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Workshop Description 

 
 
 

Multiword units (MWUs) include a large range of linguistic phenomena, such as phrasal verbs (e.g. 
"look forward"), nominal compounds (e.g. "interior designer"), named entities (e.g. "United 
Nations"), set phrases (e.g. "con carne") or compound adverbs (e.g. "by the way"), and they can be 
syntactically and/or semantically idiosyncratic in nature. MWUs are used frequently in everyday 
language, usually to express precisely ideas and concepts that cannot be compressed into a single 
word. A considerable amount of research has been devoted to this subject, both in terms of theory 
and practice, but despite increasing interest in idiomaticity within linguistic research, many 
questions still remain unanswered. The objective of this workshop is to deal with three important 
questions that are of great interest for real-world applications. 
 
1) Comparison of MWU extraction methodologies 

 
Many methodologies have been proposed in order to automatically extract or identify MWUs. 
However, not many efforts have been devoted to compare their results. The core differences 
between the methodologies are certainly the main reason why such works are so rare. For instance, 
it is not easy to compare language-dependent methodologies as the results depend on the efficiency 
of parameter tuning (i.e. semantic tagging, local specific grammars, lemmatization, part-of-speech 
tagging etc.). Another important problem is the fact that there is no real agreement between 
researchers about the definition of MWUs which would provide the basis for an objective 
evaluation. 
 
2) Evaluation of the benefits of the integration of MWUs in real-world applications 
 
It is not yet clear whether MWUs really improve NLP applications. It is common sense that 
Machine Translation is one application that takes great advantage of MWUs databanks. However, 
does the same apply to applications in Automatic Summarization, Information Retrieval (IR), 
Cross-language IR, Information Extraction, Text Clustering/Classification, etc.? Indeed, could the 
identification of MWUs introduce new constraints that are not present in original texts? Should 
MWUs be considered as units that should not be analyzable in terms of their components meaning? 
Or should they be treated as un-analyzable? Should NLP methods work both on isolated words and 
on aggregated MWUs? The answers are anything but clear. Here, the objective of the workshop is 
to point at successes and failures of the integration of MWUs in real-world applications. 
 
3) Comparison of scalable architectures for the extraction and identification of MWUs 
 
Real-world applications are constrained by variables like processing time and memory space. And, 
identifying and extracting MWUs is usually a computationally heavy process. In recent years, new 
algorithms and new technologies have been proposed to introduce MWU treatment in large scale 
applications, thus avoiding previous intractable implementations. Previous workshops on MWUs 
have mainly focused on the unconstrained extraction process. In this workshop, we would like to 
focus on the comparison of different factors that can influence the scalability of the treatment of 
MWUs in real-world applications, namely data structures, algorithms, parallel and distributed 
computing, grid computing etc.  
 
We hope that the papers of these proceedings will reach your and our expectations. 
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Abstract 
 

This paper proposes the use of a Support Vector Machine (SVM) and variations in document frequency to extract Japanese technical 
terms from non-segmented Japanese text. Technical terms are usually multiword. This paper proposes to test whether a sequence of 
strings appears more than merely by chance within the same document rather than within the whole corpus. Using these statistics, 
rather than conventional statistics, the distribution of technical term is given a better separation from random fragments of a string. 
This makes it possible for SVM to extract Japanese technical terms even from non-segmented Japanese texts. This paper exploits the 
distribution of technical terms and random fragments of strings, and reports the level of agreement between technical terms specified 
by the authors and the output of the system. 
 

Introduction 
One of the possible features of multiword aggregates 
could be that the sequence of the words is due to more 
than chance alone. There are many ways to define chance. 
Many studies have been conducted using word frequency 
in the corpus, or the number of documents that contain 
that particular sequence of words (Lin, 1998) (Utiyama, 
2000) (Nakagawa, 2002). The probability is usually 
measured for the whole corpus. We propose to test 
whether a sequence of word can be detected as due to 
more than chance within the same document rather than 
within the corpus. 
 

The adaptation of strings is based on the probability of 
how frequently a string already found in the document can 
be observed again. This statistical technique was 
introduced by Church (2000), who reported that the values 
of adaptation for English words are usually huge 
compared to their probability of being detected. We have 
verified this property of adaptation for Japanese technical 
terms, which are usually multiword. Although, there are 
many other sophisticated statistical functions such as 
reprentativeness as proposed by Hisamitsu (2002), 
adaptation is entirely statistical. 
 

Takeda (2001) has used such statistics to extract 
technical terms from Chinese and Japanese texts, and has 
shown that the extracted terms improve search 
effectiveness. Takeda’s method uses the Viterbi search to 
segment a Japanese text and employs predefined values 
for both to statistical segmentation and to judge whether 
or not each segmented string is a technical term. Since the 
predefined values apparently depend on the corpus, 
Takeda’s method is hard to replicate. 

 
 Our method uses the adaptation of strings as an input 
feature of SVM (Vapnik, 1995) to judge whether or not 
given string is a multiword technical term. In addition to 
the value for adaptation of given string, we have also 
decided to use adaptation for a string with one additional 
character. This decision comes from the fact that the value 
of adaptation is stable within multiwords, and that the 
value declines with the additional character. Takeda 

(2001) first reported this fact. We have also used 
document frequency when considering the multiword 
distribution.   

 
The input of our method consists of a sample of 

technical terms and a sample of string fragments, resulting 
in two classes of samples, SVM learn hyper-plane in 
feature space between technical terms and fragments. 
After learning this hyper-plane, the SVM will output the 
strings that belong to the category of technical terms. In 
this method, there is no predefined threshold value for 
adaptation. The SVM will learn the threshold value from 
the samples.  

 
 
 

 

 

 
 
 

           Technical Terms 

 

 

 

 

 

 
         String Fragments 

Figure 1 : df/N vs. df2/df plots show significantly different 
shapes between terms and fragments. 
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The experimental results show that our new method 
achieves better recall compared with Takeda’s method, 
and that it is essential to use adaptation as an input feature 
of SVM. In contrast to Takeda’s method, ours does not 
contain the threshold value for statistics, thus making it 
easy to replicate our results. We conclude that SVM and 
adaptation constitute a new baseline system to extract 
multiword Japanese technical terms.  
 

Adaptation and its Related Estimators 
Let N be the number of documents in the corpus we have 
to deal with. Let P(tf(D,s)≥1) be the probability of  
detecting a certain s in randomly selected documents. The 
expectation of P(tf(D,s)≥1) can be estimated by df(s)/N, 
where df(s) is the number of documents which contain the 
string more than once. It should be noted that we have 
chosen the document rather than the string as the random 
variable, even though our parameter is the string. It should 
also be noted that s may be not only a word but also any 
fragment of a string. 
 
 The adaptation of a string s is defined as the expectation 
of P(tf(D,s)≥2|tf(D,s)≥1). Again, It should be noted that 
we have chosen the document rather than the string as the 
random variable, even though our parameter is the string. 
This probability can be estimated by df2(s)/df(s), where 
df2(s) is the number of documents which contain the string 
s two or more times. 
 
E{P(tf(D,s) ≥2) | tf(D,s) ≥1}}  
= E{P(tf(D,s) ≥2 & tf(D,s) ≥1)/ P(tf(D,s) ≥1)}   
= E{P(tf(D,s) ≥2)/P(tf(D,s) ≥1)} 
≅(df2(s)/N) / (df(s)/N) 
=df2(s)/df(s) 
 
Church pointed out that almost all English words show 
large adaptation. Takeda also verified this for Chinese and 
Japanese texts, and also reported that the adaptation of 
Japanese technical terms is large. We can imagine that 
even a rare multiword may have large adaptation. For 
example, although “MEMURA workshop” is a very rare 
multiword, if there are certain documents that discuss the 
workshop, we may expect “MEMURA workshop” to 
appear several times in those documents. This makes the 
adaptation of “MEMURA workshop” much larger than its 
df/N. Takeda (2001) also reported that the adaptation of 
string fragments of Japanese is very different from that of 
technical terms. We have verified that finding a shown in 
figure 1. We are motivated to use SVM to separate 
technical terms from string fragments because their region 
shows almost the same separation as that seen in figure 1. 
 

Adaptation of Multiword Substrings  
 Takada (2001) also includes figure 2, which shows the 
adaptation of a substring of the multiword “President 
Fujimori”, and pointed out that the first dropping point is 
on the boundary of this multiword. This implies that all 
substrings of the multiword may have an large adaptation. 
Takeda (2001) also noted the fact that the adaptation does 
not drop between “Fujimori” and “President”, where df/N 
will have a dropping point. In the figure, the third word 
from the right is the right term. The second word has an 

additional functional word, and the first one has an 
additional comma. Takeda (2001) claims that the 
adaptation has the information to distinguish the word 
boundary from the string fragment. 
 

Figure 2 : The adaptation ratio df2 /df1 drops rapidly on 
the first character after the word boundary. (Takeda, 2001) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Technical Term (df/N , +df/N) 
 
 
 
 
 
 
 
 
 
 
 
 
 

String Fragment (df/N , +df/N) 

Figure 3 : The points (df/N , +df/N ) of technical terms 
show the drop on the boundary, but the region is highly 

overlapped with that of string fragments. The same 
relation exists for (df/N , df+/N) 

Boundary Information by df/N 
Figure 2 suggests that all substrings of a multiword may 
have an large adaptation. This means that SVM cannot 
distinguish the substrings from the original multiword. To 
capture the boundary of a multiword, we first compute the 
+df(s) and df+(s), where the +df(s) is the number of 
documents that contain the preceding one character and s 
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together, the df+(s) is the number of documents that 
contain s and the following character together. 
 

 Figure 3 shows that the technical term show drops on 
the boundary and that since there are very few points of 
df(s)/N ≅ +df(s)/N, df(s)/N ≅ df+(s)/N for technical terms 
and many for string fragments, the region is greatly 
overlapped. This suggests that this feature may not be 
suitable for SVM. 
 

Boundary Information by df2(s)/df(s) 
 Then we compute the +df2(s)/+df(s) and df2

+(s)/df+(s) 
where the +df2(s) is the number of documents that contain 
the preceding one character and s together two or more 
times. The df2

+(s) is the number of documents that contain 
s and the following character together two or more times. 
 
