto,
2000) for Japanese), via an XSLT stylesheet from an al-
ternative XML format such as PIC, or by picking relevant
annotations from a larger standoff annotation document.
A deep processing component (such as the LKB or
PET) must map an input SMAF document into internal
component- (and grammar-)specific data structures. The
input format is designed with this in mind. The con-
tent (slots, fs’s, rmrs’s) requires component- and grammar-
specific mappings (in general determined by the edgetype);
these are specified in simple configuration files. For exam-
ple, thetag slot on an edge of typepos (part-of-speech)

will be mapped to a grammar-specific type dependent on
thetagsetused. A sample SMAF configuration file entry is
shown below:

• pos.[tag=’NN1’, tagset=’CLAWS7’] => $genericname

SMAF represents structural ambiguity in tokenization by
means of a lattice. The lattice is required to allow for com-
plex forms of ambiguity. For instance, a comma might be
normal punctuation or part of the name of a chemical com-
pound. While some disambiguation can be handled by the
tokenizer, other cases could require a lexicon and process-
ing of the surrounding context. Rather than complicate the
tokenizer, we prefer to delay the decision so that the re-
sources of deeper processing can be brought to bear. This
approach is also useful in handling clitics such as the pos-
sessive ‘s’ in Norwegian.
SMAF allows three types of annotation content. Simple
slots hold simple unstructured values, such as a part-of-
speech tag with respect to some tagset. Complex structured
content may be represented as a (typed) feature structure or
as an RMRS.
Users of the DELPH-IN machinery have a number of
choices when choosing components for the preprocessing
and deep processing modules. The first step in processing a
document is segmenting the document into segment spans
(generally, sentence units) fit for parsing, and tokenization
of text within such spans. This provides us with the nec-
essary data to create a simple SMAF document containing
only edges of typetoken. In addition, further components
such as a POS tagger or named-entity recogniser (or mor-
phosyntactic analysis external to the deep parser) may pro-
vide additional edges. The DELPH-IN tokenizer (regex-
based, character-point standoff-aware, markup-aware, and

2266

incorporating a light-weight named entity component) pro-
vides a simple preprocessor sufficient for many contexts.
It produces SMAF documents natively. Other components
have been written from scratch, or adapted (the RASP
(Briscoe and Carroll, 2002) sentence splitter, the ChaSen
preprocessor for Japanese) to produce this XML inter-
face format. Components previously adapted to produce
PIC within the Heart of Gold system are converted via a
PIC2SMAF XSLT stylesheet as an interim solution.
Crucially, grounding in the source document (via standoff
pointers) is preserved throughout processing and hence the
link between system output and the processed text is never
broken. These standoff pointers are preserved in the RMRS
semantic analyses output by the deep parsers.

4. Summary
This paper has described the use in DELPH-IN of a
standoff-annotation interface format between the level of
preprocessing (consisting of an obligatory tokenizer mod-
ule plus optional additional modules) and the deep parser
module (consisting of a deep grammar for a particular nat-
ural language running on a DELPH-IN deep processor) of
the DELPH-IN tools. The role of interface format is played
by SMAF, a fairly general XML serialization loosely based
on the MAF ISO working draft. Configuration files define
the mapping from this format to the specific data structures
required by particular deep processor implementations and
the type systems of particular grammars.

5. Acknowledgements
We would like to thank the reviewers for valuable com-
ments. We wish to thank Dan Flickinger, Stephan Oepen
and other colleagues within the DELPH-IN collaboration
for many informative discussions. This work was partly
funded by a grant from Boeing to Cambridge University,
partly by EPSRC project EP/C010035/1, and partly by a
grant from the German Federal Ministry of Education and
Research (FKZ 01IWC02).

6. References
M. Asahara and Y. Matsumoto. 2000. Extended Mod-

els and Tools for High-performance Part-of-Speech Tag-
ger. InProceedings of COLING 2000, Saarbrücken, Ger-
many.

E. Briscoe and J. Carroll. 2002. Robust accurate statis-
tical annotation of general text. InProceedings of the
Third International Conference on Language Resources
and Evaluation, Las Palmas, Gran Canaria.

U. Callmeier, A. Eisele, U. Schäfer, and M. Siegel. 2004.
The DeepThought core architecture framework. InPro-
ceedings of LREC-2004, Lisbon, Portugal.

U. Callmeier. 2000. PET – A platform for experimenta-
tion with efficient HPSG processing techniques.Natural
Language Engineering, 6(1):99–108.