 
 
 
 
 
 
 
 
 
 
 

Technical Term (df2/df, +df2/+df) 

 

 

 

 

 

 
String Fragments (df2/df, +df2/+df ) 

 

Figure 4 : The points (df2/df ,+df2/+df) of technical terms shows 
the drop on the boundary, with the region less overlapped with 
string fragment than Figure 3. The same relation is observed for 

the points (df2/df , df2
+/df+ ) 

 
Figure 4 also shows that there are very few points of 
df2(s)/df(s) ≅ +df2(s)/+df(s), df2(s)/df(s) ≅ df2

+(s)/df+(s) for 
technical terms, and many for string fragments. We can 
also observe that the overlapping region is narrower than 
that in figure 3. This suggest that +df2/+df and df2

+/df+ may 
be a better feature for SVM than +df/N and df+/N 

Experiment 
We have conducted our experiment using the NTCIR-1 
test collection (Kando, 2000), which consists of around 
330,000 samples of technical abstracts. This collection 
contains lists of technical terms as keywords provided by 

the corresponding authors, allowing us to compare the 
output of our method with those terms. In this test 
collection, about 83% of these terms are multiword 
technical terms. We have used 1000 abstracts for training 
and another 500 for testing. 
 
 The training set of SVM contains around 1000 randomly 
selected technical terms for the positive set and 3000 
fragments of randomly selected terms for the negative set. 
We had to select the terms because there were too many 
negative examples to learn, and such a huge number of 
samples makes learning difficult. Since this is a large 
number of terms for the simple implementation of SVM, 
we have chosen SVMlight (Joachims, 1999). This 
implementation is known to be capable of dealing with 
many thousands of support vectors efficiently. SVMlight is 
freely available for research purposes.  
 

The test set of SVM consists of another 1808 technical 
terms and another 666382 fragments. We have chosen 
technical terms from the author’s keywords in the 
abstracts, and have chosen fragments that appear in the 
corpus three or more times. We did not select multiwords 
from the technical terms for two reasons. The first is the 
difficulty of deciding whether or not a technical term in 
Japanese is a multiword. Had we chosen multiwords from 
the technical terms, the experimental results would have 
been influenced by subjective human judgment. The 
second is that we can treat both kinds of technical terms in 
the same manner in almost all applications. 

 
We are interested in what kind of feature set is suitable 

for this task. The first baseline is called DF-ONLY. The 
input features of SVM are df/N, df+/N and +df/N. Since 
many existing methods are based on the df/N, we have 
established it as the counter part of our system. The 
second baseline is DF2/DF-ONLY. This baseline is 
intended to compare the power of df/N and df2/df. Its 
input features are df2/df, df2

+/df+, and +df2/+df. The third 
system is one whose features are df/N and df2/df. Since 
this only contains information on the base form, we call it 
BASE-ONLY. This may not work well, however, since all 
the substrings of technical words are also classified as a 
positive set. Our system is called PROPOSED, and its 
input features include all the above. 

System Output# Correct# Recall Precision F-value

DF-ONLY 0 0 0.000 0.000 0.000

DF2-ONLY 18526 281 0.155 0.015 0.028

BASE-ONLY 1364 61 0.045 0.034 0.038

PROPOSED 59940 1561 0.863 0.026 0.051  

Table 1 : All proposed features contributing to the 
performance of the system 

 
 As we predicted, DF2-ONLY can output some correct 
terms, but DF-ONLY can do nothing. All strings are 
regarded as non-technical terms. PROPOSED is better 
than DF2-ONLY, although DF-ONLY is not working at 
all. This is due to the presence of a rather clear separation 
line, as seen in figure 1. 
 
 Even though SVM is known for its robust statistics, the 
performance of the system depends on the size of the 
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learning set. To verify that we have accumulated a 
sufficient number of samples, we examined the 
performance of our system, adjusting the size of the 
learning set when needed. Table 2 shows that the number 
of learning sets appears to be sufficient. 
 

Learning # Output# Correct# Recall Precision F-value

100 93071 1557 0.861 0.0167 0.0328
300 94111 1593 0.881 0.0169 0.0332
500 69768 1549 0.857 0.0222 0.0433

1000 59940 1561 0.863 0.0260 0.0505  

Table 2 : The size of the learning set is sufficient 
 

Discussion 
The results of our system are still not satisfactory in 

terms of precision. Many of the outputs are parts of 
technical terms. This suggests that the system needs 
further features that will detect about the boundary. We 
are estimating that the overlapped region in figure 3 is the 
cause of the problem 

 
Both Takeda (2001) and Fung (1998) attempted to 

detect technical terms for application to information 
retrieval. Compared to Fung’s, method, Takeda’s made 
very few assumptions, and our method makes even fewer 
assumptions than Takeda’s. Since in contrast to his, ours 
does not contain the threshold value for statistics, thus 
facilitating the replication of results, the precision of our 
method is worse, but the recall is better than that in 
Takeda’s method. It is difficult to say which is the better 
method since they behave so very differently. One of the 
key advantages of our method lies in the fact that the 
system does not need to be modified even when a new 
corpus becomes available. We may thus conclude that 
SVM and adaptation constitute a new baseline system to 
extract multiword keywords from Japanese texts. 
 
 

System Output# Correct# Recall Precision F-value

PROPOSED 59940 1561 0.863 0.026 0.051
TAKEDA 2887 199 0.178 0.069 0.100  

Table3 : Comparison with Takeda’s method 
 

Utiyama (2000) used the same corpus to recognize the 
terms, and employed authors’ technical terms as training 
data. His system arrives at the statistical distribution of 
terms and distinguishes terms from functional words, and 
differs further in using a segmented corpus. Apparently, 
selecting terms from a non-segmented text is more 
difficult than selecting them from a segmented word. 
Utiyama also reported that the F-value was more than 0.5, 
which is much higher than the one in our system. 
However, many of our errors arose from badly segmented 
words, and from the fact that a segmented corpus may not 
always be available. 

 
From another point of view, the task of detecting 

technical terms without using a dictionary has proven to 
be a difficult one, but adaptation has been able to provide 
informative statistics to make it easier.  
 
 

Conclusion 
This paper demonstrates that SVM and adaptation 

together have the ability to select technical term from 
Japanese documents without resort to any kind of 
dictionary. By choosing a baseline that does not use 
adaptation at all, adaptation proved to be an essential 
source of information. Unlike previous methods, this 
method contains no heuristics and is easy to replicate. 
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Abstract 
This paper proposes a new neural method based on the supervised Kohonen model for multiword expressions 
recognition. We use the Learning Vector Quantization algorithm to integrate several statistical estimators to solve this 
task. Lists of multiword expressions and non-multiword expressions have been generated using the WordNet lexical 
database to train and test the neural network. Then the neural net has been applied to recognise multiword expressions 
in a monolingual corpus to prove the effectives in an information retrieval system. The results show that the proposed 
method is an effective alternative to multiword expressions recognition task. 
 
 

Introduction 
In recent years, there has been growing interest in the 
Multiword Expressions (MWEs) recognition problem. 
MWEs are formed by various terms that usually express 
ideas and concepts that cannot be compressed into a 
single word. MWEs recognition is very important in 
many NLP tasks (e.g. machine translation, question-
answering, summarisation, etc.). Most real-world 
applications tend to ignore MWEs or address them simply 
by listing. However, it is clear that successful applications 
will need to be able to identify and treat them 
appropriately.  
Methods for automated MWEs recognition have 
traditionally been statistical (Hull, 1996), (Ballesteros, 
1998), and based on the co-occurrence of each particular 
pair of words in the corpus. Other works (Adriani, 1999) 
obtain the degree of similarity between terms using the 
co-occurrence factor, and the standard tf·idf term 
weighting formula. Recently, hybrid approaches 
incorporating linguistic information have been developed: 
Diana Maynard and Sophia Ananiadou (Maynard, 2000) 
make use of different types of contextual information: 
syntactic, semantic, terminological and statistical. 
However, different types of information must be managed 
by integrating them in a given way. The most 
straightforward is by using a linear function, although this 
may not be the best way to tackle the problem.  
We propose a well-known supervised neural network: 
Kohonen’s Learning Vector Quantization (LVQ) widely 
used for classification tasks (Kohonen, 1995). The LVQ 
algorithm will be used to integrate several statistical 
estimators in order to recognise MWEs. 
The rest of the paper is organized as follows. Firstly, we 
present an introduction to the state of the art, briefly 
showing some of the currently available methods used to 
MWEs recognition. These methods include different 
estimators that will be lately used in our approach. Then 
we describe the neural network architecture used and the 

LVQ algorithm. Next section shows the experiments 
carried out and the results obtained. Finally, we present 
some conclusions and lines of future work. 

Statistical Estimators 
Most works what attempt to solve the MWEs recognition 
problem use estimators to classify terms group. We have 
integrated several of these estimators, which obtain good 
results separately, in a neuronal network, trying select a 
set of heterogeneous and representative estimators.  
We have used the following estimators to train and test 
the neural net: 
 

1. Pearson’s χ2. A variant of  the χ2 statistic (Hull, 
1996). 

2. The mutual information ratio, or association 
ratio, µ (Johansson, 1996). 
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where Pi is the ocurrence probability of term i in 
the corpus. This probability is calculated as: 
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where: 
Fi = frecuency occurrence of term i. 
T = total number of term in the corpus. 
Therefore, the first formula can write as: 
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3. Measure the importance of co-occurrence of the 
elements in a set by the em metric (Ballesteros, 
1998). 
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where T is the total number of terms in the 
corpus. 

 
4. Dice similarity coefficient obtain the degree of 

similarity or association-relation between terms 
using a term association measure and the tf.idf 
weighting formula (Adriani, 1999).  
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where: 
w xi = the weight of term x in the document i. 
w yi = the weight of term y in document i. 
w’ xi = w xi if term y also occurs in document i, or 
0 otherwise. 
w’ yi = w yi if term x also occurs in document i, or 
0 otherwise. 
n = the number of documents in the collection. 

5. Dice similarity coefficient. A variant of the Dice 
estimator (Martinez, 2002). 
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Neural Network Architecture 
A Neural Network (NN) is a statistical information model 
that uses learning to adjust the model. NN has been 
successfully applied in many NLP tasks. In this paper, we 
propose the use of a competitive neural learning model 
based on the supervised Kohonen model (Kohonen, 1995) 
to accomplish the MWEs recognition task: the LVQ 
algorithm. 
MWEs detection is a categorization problem in which 
only two categories have to be managed: MWE and non-
MWE. In our experiment only multiwords with two 
relevant terms have been used. Consequently, classifying 
a pair of terms turns into a two step process: firstly, obtain 
the values yielded by the different estimators; secondly, 
use those values as inputs for the neural network, and 
obtain the class to which the pair of terms belongs. More 
precisely, we have used 5 estimators: Pearson’s χ2 (Hull, 

1996), the em metric (Ballesteros, 1998), the Dice 
similarity coefficient (Adriani, 1999), the mutual 
information ratio, µ (Johansson, 1996) and the Simpson 
coefficient. Figure 1 shows the network architecture. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 1: Neural network architecture for MWEs 
recognition task 

 
 
In order to train and test our neural network approach, a 
set of patterns composed of input-output pairs had to be 
generated, every pattern corresponding to a pair of terms. 
Thus, to carry out the experiments, we have generated 
two lists of samples: One list contains vectors with values 
for the considered estimators for pairs of terms that are 
MWEs and second list contains vectors with values for 
the considered estimators for pairs of terms that are non-
MWEs. Each vector is labelled with the class to which it 
belongs (class 1 for the vectors that belong to the MWEs 
class and class 0 for the vectors that belong to the non-
MWEs class).  
We have used the CLEF1 2001 collection data in order to 
generate both samples lists. The values for MWEs were 
obtained by applying the considered estimators to pairs of 
terms present in the corpus that are MWEs, and labelling 
the output with the class 1. We consider that a pair of 
terms is a MWEs if it appears in WordNet (Miller, 1995). 
WordNet is a lexical database where MWEs can be found. 
However, not all the pairs of terms said to be MWEs 
really were. For this reason, each MWE returned by 
WordNet was checked against in the machine readable 
dictionary Encarta2 to remove pairs of terms which were 
not real MWEs, even though they appeared together very 
frequently. 
A Non-MWE list was also taken from the corpus used in 
CLEF 2000. Pairs of terms were taken from this corpus 
and then searched in WordNet, checking that they did not 
appear in it. If they did not appear, they were once more 

                                                           
1 The Cross Language Evaluation Forum (CLEF) is an 
annual activity of European ambit, held since 2000 and 
coordinated by DELOS Network of Excellence for Digital 
Libraries conferences, in collaboration with the NIST and 
the TREC. CLEF aims to promote research and 
development in CLIR. For more information, see: 
http://www.clef-campaign.org. 
2 Encarta is a machine readable dictionary available at 
http://www.encarta.com. 

Class 0 
(Non-
MWE)

Class 1 
(MWE) 

χ2 µ em Dice Simpson
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checked against the Encarta dictionary to assure they were 
not MWEs. The output values for non- MWEs were 
labelled with the 0 class. 

The LVQ Algorithm 
To train and test the neural network we have used the 
supervised Kohonen model: the LVQ algorithm 
(Kohonen, 1995). This learning algorithm is a 
classification method based on neural competitive 
learning, which permits the definition of a group of 
categories in the space of input data by a reinforced 
learning. LVQ uses supervised learning to define class 
regions in the input data space. To this end, a subset of 
similarly labelled codebook vectors is placed into each 
class region.  
Given a sequence of input data, an initial group of 
reference vectors wk (codebook) is selected. In each 
iteration, a input vector xi is selected and the vectors W 
are updated, so that they fit  xi in a better way. The LVQ 
algorithm works as follows: 
For each class, k, a weight vector wk is associated. In each 
repetition, the algorithm selects an input vector, xi , and 
compares it with every weight vector, wk, using the 
euclidean distance ||xi-wk||, so that the winner will be the 
weight vector wc nearest to xi, being c its index: 

{ }kik
wxcwix −=− min  

i.e., 
kik wxc −= minarg  

The classes compete between themselves in order to find 
the most similar to the input vector, so that the winner is 
the one with shorter Euclidean distance with regard to the 
input vector. Only the winner class will modify its 
weights using a reinforced learning algorithm, either 
positive or negative, depending on the classification being 
correct or not. Thus, if the winner class and the input 
vector have the same class (the classification has been 
correct), it will increase the weights, coming slightly 
closer to the input vector. On the contrary, if the winner 
class is different from the input vector class (the 
classification has not been correct), it will decrease the 
weights, moving slightly further from the input vector. 
Let xi(t) be an input vector at time t, and wk(t) represents 
the weight vector for the class k at time t. The following 
equation defines the basic learning process for the LVQ 
algorithm. [ ])()()()()1( tcwtixtstcwtcw −⋅⋅+=+ α  

where s = 0, if k≠c; s = 1, if xi(t) and wc(t) belong to the 
same class; and s = -1, if they do not, and where α(t) is 
the learning rate, being 0<α(t)<1, a monotonically 
decreasing function of time. In our experiments we have 
used α(t) = 0.3. 
Once the training phase has finished, the production phase 
starts. Again, each testing vector is presented to the 
network input. The original LVQ algorithm must find the 
winner class calculating the Euclidean distances between 
the codebook vectors and input vectors. The winner class 
will be the codebook vectors with the shortest distance 
with regard the input vector.  

In order to improve the network precision, we have used a 
modified version of the LVQ algorithm during the 
evaluation phase. An input vector is presented to the 
neural network but the output network is the distance to 
the codebook vector belonging to the MWEs class (class 
labelled with 1). This value represents a confidence score 
assigned by the neural network to the pair of terms 
considered is a MWE. Thus, during the evaluation the 
non-MWE class is no considered. The network output is 
normalized and finally is inverted by subtracting 1. Thus, 
value near to 1 indicates a high confidence in the input 
vector represents a MWE. 

Evaluation and Results 
As we have commented previously, the experiments have 
been carried out for the English CLEF 2001 collection 
data. The collection is composed by 113,005 news from 
the Los Angeles Time newspaper edition 1994, 50 queries 
and their relevance assessments.  
The corpus has been pre-processed as usual in 
information retrieval systems (Frakes and Baeza-Yates, 
1992), using stopword lists and stemming algorithms 
available via the Web3. Stopword lists have been 
increased with terms such as “retrieval”, “documents”, 
“relevant”, etc.  
Next step consists of generating the two lists of samples 
from corpus. Once both MWEs and non-MWEs lists had 
been created, the estimators were applied to them, 
obtaining the file with the patterns to be used with the 
supervised network. This file was split to use 50% of the 
patterns to train the neural network and the remaining 
50% to test it. A total of 1,000 training vectors and 1,000 
test vectors were generated. 
To test the neural network we have modified the LVQ 
algorithm. The original LVQ must find the winner class 
by calculating the Euclidean distances between the 
codebook vectors and input vectors. The winner class will 
be the codebook vectors with the shortest distance with 
regard to the input vector.  
The experiments were carried out using the 
implementation described in LVQ_PAK documentation 
(Kohonen, 1991) with default parameters. Thus, every 
experiment used two codebook vectors (one per class) and 
the learning rate started at 0.3. 
The experiments were carried out with the original LVQ 
and with the modified proposed version for 4 confidence 
values (0.95, 0.90, 0.80, 0.70). The original LVQ network 
recognises correctly 684 MWE over 1000 test vectors. 
Therefore, the original LVQ obtain a 68.40% of precision. 
The results of the LVQ modified are more hopeful. Table 
1 shows the precision obtained when we consider only the 
test vectors for which the network output overcomes the 
confidence values. With a confidence value of 0.95 the 
precision obtained is a 100%. In proportion to the 
threshold is smaller, the precision also decrease. For 0.90 
of threshold the precision is 94.84%, only 74 good MWEs 
are recognised. With confidences values of 0.80 and 0.70 
the precisions are 88.59% and 81.10% respectively. The 
precision obtained increase when the confidence value 
increase. 
 

                                                           
3 http://www.unine.ch/info/clef 
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 Patterns 

considered 
Successfully 

MWE detected 
LVQ-0.95  40 40 
LVQ-0.90  78 74 
LVQ-0.80  184 163 
LVQ-0.70  291 236 

Table 1: Precision obtained with several confidence 
values 

 
The results obtained are very good separately, which 
demonstrates that LVQ network works good in the MWEs 
recognition task with the sample data available. In order 
to prove the effectives in an information retrieval system, 
we have indexed the CLEF 2001 English collection. 
Once the collection has been pre-processed and the 
MWEs have been recognised, we indexed the corpus with 
the Zprise information retrieval system4, using the OKAPI 
probabilistic model (Robertson, Walker and Beaulieu, 
2000). We have generated 6 different indexes  
 

• Index without MWEs (baseline). We use the 
word as indexation unit. 

• Index with MWEs recognised by the original 
LVQ network (binary output). We use words and 
MWEs recognised by the neural network as 
indexation unit. 

• Index with MWEs recognised by the modified 
LVQ evaluation algorithm with a confidence 
value  of 0.95. The indexation units are words 
and MWEs recognised by the neural network 
using the modified LVQ algorithm. In this case, 
MWEs are considered only those that overcome 
the confidence value of 0.95.  

• Index with MWEs recognised by the modified 
LVQ evaluation algorithm with a confidence 
value  of 0.90. The indexation units are words 
and MWEs recognised by the neural network 
using the modified LVQ algorithm. In this case, 
MWEs are considered only those that overcome 
the confidence value of 0.90. 

• Index with MWEs recognised by the modified 
LVQ evaluation algorithm with a confidence 
value  of 0.80. The indexation units are words 
and MWEs recognised by the neural network 
using the modified LVQ algorithm. In this case, 
MWEs are considered only those that overcome 
the confidence value of 0.80. 

• Index with MWEs recognised by the modified 
LVQ evaluation algorithm with a confidence 
value of 0.70. The indexation units are words 
and MWEs recognised by the neural network 
using the modified LVQ algorithm. In this case, 
MWEs are considered only those that overcome 
the confidence value of 0.70. 