J. Carletta, J. Kilgour, T. O’Donnell, S. Evert, and H. Voor-
mann. 2003. The NITE Object Model Library for Han-
dling Structured Linguistic Annotation on Multimodal
Data Sets. InProceedings of 3rd Workshop on NLP and
XML, NLPXML-2003.

J. Clark, 1999.XSL Transformations (XSLT). World Wide
Web Consortium, http://w3c.org/TR/xslt.

L. Clement and E. de la Clergerie. 2005. MAF: a mor-
phosyntactic annotation framework. InProceedings of
the 2nd Language and Technology Conference, Poznan,
Poland.

A. Copestake. 2002.Implementing Typed Feature Struc-
ture Grammars. CSLI Publications, Stanford.

A. Copestake. 2003. Report on the Design of RMRS.
Technical Report D1.1a, University of Cambridge, UK.

H. Cunningham, D. Maynard, K. Bontcheva, and V. Tablan.
2002. GATE: A Framework and Graphical Develop-
ment Environment for Robust NLP Tools and Applica-
tions. InProceedings of the 40th Anniversary Meeting of
the Association for Computational Linguistics (ACL’02),
Philadelphia.

W. Drożdżyński, H.-U. Krieger, J. Piskorski, U. Schäfer,
and F. Xu. 2004. Shallow processing with unification
and typed feature structures — foundations and applica-
tions. Künstliche Intelligenz, 2004(1):17–23.

D. Flickinger. 2002. On building a more efficient gram-
mar by exploiting types. In D. Flickinger, S. Oepen,
H. Uszkoreit, and J. Tsujii, editors,Collaborative Lan-
guage Engineering. A Case Study in Efficient Grammar-
based Processing. CSLI Publications.

A. Frank, M. Becker, B. Crysmann, B. Kiefer, and
U. Schäfer. 2003. Integrated shallow and deep parsing:
TopP meets HPSG. InProceedings of ACL-2003, Sap-
poro, Japan.

K. Lee, L. Burnard, L. Romary, E. de la Clerg-
erie, U. Schäfer, T. Declerck, S. Bauman, H. Bunt,
L. Clément, T. Erjavec, A. Roussanaly, and C. Roux.
2004. Towards an international standard on feature
structure representation (2). InProceedings of the
LREC-2004 workshop on A Registry of Linguistic Data
Categories within an Integrated Language Resources
Repository Area, Lisbon, Portugal.

U. Schäfer. 2003. WHAT: An XSLT-based infrastructure
for the integration of natural language processing com-
ponents. InProceedings of the HLT-NAACL Workshop
on the Software Engineering and Architecture of Lan-
guage Technology Systems, Edmonton, Canada.

U. Schäfer, 2005. Heart of Gold – an XML-based
middleware for the integration of deep and shal-
low natural language processing components,
User and Developer Documentation. DFKI Lan-
guage Technology Lab, Saarbrücken, Germany.
http://heartofgold.dfki.de/doc/heartofgolddoc.pdf.

U. Schäfer. 2006. OntoNERdIE—mapping and linking
ontologies to named entity recognition and information
extraction resources. InProceedings of LREC-2006,
Genoa, Italy.

C. Sperberg-McQueen and L. Burnard, 2004.TEI P4:
Guidelines for Electronic Text Encoding and Inter-
change. http://www.tei-c.org/P4X/.

H. Thompson and D. McKelvie. 1997. Hyperlink seman-
tics for standoff markup of read-only documents. InPro-
ceedings of SGML-EU-1997.

2267

<?xml version=’1.0’?>
<!DOCTYPE pet-input-chart [
<!ELEMENT pet-input-chart (w | ne)* >
<!ELEMENT w (surface, path*, pos*, typeinfo*) >
<!ATTLIST w id ID #REQUIRED

cstart NMTOKEN #REQUIRED
cend NMTOKEN #REQUIRED
prio CDATA #IMPLIED

constant (yes | no) "no" >
<!ELEMENT surface (#PCDATA) >
<!ELEMENT path EMPTY >
<!ATTLIST path num NMTOKEN #REQUIRED >
<!ELEMENT typeinfo (stem, infl*, fsmod*) >
<!ATTLIST typeinfo id ID #REQUIRED

prio CDATA #IMPLIED
baseform (yes | no) "yes" >

<!ELEMENT stem (#PCDATA) >
<!ELEMENT infl EMPTY >
<!ATTLIST infl name CDATA #REQUIRED >
<!ELEMENT fsmod EMPTY >
<!ATTLIST fsmod path CDATA #REQUIRED

value CDATA #REQUIRED >
<!ELEMENT pos EMPTY >
<!ATTLIST pos tag CDATA #REQUIRED

prio CDATA #IMPLIED >
<!ELEMENT ne (ref+, pos*, typeinfo+) >
<!ATTLIST ne id ID #REQUIRED

prio CDATA #IMPLIED >
<!ELEMENT ref EMPTY >
<!ATTLIST ref dtr IDREF #REQUIRED >
]>