 
The experiments have been carried out by using about 
105.000 news published in Los Angeles Times  for 1994.  
In order to evaluate such experiments, we have used 50 
                                                           
4 Zprise is an information retrieval system developed by 
Darrin Dimmick (NIST). Available on demand at 
http://www.itl.nist.gov/iaui/894.02/works/papers/zp2/zp2.
html 

queries and their relevance assessments from CLEF 2001 
workshop. Only Title and Description sections have been 
taking into account. Finally, we have built six indices 
according to the patterns considered (without MWEs, 
LVQ,  LVQ-0.95,   LVQ-0.90, LVQ-0.80 and LVQ-070). 
Table 2 shows the precision obtained with the 6 indexes 
considered. 
 

 Precision 
Without MWEs   0.458  
LVQ   0.424  
LVQ-0.95   0.509  
LVQ-0.90   0.471  
LVQ-0.80   0.461  
LVQ-0.70   0.427  

Table 2. Precision obtained with MWEs recognition in an 
information retrieval system 

 
The obtained results aim MWEs are useful in the 
information retrieval task only when precision is very 
high. The reason: whether erroneous MWEs are labelled 
then the precision achieved by the information retrieval 
system precision falls off dramatically. Thus, high 
precision is preferable even some real multiword 
expressions are not taking into account by the information 
retrieval system. 

Conclusions and Future Works 
We have proposed a new neural approach to MWEs 
recognition. The neural network uses the Kohonen LVQ 
algorithm. To train and test the network we have 
generated two lists of sample of MWEs and non-MWEs. 
When we evaluate the neural networks separately, the 
results obtained are very promising. But it does not 
happen the same way when the network is applied to 
MWEs recognition in an information retrieval system 
since the performance is seriously damaged by erroneous 
MWEs.   
We could apply the proposed MWEs recognition method 
to improve precision in other natural language processing 
tasks such as summarization system, machine translation 
or question-answering. These tasks need a high precision 
in the MWEs recognition. 
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Abstract 
This paper describes a parallel algorithm to compute positional ngram statistics based on masks and suffix arrays. Positional ngrams 
are ordered sequences of words that represent continuous or discontinuous substrings of a corpus. In particular, the positional ngram 
model has shown successful results for the extraction of discontinuous collocations from large corpora. However, its computation is 
heavy. For instance, 4.299.742 positional ngrams (n=1..7) can be generated from a 100.000-word size corpus in a seven-word size 
window context. In comparison, only 700.000 ngrams would be computed for the classical ngram model. It is clear that huge efforts 
need to be made to process positional ngram statistics in reasonable time and space. For that purpose, we propose a parallel algorithm 
based on the concept of Parallel Sorting by Regular Sampling (PSRS) described in (Shi and Schaeffer, 1992). 
 

Introduction 
In the context of word associations, multiword units 
(sequences of words that co-occur more often than 
expected by chance) are frequently used in everyday 
language, usually to precisely express ideas and concepts 
that cannot be compressed into a single word. For 
instance, [Bill of Rights], [swimming pool], [as well as], [in 
order to], [to comply with] or [to put forward] are multiword 
units. As a consequence, their identification is a crucial 
issue for applications that require a certain degree of 
semantic processing (e.g. machine translation, information 
extraction, information retrieval or summarization). In 
order to identify and extract multiword units, (Dias, 2002) 
has proposed a statistically-based architecture called 
SENTA (Software for the Extraction of N-ary Textual 
Associations) that retrieves, from text corpora, relevant 
contiguous and non-contiguous sequences of words. 
 
However, the computation of SENTA is heavy. As it is 
based on positional ngrams (ordered sequences of words 
that represent continuous or discontinuous substrings of a 
corpus computed in a (2.F+1)-word size window context), 
the number of generated substrings rapidly explodes and 
reaches astronomic figures. (Dias, 2002) shows that ∆ 
positional ngrams can be computed in an N-size corpus for 
a (2.F+1)-size window context (See Equation 1).  
 

( ) 







++×−=∆ ∑ ∑∑

+

= = =

−−−
−

1.2

3 1 1

11
11.2

F

k

F

i

F

j

ik
j

i
j CCFFN  

 
Equation 1: Number of positional ngrams 

 
So, for instance, 4.299.742 positional ngrams would be 
generated from a 100.000-word size corpus in a seven-
word size window context. It is clear that huge efforts 
need to be made to process positional ngram statistics in 
reasonable time to tackle real world applications that deal 
with Gigabytes of data. For that purpose, (Gil and Dias, 
2003) have proposed an implementation that computes 
positional ngrams statistics in O(h(F) N log N)1 time 
complexity based on the Virtual Corpus approach 

                                                      
1 N is the size of the corpus and F is the window size. 

introduced by (Kit and Wilks., 1998). In particular, they 
apply a suffix-array-like method, coupled to the multikey 
quicksort algorithm (Bentley and Sedgewick, 1997) to 
compute positional ngram frequencies. Although their 
C++ implementation, realized over the CETEMPúblico2 
corpus, has shown satisfactory results by taking 8.34 
minutes to compute the positional ngram frequencies for a 
1.092.7233-word corpus on an Intel Pentium III 900 MHz 
Personal Computer for a seven-word size window context, 
improvements still need to be made.  
 
So, in this paper, we propose a parallel multikey quicksort 
algorithm that allows faster computation of positional 
ngrams frequencies taking into account the processing 
power of different central units spread over a network. In 
particular, we propose a parallel algorithm based on 
Parallel Sorting by Regular Sampling (PSRS) as described 
in (Shi and Schaeffer, 1992) that apply their method to 
randomly generated 32 bit integers and use the classical 
quicksort (Hoare, 1962) as the sequential sorting 
algorithm. For a variety of shared and distributed memory 
architectures, their results display better than half linear 
speedups. In the following sections, we will present our 
PSRS algorithm that sorts positional ngrams using the 
multikey quicksort as the sorting algorithm.   
 
This article is divided into four sections: (1) we explain 
the basic principles of positional ngrams and the mask 
representation to build the Virtual Corpus; (2) we present 
the suffix-array-based data structure that allows counting 
occurrences of positional ngrams; (3) we explain our 
PSRS algorithm; (4) we present some results. 

Positional Ngrams 

Principles  
The original idea of the positional ngram model comes 
from the lexicographic evidence that most lexical relations 
associate words separated by at most five other words 
(Sinclair, 1974). As a consequence, lexical relations such 
as collocations can be continuous or discontinuous 

                                                      
2 The CETEMPúblico is a 180 million-word corpus of 
Portuguese. It can be obtained at http://www.ldc.upenn.edu/. 
3 This represents 46.986.831 positional ngrams. 
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sequences of words in a context of at most eleven words 
(i.e. 5 words to the left of a pivot word, 5 words to the 
right of the same pivot word and the pivot word itself). In 
general terms, a collocation can be defined as a specific4 
continuous or discontinuous sequence of words in a 
(2.F+1)-word size window context (i.e. F words to the left 
of a pivot word, F words to the right of the same pivot 
word and the pivot word itself). This situation is 
illustrated in Figure 1 for the collocation Ngram Statistics 
that fits in the window context. 
 
 
 
 
 

 
Figure 1: 2.F+1-word size window context 

 
Thus, as computation is involved, we need to process all 
possible substrings (continuous or discontinuous) that fit 
inside the window context and contain the pivot word. 
Any of these substrings is called a positional ngram. For 
instance, [Ngram Statistics] is a positional ngram as is the 
discontinuous sequence [Ngram ___ from] where the gap 
represented by the underline stands for any word 
occurring between Ngram and from (in this case, 
Statistics). More examples are given in Table 1. 
 

Positional 2grams Positional 3grams 
[Ngram Statistics] [Ngram Statistics from] 
[Ngram ___ from] [Ngram Statistics ___ Large] 

[Ngram ___ ___ Large] [Ngram ___ from Large] 
[to ___ Ngram] [to ___ Ngram ___ from] 

 
Table 1: Possible positional ngrams 
 
In order to compute all the positional ngrams of a corpus, 
we need to take into account all the words as possible 
pivot words. A simple way would be to shift the two-
window context to the right so that each word would 
sequentially be processed. However, this would inevitably 
lead to duplications of positional ngrams. Instead, we 
propose a one-window context that shifts to the right 
along the corpus as illustrated in Figure 2. It is clear that 
the size of the new window should be 2.F+1. 
 
 

A   B   C   D   E   F   G   H   I    J    K   L   M   N   ....  X   Y  Z ....

A   B   C   D   E   F   G   H   I    J    K   L   M   N   ....  X   Y  Z ....

A   B   C   D   E   F   G   H   I    J    K   L   M   N   ....  X   Y  Z ....

A   B   C   D   E   F   G   H   I    J    K   L   M   N   ....  X   Y  Z ....

A   B   C   D   E   F   G   H   I    J    K   L   M   N   ....  X   Y  Z ....

....

....  
Figure 2: One-window context for F=3 

 
This new representation implies new restrictions. While 
all combinations of words were valid positional ngrams in 

                                                      
4 As specific, we intend a sequence that fits the definition of 
collocation given by (Dias, 2002): “A collocation is a recurrent 
sequence of words that co-occur together more than expected by 
chance in a given domain”. 

the two-window context, this is not true for a one-window 
context. Indeed, two restrictions must be observed. 
 
Restriction 1: Any substring, in order to be valid, must 
contain the first word of the window context.  
 
Restriction 2: For any continuous or discontinuous 
substring in the window context, by shifting the substring 
from left to right, excluding gaps and words on the right 
and inserting gaps on the left, so that there always exists a 
word in the central position cpos (Equation 2) of the 
window, there should be at least one shift that contains all 
the words of the substring in the context window. 
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Equation 2: Central position of the window 
 
For example, from the first case of Figure 2, the 
discontinuous sequence [A B _ _ E _ G] is not a positional 
ngram although it is a possible substring as it does not 
follow the second restriction. Indeed, whenever we try to 
align the sequence to the central position, at least one 
word is lost as shown in Table 2: 
 

Possible 
shift 

Central 
word 

Disappearing 
words 

[_ _ A B _ _ E] B G 
[_ _ _ A B _ _] A E, G 

 
Table 2: Shifting Substrings 

 
In contrast, the sequence [A _ C _ E F _] is a positional 
ngram as the shift [_ A _ C _ E F], with C in the central 
position, includes all the words of the substring.  
 
Basically, the first restriction aims at avoiding 
duplications and the second restriction simply guarantees 
that no substring that would not be computed in a two-
window context is processed. 

Virtual Representation 
The representation of positional ngrams is an essential 
step towards efficient computation. For that purpose, we 
propose a reference representation rather than an explicit 
structure of each positional ngram. The idea is to adapt the 
suffix representation (Manber and Myers, 1990) to the 
positional ngram case. 
 
Following the suffix representation, any continuous 
corpus substring is virtually represented by a single 
position of the corpus as illustrated in Figure 3. In fact, the 
substring is the sequence of words that goes from the 
word referred by the position till the end of the corpus. 
 
Unfortunately, the suffix representation can not directly be 
extended to the specific case of positional ngrams. One 
main reason aims at this situation: a positional ngram may 
represent a discontinuous sequence of words. In order to 
overcome this situation, we propose a representation of 
positional ngrams based on masks. 
 

Virtual   Approach to Deriving   Ngram Statistics from Large   Scale 

pivot 

F=3 F=3 
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Figure 3: Suffix Representation5 
 
As we saw in the previous section, the computation of all 
the positional ngrams is a repetitive process. For each 
word in the corpus, there exists an algorithmic pattern that 
identifies all the possible positional ngrams in a 2.F+1-
word size window context. So, what we need is a way to 
represent this pattern in an elegant and efficient way. One 
way is to use a set of masks that identify all the valid 
sequences of words in a given window context. Thus, each 
mask is nothing more than a sequence of 1 and 0 (where 1 
stands for a word and 0 for a gap) that represents a 
specific positional ngram in the window context. An 
example is illustrated in Figure 4. 
 
 
 
 
 
 

 
 

Figure 4: Masks 
 

Computing all the masks is an easy and quick process. In 
our implementation, the generation of masks is done 
recursively and is negligible in terms of space and time. In 
Table 3, we give the number of masks h(F) for different 
values of F. 
 

F h(F) 
1 4 
2 11 
3 43 
4 171 
5 683 

 
Table 3: Number of masks 
 
In order to identify each mask and to prepare the reference 
representation of positional ngrams, an array of masks is 
built as in Figure 5. 

 
 
 
 
 
 
 
 

 
Figure 5: Masks Array 

                                                      
5 The $ symbol stands for the end of the corpus.  

From these structures, the virtual representation of any 
positional ngram is straightforward. Indeed, any positional 
ngram can be identified by a position in the corpus and a 
given mask. Taking into account that a corpus is a set of 
documents, any positional ngram can be represented by 
the tuple {{iddoc, posdoc}, idmask} where iddoc stands for the 
document id of the corpus, posdoc for a given position in 
the document and idmask for a specific mask. An example 
is illustrated in Figure 6. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 6: Virtual Representation 
 
As we will see in the following section, this reference 
representation will allow us to follow the Virtual Corpus 
approach introduced by (Kit and Wilks, 1998) to compute 
ngram frequencies. 

Computing Frequencies 
 
With the Virtual Corpus approach, counting continuous 
substrings can easily and efficiently be achieved. After 
sorting the suffix-array data structure presented in Figure 
3, the count of an ngram consisting of any n words in the 
corpus is simply the count of the number of adjacent 
indices that take the n words as prefix. We illustrate the 
Virtual Corpus approach in Figure 7. 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 7: Virtual Corpus Approach 
 
Counting positional ngrams can be computed exactly in 
the same way. The suffix-array structure is sorted using 
lexicographic ordering for each mask in the array of 
masks.  
 
After sorting, the count of a positional ngram in the corpus 
is simply the count of adjacent indices that stand for the 
same sequence. We illustrate the Virtual Corpus approach 
for positional ngrams in Figure 8. 
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Figure 8: Virtual Corpus for positional ngrams 

 
The efficiency of the counting mainly resides in the use of 
an adapted sort algorithm. For the specific case of 
positional ngrams, we have chosen to implement the 
multikey quicksort algorithm (Bentley and Sedgewick, 
1997) that can be seen as a mixture of the Ternary-Split 
Quicksort (Bentley and McIlroy, 1993) and the MSD6 
radixsort (Anderson and Nilsson, 1998). Different reasons 
have lead to use the Multikey Quicksort algorithm. First, it 
performs independently from the vocabulary size. Second, 
it shows O(N log N) time complexity. Third, (Anderson 
and Nilsson, 1998) show that it performs better than the 
MSD radixsort and proves comparable results to their 
newly introduced forward radixsort. 
 
The algorithm processes as follows: (1) the array of string 
is partitioned into three parts based on the first symbol of 
each string. In order to process the split, a pivot element is 
chosen just as in the classical quicksort giving rise to: one 
part with elements smaller than the pivot, one part with 
elements equal to the pivot and one part with elements 
larger than the pivot; (2) the smaller and the larger parts 
are recursively processed in exactly the same manner as 
the whole array; (3) the equal part is also sorted 
recursively but with partitioning starting from the second 
symbol of each string; (4) the process goes on recursively: 
each time an equal part is being processed, the considered 
position in each string is moved forward by one symbol.  
 
As we already said, the efficiency of the counting mainly 
resides in the use of an adapted sort algorithm. Moreover, 
the sorting phase is the most time consuming of our global 
architecture that extracts collocations. So, we define a 
Parallel Sorting by Regular Sampling Multikey Quicksort 
algorithm in order to fasten this stage. 

PSRS Multikey Quicksort Algorithm 
 
The Parallel Algorithm we propose is based on Parallel 
Sorting by Regular Sampling (PSRS) as described in (Shi 
and Schaeffer, 1992). In particular, they apply their 

                                                      
6 MSD stands for Most Significant Digit. 

method to randomly generated 32 bit integers and use the 
classical quicksort (Hoare, 1962) as the sequential sorting 
algorithm. For a variety of shared and distributed memory 
architectures, their results display better than half linear 
speedups. Our PSRS algorithm sorts positional ngrams 
using the multikey quicksort as the sorting algorithm. Our 
algorithm can be divided into three distinct phases: a 
parallel multikey quicksort phase; reorganization by 
global pivots phase; a merge sort phase.  
 
The parallel multikey quicksort phase consists in 
partitioning the original data (i.e. the corpus) into p 
contiguous lists, one per node7, and uses the multikey 
quicksort algorithm to sort each local contiguous list. In 
fact, in step 1, each node reads the entire data file to one 
suffix array structure into his local memory as in figure 98. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 9: Virtual Corpus in memory 

 
In step 2, each of the p nodes determines a contiguous list 
of size w = N/p from the original data where N is the size 
of the corpus. In fact, each node makes a copy of size w of 
the suffix-array. We shall call this vector B which will be 
sorted. This situation can be seen in Figure 10. 
 

 
Figure 10: Suffix-array division 

 
In step 3, each node sorts its local contiguous list using the 
multikey quicksort algorithm which implements the 
“median of three modification method to improve the 
average performance of the algorithm while making the 
worst case unlikely to occur in practice” (Lan and 
Mohamed, 1992). After this phase, all local contiguous 
                                                      
7 A node represents a processing unit. 
8 The reader will note that after each token we insert its position 
in the file. 
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lists are sorted following a given mask as shown in Figure 
11.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 11: Sorted Suffix-array 

 
The Vector C is constructed as, when we wish to 
communicate information with another node, we cannot 
exchange pointer information as they may not be the same 
on different nodes, but we can exchange information 
relative to the original positions of the tokens. 
 
The reorganization by global pivots phase consists in 
(1) determining the (p-1) local pivots on each node, (2) 
determining the global pivots from the p*(p-1) local 
pivots and (3) reorganizing the local list in terms of the 
global pivots. The idea is to join and sort all local sorted 
contiguous lists in a parallel way with good load 
balancing. For that purpose, we use a Regular Sampling 
approach suggested by (Shi and Schaeffer, 1992) 
described as follows.  
 
Each node determines (p-1) local pivots from its sorted 
list. The node 0 gathers the p*(p-1) local pivots (first 
inter-node communication). The node 0 calculates the 
global pivots from the list of all local pivots and 
broadcasts the global pivots to all nodes (second inter-
node communication). This situation is shown in Figure 
12. 
 

 
 

Figure 12: Reorganization for three nodes 
 

Finally, the merge sort phase consists of creating on 
each node one final locally sorted list using a merge sort 
list. For that purpose, each node splits its sorted list into p 
sorted sub-lists based on the values of the global pivots. 
 
Then, each node keeps one sorted sub-list and 
communicates the others to the appropriate nodes. Due to 
the fact that the sub-lists are of unequal size, we must first 
communicate the number of data items each node must 
send/receive from each other node before performing the 
actual data transfers (note that only vectors of integers will 
be passed i.e. integers representing the original token 
positions).  
 
In order to reduce the communication costs and network 
traffic we use a customized collective communication 
(ALL-to-ALL) based on phases in which only pairs of 
processors communicate as shown in figure 13. 
 

 
 

Figure 13: Collective communication 
 
This step is then followed by a merge of the received 
vector9. In fact, each node merges the p sorted sub-lists 
into one local sorted list using the merge sort algorithm 
and then calculates the frequency of each ngram. Then, 
each node communicates the position of first instance of 
each n-grams plus its frequency to node zero where the 
matrix of all ngrams frequency is constructed. 
 
The global architecture of our PSRS can be summarized 
as the following steps: 
 

1. The original data file (size N) is copied to all p 
processor nodes of the cluster. 

2. Each of the p nodes reads the data file to its local 
memory and builds the suffix-array.  

3. Each of p nodes determines a contiguous list of 
size w = N/p from the original data. 

4. Each node creates the valid masks. 
5. For each valid mask: 

a. Each node sorts the contiguous list 
using the multikey quicksort algorithm 
following the current mask. 

b. Each node determines (p-1) local pivots 
from its sorted list. 

c. The node 0 gathers all local pivots (first 
inter-node communication). 

d. The node 0 calculates the global pivots 
from the list of all local pivots. 

e. Node 0 broadcasts the global pivots to 
all nodes (second inter-node 
communication). 

f. Each node splits its sorted contiguous 
list into p sorted sub-lists based on the 
values of the global pivots. 