<pet-input-chart>
<w id="TNT0" cstart="0" cend="3">
<surface>When</surface>
<pos tag="WRB" prio="1.000000e+00"/>

</w>
<w id="TNT1" cstart="5" cend="8">
<surface>will</surface>
<pos tag="MD" prio="1.000000e+00"/>

</w>
<w id="TNT2" cstart="10" cend="13">
<surface>LREC</surface>
<pos tag="NNP" prio="1.000000e+00"/>

</w>
<w id="TNT3" cstart="15" cend="18">
<surface>2006</surface>
<pos tag="CD" prio="1.000000e+00"/>
<typeinfo id="TYI3" baseform="no">

<stem>$generic_number</stem>
</typeinfo>

</w>
<w id="TNT4" cstart="20" cend="23">
<surface>take</surface>
<pos tag="VB" prio="8.349828e-01"/>
<pos tag="NN" prio="8.672786e-02"/>
<pos tag="VBP" prio="7.828936e-02"/>

</w>
<w id="TNT5" cstart="25" cend="29">
<surface>place</surface>
<pos tag="NN" prio="1.000000e+00"/>

</w>
<w id="TNT6" cstart="30" cend="30" constant="yes">
<surface>?</surface>
<pos tag="?" prio="1.0"/>

</w>
<ne id="SPR1" prio="1.0">
<ref dtr="TNT2"/>
<ref dtr="TNT3"/>
<surface>LREC 2006</surface>
<pos tag="PN" prio="1.0"/>
<typeinfo id="TIN2" baseform="no">

<stem>$generic_name</stem>
</typeinfo>

</ne>
</pet-input-chart>

Figure 6: PET input chart generated from PoS tagger and
named entity recognition component output.

<smaf document=’/data/doc01.txt’>
<olac:olac
xmlns:olac=’http://www.language-archives.org/OLAC/1.0/’
xmlns:dc=’http://purl.org/dc/elements/1.1/’>
<dc:creator>SMAF 0.0</dc:creator>
<created>16:14:31 3/05/2006 (UTC)</created>
<dc:identifier>s4</dc:identifier>
<posTagset>CLAWS7</posTagset>

</olac:olac>
<lattice init=’vo’ final=’v7’ cfrom=’0’ cto=’31’>
...
<edge type=’token’ id=’t43’ cfrom=’10’ cto=’14’

source=’v2’ target=’v3’>
<slot name=’surface’>LREC</slot>

</edge>
<edge type=’token’ id=’t44’ cfrom=’15’ cto=’19’

source=’v3’ target=’v4’>
<slot name=’surface’>2006</slot>

</edge>
<edge type=’token’ id=’t45’ cfrom=’20’ cto=’24’

source=’v4’ target=’v5’>
<slot name=’surface’>take</slot>

</edge>
...
<edge type=’namedEntity’ id=’n10’ deps=’t43 t44’

cfrom=’10’ cto=’19’>
<fs type=’ne-event’>
<f name=’surface’>LREC 2006</f>
<f name=’eventname’>LREC 2006</f>
<f name=’ne-concept’>Active_Conference</f>
<f name=’ne-objid’>obj_89404</f>
<f name=’ne-abbid’>LREC 2006</f>

</fs>
</edge>
...
<edge type=’pos’ id=’p63’ deps=’t43’>
<slot name=’tag’>NNP</slot>

</edge>
<edge type=’pos’ id=’p64’ deps=’t44’>
<slot name=’tag’>CD</slot>

</edge>
<edge type=’pos’ id=’p65’ deps=’t45’>
<slot name=’weight’>8.349828e-01</slot>
<slot name=’tag’>VB</slot>

</edge>
<edge type=’pos’ id=’p66’ deps=’t45’>
<slot name=’weight’>8.672786e-02</slot>
<slot name=’tag’>NN</slot>

</edge>
<edge type=’pos’ id=’p67’ deps=’t45’>
<slot name=’weight’>7.828936e-02</slot>
<slot name=’tag’>VBP</slot>

</edge>
...

</lattice>
</smaf>

Figure 7: SMAF document

2268