                                                      
9 In particular, we can overlap communication and merge 
routines using the non-blocking send/receive routines of the MPI 
standard. 
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g. Each node keeps one sorted sub-list and 
passes the others to the appropriate 
nodes (third inter-node communication 
and the most expensive). 

h. Each node merges the p sorted sub-lists 
into one local sorted list using the merge 
sort algorithm. 

i. Each node communicates the position of 
first instance of each ngram plus its 
frequency to node zero. 

6. The node 0 constructs the matrix of all ngrams 
frequency. 

Results 
 
The algorithm has been implemented using the single 
program multiple data (SPMD) programming 
methodology using the ANSI C programming together 
with the freely available MPICH implementation of the 
Message Passing Interface (MPI) library. A network of up 
to ten identical workstations was used. Each workstation 
consists of a single Pentium IV 2.4 GHZ processor with 
512 Mb of RAM running the Windows XP operating 
system and they are connected via a 100 Mb Ethernet 
network. 
 
We have conducted a series of experiments for various 
different sized sub-corpora of the CETEMPúblico 
Portuguese corpus using a seven-word size window 
context, for which we present two examples. The details 
of the two chosen test cases are given in Table 3. 
 

Corpus Case A Case B 
Size in Mb 6,829 20,477 
# of words 1.000.000 3.000.000 
#of ngrams 42.999.742 128.999.742 

 
Table 3: Sub-Corpora Test Cases 
 
The experimental results based on the two test cases are 
then presented in Tables 4 and 5.  
 

Processors Time/Minutes 
1 3,18 

Speedup 
 

Efficiency 
 

2 2,11 1,51 0,75 
3 1,79 1,78 0,59 
4 1,46 2,17 0,54 
5 1,32 2,42 0,48 
6 1,18 2,69 0,45 
7 1,15 2,77 0,40 
8 1,03 3,10 0,39 
9 1,00 3,16 0,35 

10 0,98 3,24 0,32 
 
Table 4: Results for the Sub-Corpora, Case A 
 
In (Gil and Dias, 2002) the sequential algorithm took 8.34 
minutes to sort and calculate the ngram frequencies of a 
1.092.723-word corpus on an Intel Pentium III 900 MHz. 
Our result for a single processor for a 1.000.000 word 
corpus is 3.18 minutes which is to be expected as the 
performance of our single processor is approximately 2-3 

times faster that the one used in (Gil and Dias, 2002). For 
Case B, a corpora three times that of case A, the time of 
11,71 minutes is obtained for a single processor, in other 
words bearing out the O(h(F) N log N) complexity of the 
sequential algorithm. 
 

Processors Time/Minutes 
1 11,71 

Speedup 
 

Efficiency 
 

2 7,64 1,53 0,77 
3 5,79 2,02 0,67 
4 4,79 2,44 0,61 
5 4,22 2,78 0,56 
6 3,91 3,00 0,50 
7 3,68 3,19 0,46 
8 3,50 3,34 0,42 
9 3,34 3,50 0,39 

10 3,27 3,58 0,36 
 
Table 3: Results for the Sub-Corpora, Case B 
 
The performance of the parallel algorithm is similar in 
both cases, slightly better in the larger case B as would be 
expected. Initially with a small number of processors 
reasonable speedups and efficiency are obtained but this 
parallel performance deteriorates with the augmenting 
number of processors due to high levels of 
communications. However the overall time taken for the 
sort is still a monotonically decreasing function when 
using up to 10 processors (See Figure 14 and Figure 15). 
 

0

0,2

0,4

0,6

0,8

1

1,2

1 2 3 4 5 6 7 8 9 10 11
processors

(n
or

m
al

iz
ed

) t
im

e

Case A

Case B

  
Figure 14: Running Time vs number of Processors 

 

0,00

1,00

2,00

3,00

4,00

1 2 3 4 5 6 7 8 9 10

processors

sp
ee

du
p

0,00

0,20

0,40

0,60

0,80

1,00

ef
ic

ie
nc

y

Speedup
Efficiency

  
Figure 15: Speedup and Efficiency for Case B 

-22-



Conclusions and Future Work 
 
Mining multiword units in real life situation means the 
ability to deal with Gigabytes of data in a useful time 
frame necessitating the use of high performance 
computing architectures. Low cost network-based 
distributed and parallel architectures are a useful 
alternative for high cost proprietary machines (Kacsuk and 
Vajda, 1999) and offer a flexible, scaleable and readily 
available solution. In this paper, we have proposed a 
PSRS multikey quicksort algorithm to compute positional 
ngram frequencies which will be integrated to the SENTA 
system developed by (Dias, 2002). However, speedups 
can surely be achieved adapting to our current parallel 
architecture the work of (Yamamoto and Church, 2000) to 
positional ngrams that propose to compute categories of 
contiguous substrings instead of the substrings 
themselves. 
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Abstract
This paper proposes a dictionary-based method of recognizing and paraphrasing Japanese periphrastic and overlapping verb phrases.
Periphrastic VP is a phrase in which the verb or the noun functions as an adverb, voice or aspect. Overlapping VP is a phrase in which
there is an overlapping meaning between the verb and the noun. The result of our experiment showed that the method can deal with those
two phrases effectively.

1. Introduction

A verb and a noun can form VP and usually convey the
meaning in a compositional way. That is, the meaning of
such VP is equal to the combination of the meaning of the
verb and the noun. The verb represents an action and the
noun represents its agent, object, etc.

However, VPs like (1a) and (2a) are different from such
ordinary ones.

(1) a. to excel at teaching
b. to teach very well

(2) a. to ask a question
b. to ask something
c. to question

In (1a), it is not the verb ‘excel’ but the noun ‘teaching’
that represents an action, and the verb ‘excel’ functions
as an adverb. Such VP is calledperiphrastic verb phrase.
The meaning of (2a) is not equal to the combination of the
meanings of the verb ‘ask’ and the noun ‘question’, because
there is an overlapping meaning between them. Such VP is
calledoverlapping verb phrase.

Periphrastic and overlapping VP can be paraphrased
into more simplifeid expressions. For example, (1a) can
be paraphrased into (1b), in which the verb ‘teach’ repre-
sents an action. (2a) can be paraphrased into (2b) or (2c),
in which there is no overlapping meaning between the verb
and the noun.

Paraphrasing periphrastic and overlapping VP is an im-
portant task, because of the following two reasons. Firstly,
they can be paraphrased into more simplified expressions,
and the simplification of text is useful for aphasic read-
ers or deaf people etc (Carroll et al., 1999; Canning and
Taito, 1998; Inui et al., 2003). Secondly, the identificaion
of paraphrases enhances several NLP applications, such as
information retrieval,question-answering, information ex-
traction, and multi-documents summarization. In IR and
QA, the precise treatment of paraphrases can raise the re-
call while keeping the precision (Jacquemin et al., 1997;
Jacquemin, 1999; Lin and Pantel, 2001; Duclaye et al.,
2003). In IE, a system uses patterns to capture events,
and it is important to connect patterns that convey the al-
most same meaning (Shinyama et al., 2002; Shinyama
and Sekine, 2003). In multi-documents summarization, it

can avoid producing a repetitive summary (Barzilay et al.,
1999).

However, paraphrasing periphrastic and overlapping
VP has not been disucussed sufficiently. Although there
are several related works that deal with paraphrasing pe-
riphrastic VP (Kozlowski et al., 2003; Furihata et al., 2004),
the methods require hand-crafted semantic resource which
is built by hand and not easy to prepare.

In contrast to those works, this paper proposes a method
based on an ordinary dictionary, which is widely available
these days. In this paper, we represent a dictionary-based
metohd of recognizing periphrastic and overlapping VP.
Futheremore, we show that the recognition of those VPs
makes it possible to paraphrase them, from (1a) to (1b),
and from (2a) to (2b) or (2c). Note that this paper deals
with Japanese VP which consists of a verb and a noun.

The ramaining of this paper is organized as follows. In
Section 2, we examine periphrastic and overlapping VP. In
Section 3, an overview of our recognition metohd is shown,
and the detail is described in Section 4 and 5. In Section
6, we show that the recognition of periphrastic and overlap-
ping VP makes it possible to paraphrase them. The exper-
imental results are shown in Section 7, and we conclude in
Section 8.

2. Periphrastic and Overlapping VP
Periphrastic and overlapping VP are examined in this

section.

2.1. Periphrastic VP

In periphrastic VP, one constituent represents an action
and the other constituent functions as an adverb, voice or
aspect. They are calledMain Constituent (MC) andSup-
plement Constituent (SC). Periphrastic VPs are classified
into two types depending on which constituent is MC/SC.
In the examples SC is underlined.1.

Verbal-supplement-type A noun is MC and represents
an action. A verb is SC and functions as an adverb, voice
or aspect.

1Examples are Japanese and attached with English translation.
In Japanese, a verb is located next to a noun, and a noun has post-
position, such as ‘-ga’ or ‘ -wo’ etc., which functions as a case
maker.
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Verbal-supplement-type

(on purpose)

(to mistake)
koi-ni

machigaeru
(participation)

(to force to do unfairly)

sanka-wo

kyouseisuru

(thought)

((to think) in various ways)

kangae-wo

meguraseru
((to crash) into pieces)

(to crash)

konamijin-ni

kudakeru

Nominal-supplement-type

(unlimited-type)

(limited-type)

Periphrastic VP

Action-including-type Object-including-type

nobelsho-wo
(nobel-prize)(to receive a prize)

jushosuru
(money-saving) (to save a lot)

chokin-wo tamekomu

(prize) (to receive a prize)
sho-wo jushosuru

(money-saving) (to save)
chokin-wo tameru

(incomplete-type)

Overlapping VP

Figure 1: Classification of Periphrastic and Overlapping VP.

(3) a. kaikaku-wo
reform

dankousuru
to do resolutely

b. sanka-wo
participation

kyouseisuru
to force to do unfairly

c. kangae-wo
thought

megurasu
(to think) in various ways

d. kaikaku-wo
reform

suru
to do

In (3a) and (3c), the verb functions as an adverb. In (3b),
the verb functions as an adverb and causative voice. In (3d),
the verb ‘suru (to do)’ is support verb. In this paper, support
verb is regarded as one of the SCs.

Nominal-supplement-type A verb is MC and represents
an action. A noun is SC and functions as an adverb, as in
(4a) and (4b).

(4) a. koi-ni
on purpose

machigaeru
to mistake

b. konamijin-ni
(to crash) into pieces

kudakeru
to crash

In both types, some SCs can be connected with a large
variety of MCs, and others can not. The fomer periphrastic
VP is calledunlimited-type, the latter is calledlimited-type.
(3a), (3b), (3d) and (4a) are unlimited-type, and (3c) and
(4b) are limited-type. For example, SC in (3a), ‘dankousuru
(to do resolutely)’, can be connected with a large variety of
MCs such as ‘discount’, ’operation’, etc. On the other hand,

SC in (3b), ‘megurasu ((to think) in various ways)’, can
function as an adverb, only if it is connected with ‘thought’
or its synonyms.

Figure1 illustrates the classification of periphrastic VP.
MC is represented by a large circle, and SC is represented
by a small one.

2.2. Overlapping VP

In overlapping VP, the meaning of one constituent sub-
sumes that of the other. The former is calledMain Con-
stituent (MC) and the latterIncluded Constituent (IC).
Overlapping VPs are classified into two types dpending on
which constituent is MC/IC. In the examples MC is under-
lined.

Object-including-type The verb is MC and the noun is
IC. The verb means ‘an action and its object’ and the noun
means ‘that object’. The meaning of the verb includes that
of the noun, as in (5).

(5) sho-wo
prize

jushosuru
to receive a prize

Action-including-type The noun is MC and the verb is
IC. The noun means ‘an action and its object’ and the verb
means ‘that action’. The meaning of the noun includes that
of the verb, as in (6a) and (6b).
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(6) a. chokin-wo
money-saving

tameru
to save

b. uta-wo
song

utau
to sing

In (6b), the meaning of the noun is approximately equal to
that of the verb. Although such VP can be regarded as both
object-including-type and action-including-type, we treat
such VP as action-including-type.

In some overlapping VPs, the meaning of MC includes
only part of the meaning of IC, as shown below.

(7) a. nobel-sho-wo
nobel-prize

jushosuru
to receive a prize

b. chokin-wo
money-saving

tamekomu
to save a lot

In (7a), the meaning of the verb includes a part of the mean-
ing of the noun. Such overlapping VP is calledincomplete-
type. Similarly, (7b) is incomplete-type as well. Figure1
illustrates the classification of overlapping VP. The over-
lapping between the two circles represents the overlapping
meaning.

It is worth pointing out that there are some VPs closely
related to overlapping VPs.

(8) sensei-ga
teacher

oshieru
to teach

(8) is not overlapping VP because, strictly speaking, there
is no overlapping meaning between the constituents. How-
ever, it is possible to regard that there is a kind of over-
lapping meanig, because the telic of ‘teacher’ is ‘to teach’.
There are several works addressing telic of nouns (Puste-
jovsky, 1991; Boni and Manadhar, 2002). Dealing with
such VP is beyound the scope of this paper.

3. Overview of Recognition Method
Our dictionary-based recognition method uses defini-

tion sentences of constituents. An overview of our method
is shown in this section. The detail is described in Section
4 and 5.

The input of our recognition method is VP consisting
of a verb and a noun and a postposition. Given the in-
put VP, the input VP and the definition sentences of con-
stituents are processed by Japanese morphological analyzer
(JUMAN)2and parser (KNP)3. If a constituent is polyse-
mous and has more than one definition sentences, the ap-
propriate one is selected by the word sense disambiguation
process. After that, periphrastic and overlapping VP is rec-
ognized based on the definition sentences.

In what follows, the basic idea of our dictionary-based
recognition and the method of word sense disambiguation
are described.

3.1. Dictionary-based Recognition

Definition sentences of constituents can be used in or-
der to recognize periphrastic and overlapping VP. The basic
ideas are as follows:

2http://www.kc.t.u-tokyo.ac.jp/nl-resource/juman-e.html
3http://www.kc.t.u-tokyo.ac.jp/nl-resource/knp-e.html

• In unlimited-type periphrastic VP, the definition sen-
tence of SC consists of (1) an adverb, (2) auxiliary
verbs which function as voice or aspect, and (3) gen-
eral VP such as ‘to do something’ or ‘to do’. Such def-
inition sentence can be detected by pattern matching
rules. This method is calledpattern matching based
recognition.

• In limited-type periphrastic VP, a definition sentence
of SC does not include general VP but contains the
same word as MC with which SC can be connected.
Therefore, limited-type periphrastic VP can be recog-
nized by finding the alignment between MC and the
definition sentence of SC. This method is calledalign-
ment based recognition.

• In overlapping VP, the definition sentence of MC in-
cludes the same word as IC. Therefore, overlapping
VP can be recognized in the same way as limited-type
periphrastic VP.

The detail of pattern matching based recognition and align-
ment based recognition is described in Section 4 and 5.

3.2. Word Sense Disambiguation

Dictionary-based recognitoin needs word sense disam-
biguation, because polysemous constituent has more than
one definitions.

The disambiguation of the meaning of a noun requires
information of wide context. But it is almost impossible
to use enough information in our framework, since the in-
put is VP consisting of a verb and a noun. Therefore, the
input VP including polysemous noun is recognized as a pe-
riphrastic or overlapping, if one of its definition sentence
fulfills a condition which is necessary for the input VP to
be recognized as such.

On the other hand, in order to disambiguate the meaning
of a verb, information of local context such as its argument
is enough. The meaning of the verb is disambiguated using
our method (Kaji et al., 2002). The method uses case frame
dictionary acquired from large corpora automatically. Con-
sider the following input VP:

• oshie-wo
lesson

aogu
‘to admire’ or ‘to require’

The verb ‘aogu’ has two definition sentences: ‘(1)uya-
mau (to admire)’ and ‘(2)oshie-ya sashizu-wo motomeru
(to require lesson or instruction)’. The meaning of the verb
‘aogu’ is disambiguated as follows:

• Select one case frame which is the most similar to the
input VP. This case frame is called input case frame.
In this example, the following input case frame is se-
lected:{I, leader. . .}ga {expert, others. . .}ni {lesson
}wo aogu.

• Extract case frames which are similar to the definition
of ‘aogu’. They are called definition case frames.

• From definition case frames, select one case frame
which is the most similar to the input case frame. In
this example, the definition case frame of ‘motomeru
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(to require)’ is selected. As a result, it is said that
the meaning of the ‘aogu’ is ‘ motomeru (to require)’
which corresponds to the second definition sentence.

4. Pattern Matching based Recognition
SC is detected using its definition sentence and pattern

matching rules. The recognition of SC makes it possible to
recognize unlimited-type periphrastic VP.

4.1. Recognition of general VP

The definition sentence of SC consists of an adverb,
auxiliary verbs, and general VP such as ‘to do something’
or ‘to do’ etc. In order to detect such definition sentence,
it is necessary to recognize an adverb, auxiliary verbs, and
general VP in the definition sentnece.

An adverb and auxiliary verbs are recognized by the re-
sult of morphological analysis. General VP is recognized
by a simple rule. The general VP consists of:

• One or more nouns which represent general concept
such as ‘mono (things)’. Such noun is calledBasic
Noun (BN).

• One basic verb such as ‘suru (to do)’. Such verb is
calledBasic Verb (BV).

Therefore, it is recognized by the list of BN and BV enu-
merated by hand. It is reasonable to think that the list has
an enough coverage, because the words which are used in
the definition sentences are restricted. The belows are parts
of the lists:

nanika (something)
koto (thing)

Basic Nouns (BNs) mono (something)
monogoto (thing)
. . .
suru (to do)
okonau (to do)

Basic Verbs (BVs) dekiru (to be able to do)
saseru (to force to do)
. . .

Table 1: List of Basic Nouns (BNs) and Basic Verbs (BVs)

4.2. Unlimited-type verbal-supplement-type

The input VP is recognized as unlimited-type verbal-
supplement-type, if the noun represents an action and the
verb functions as SC.

The noun which has its verbal form can be considered
to represent an action. Such noun can be detected by the
result of morphological analysis.

If the verb is one of the BVs such as ‘suro(to do)’, it is
obvious that the verb functions as SC. Therefore, the verb
is considered to function as SC, if:

• The verb is one of the BVs, or

• The definition sentence of the verb matches a regular
expression pattern ‘ADV∗ BN∗ BV AUX ∗’. ADV and
AUX mean an adverb and auxiliary verb respectively.

The belows are examples of the definition sentences recog-
nized as that of SC:

kyouseisuru murini
unfairly:ADV

sa
to do:BV

seru
to force:AUX

dankousuru omoikitte
resolutely:ADV

yaru
to do:BV

4.3. Unlimited-type nominal-supplement-type

The input VP is recognized as unlimited-type nominal-
supplement-type, if the noun functions as SC.

The recognition method of nominal-supplement-type is
different from that of verbal-supplement-type, because of
the following two reasons. Firstly, SC always functions as
an adverb and does not function as voice. Therefore, its
definition sentence always includes one or more adverbs,
and does not includes an expression which represents voice.
Secondly, the noun has a postposition, which functions as
a casemarker. If only the noun has a postposition which
functions as an optional casemarker, it can functions as SC.

Therefore, the noun is considered to function as SC, if:

• The definition sentence of the noun matches a regular
expression pattern ‘ADV+ BN∗ BV AUX ∗’. Note that
BV and AUX which function as passive or causative
voice are not used, and

• The noun has a postposition ‘-de’, ‘ -ni’ or ‘ -to’, which
functions as an optional casemarker.

The belows are examples of the definition sentences recog-
nized as that of SC:

koi-ni wazato
on purpose:ADV

suru koto
to do:BV

tsuzukezama-ni tsugi-kara tsugi-ni
in succession:ADV

suru koto
to do:BV

5. Alignment based Recognition

Limited-type periphrastic VP and overlapping VP are
recognized by finding the alignment between one con-
stituent and the definition sentence of the other.

5.1. Limited-type Periphrastic VP

Verbal-supplement-type The input VP is recognized as
verbal-supplement-type, if the noun (=MC) represents an
action, and the verbal form of the noun is equal to the head
word of the definition sentence of the verb (=SC).

(9) a. kangae-wo
thought

megurasu
(to think) in various ways

b. iroiroto
in various ways

kangaeru
to think

(9a) is the input VP, and (9b) is the definition sentence of
the verb in (9a). The head word of the definition sentence
is ‘to think’, which is equal to the verbal form of the noun
‘thought’ in (9a).
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Nominal-supplement-type The input VP is recognized
as nominal-supplement-type, if:

• The verb (=MC) is equal to the head word of the defi-
nition sentence of the noun (=SC), and

• The noun has an optional casemarker, and

• The definition does not contain an expression that rep-
resents voice.

(10) a. konamijin-ni
(to crash) into pieces

kudakeru
to crash

b. konagonani
into pieces

kudakeru
to crash

(10a) is the input VP, and (10b) is the definition sentnece of
the noun in (10a). The head word of the definition sentence
is ‘to crash’, and it is equal to the verb in (10a).

5.2. Overlapping VP

Action-including-type The noun (=MC) means ‘an ac-
tion and its object’, and the verb (=IC) means ‘that action’.
If the head word of the definition sentence of the noun is
equal to the verb, the input VP is recognized as action-
including-type.

(11) a. chokin-wo
money-saving

tameru
to save

b. okane-wo
money

tameru
to save

(11a) is the input VP, and (11b) is the definition sentnece of
the noun. The head word of the definition sentence is ‘to
save’, and it is equal to the verb in (11a).

Object-including-type The verb (=MC) means ‘an ac-
tion and its object’, and the noun (=IC) means ‘that object’.
The head word of the definition sentence of the verb (=MC)
is ‘an action’, and its argument is ‘that object (=IC)’. There-
fore, if the noun is equal to the argument in the definition
of the verb, the input VP is recognized as object-including-
type.

(12) a. sho-wo
prize

jusho-suru
to receive a prize

b. sho-wo
prize

morau
to receive

(12a) is the input VP, and (12b) is the definition sentence of
the verb in (12a). The head word of the definition sentence
is ‘to receive’. Its argument is ‘prize’, which is equal to the
noun in (12a).

5.3. Dealing with Mismatch Problem

In alignment based recognition, the definition sentence
of one constituent is sometimes described using a synonym
of the other. Especially in incomplete-type overlapping VP,
a hypernym of IC is used. For example,

(13) a. hitorigoto-wo
talking to oneself

iu
to speak

b. hitori-de
to oneself

hanasu
to talk

(14) a. Nobel-sho-wo
Nobel-Prize

jusho-suru
to receive a prize

b. sho-wo
prize

morau
to recieve

(13a) is action-including-type overlapping VP, and (14a)
is incomplete object-including-type overlapping VP. (13b)
and (14b) are definition sentences of MC. (13b) is not de-
scribed using IC ‘to speak’ but its synonym ‘to talk’. (14b)
is not described using IC ‘Nobel-Prize’ but its hypernym
‘prize’.

This problem is solved using definition sentences, be-
cause a headword of a definition sentence corresponds to
a synonym or hypernym of its entryword. The definition
sentences of ‘speak’ and ‘Nobel-Pirze’ are as follows:

speak to talk

Nobel-Prize a prizegiven for important work in science,
literature...

6. Paraphrasing

The recognition method makes it possible to paraphrase
periphrastic and overlapping VP into simplified expres-
sions.

6.1. Paraphrasing Periphrastic VP

Periphrastic VP can be paraphrased by transforming SC
into adverbs or auxiliary verbs using its definition sentence.

(15) sanka-wo
participation

kyouseisuru
to force to do unfairly

→ murini
unfairly

sankasa
to participate

-seru
to force

kyouseisuru murini
unfairly

sa
to do

seru
to force

(16) kangae-wo
thought

meguraseru
(to think) in various ways

→ iroiro
in various ways

kangaeru
to think

megurasu iroiroto
in various ways

kangaeru
to think

In the examples, SC is underlined, and adverbs and auxil-
iary verbs into which SC is transformed are also underlined.
In (15), SC is transformed into an adverb ‘murini (unfairly)’
and an auxiliary verb ‘-seru (to force)’. MC ‘participation’
is transformed into its verbal form ‘to participate’. In (16),
SC is transformed into an adverb ‘iroiro (in various ways)’.
MC ‘thought’ is transformed into ‘to think’.

6.2. Paraphrasing Overlapping VP

Overlappping VP can be paraphrased in tow ways.
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Elimination of IC Overlappping VP can be paraphrased
by eliminating IC, from (17a) to (17b) and from (18a) to
(18b).

(17) a. sho-wo
prize

jusho-suru
to receive a prize

b. jusho-suru
to receive a prize

(18) a. chokin-wo
money-saving

tameru
to save

b. chokin-suru
to save money

Transformation of MC After the elimination of IC, MC
can be transformed using their definition sentences by Kaji
et al.’s method, from (19a) to (19b) and from (20a) to (20b).

(19) a. jusho-suru
to receive a prize

b. sho-wo
prize

morau
to receive

(20) a. chokin-suru
to save money

b. okane-wo
money

tameru
to save

7. Experimental Results

The result of our method were evaluated by two
judges: judge A and B. In the experiment,reikai-shogaku-
kokugojiten dictionary was used(Tajika, 1997).

Recognition Experiment 600 VPs were extracted ran-
domly from Mainichi news article corpus. Using those
VPs, the recognition method was evaluated through the pre-
cision and recall. Table2 and Table3 show the evaluation by
the judge A and B.

Precision Recall
Periphrastic VP 75%(42/56) 67%(42/63)
Overlapping VP 44%(4/9) 27%(4/15)

Total 71%(46/65) 59%(46/78)

Table 2: Recognition Result (Judge A)
Precision Recall

Periphrastic VP 64%(36/56) 63%(36/57)
Overlapping VP 22%(2/9) 18%(2/11)

Total 58%(38/65) 56%(38/68)

Table 3: Recognition Result (Judge B)

Paraphrasing Experiment 200 VPs which were recog-
nized as periphrastic or overlapping VP by the recogni-
tion method were extracted randomly from Mainichi news
article corpus. Those 200 VPs were paraphrased by the
method, and the judges verified the result (Table4). The
judge A verified that 163 of 200 were recognized correctly,
and 147 of 163 were paraphrased correctly. The accuracy
was 90%(147/163). According to the judge B, the accuracy
was 92%(155/169).

Accuracy
(Judge A) (Judge B)

Recognition 82%(163/200) 85%(169/200)
Paraphrasing 90%(147/163) 92%(155/169)

Table 4: The Result of Paraphrasing Experiment

Examples Examples that were recognized and para-
phrased successfully are shown below.

(21) a. kakuho-ni
maintenance

tsutomeru
to do hard

→ isshokenmeini
hard

kakuho-suru
to maintain

b. isshokenmeini
hard

suru
to do

(22) a. chumoku-wo
watch

abiru
to be done

→ chumoku-sa-reru
to be watched

b. mizu-nado-wo
water etc.

kakeru
to pour

c. ukeru
to be done

(23) a. koso-wo
working-out-idea

matomeru
to work out

→ koso-suru
to work out an idea

b. kangae-wo
idea

matomeru
to work out

(21a) was recognized as verbal-supplement-type, and para-
phrased by transforming SC, ‘tsutomeru (to do hard)’, into
an adverb, ‘isshokenmeini(hard)’. (21b) is the definition
sentence of SC ‘tsutomeru(to do hard)’. (22a) was also
recognized as verbal-supplement-type, and paraphrased by
transforming SC, ‘abiru (to be done)’, into an auxiliary
verb. SC ‘abiru’ has two definitions: (22b) ‘to pour wa-
ter’ and (22c) ‘to be done’, but the WSD method could se-
lected the second definition successfully. (23a) was recog-
nized as action-including-type, and paraphrased by elimi-
nating IC, ‘matomeru (to work out)’. (23b) is the definition
sentence of MC ‘koso (idea-working-out)’. It includes the
same word as IC ‘matomeru (to work out)’.

Discussion The overall result is good, and indicates the
effectiveness of our dictionary-based method. However,
there are several problems.

Our method can deal with mismatch problems caused
by synonyms or hypernyms. But, some mismatch problems
requires more sophisticated method. For example,

(24) a. koso-wo
working-out-idea

neru
to think carefully

b. kangae-wo
idea

matomeru
to work out

c. yoku
carefully

kangaete
to think

yoimononisuru
to improve

(24a) is action-including-type overlapping VP. MC is
the noun ‘koso (working-out-idea)’. (24b) is the definition
of MC ‘koso’, and it means ‘to work out an idea’. (24c)
is the definition of IC ‘neru’, and it means ‘to think care-
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fully and improve’. It is difficult to recognize that these are
overlapping between these definition sentences.

The result of overlapping VP recognition is not good.
This is because some idiomatic VPs are wrongly recog-
nized as overlapping VP.

(25) iki-wo
breath

hikitoru
to cease

(25) is an idiomatic VP that means ‘to die’. One of the def-
inition sentence of the verb ‘hikitoru (to cease)’ is ‘iki-ga
taeru’, and contains the same word as the noun ‘iki’. There-
fore, it is wrongly recognized as overlapping VP. Dealing
with such idiomatic VPs is one of our future works.

8. Conclusion
This paper proposed the dictionary-based method of

recognizing periphrastic and overlapping VPs. Futhere-
more, we showed that the recognition of those VPs makes
it possible to paraphrase them. The experimental results in-
dicated the effectiveness of the method. In a future work,
we are going to apply the paraphrasing to NLP applications
such as IR or QA etc.
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Abstract
In this working paper we discuss Head/Modifier trees and pairs as a representation for multi-word units
(MWU’s). We describe a system for the extraction of Head/Modifier trees (binary dependency trees) from
running English text, and their unnesting to Head/Modifier pairs. The system is based on the EP4IR
(English Phrases for IR) parser, which is freely available under the GPL licence. In the course of the parsing
and transduction process, the system performs also the robust recognition of Named Entities and out-of-
vocabulary wordforms, as well as a number of syntactic normalizations which serve to increase recall without
impairing precision.
We give a taxonomy of HM pairs, based on the notion of aboutness, and describe the normalization, disam-
biguation and robustness techniques used in the EP4IR grammar.
We show that the Head/Modifier pairs generated by the parser/transducer can in their turn be used in a
bootstrap process to improve the accuracy of the parsing process by resolving syntactic ambiguity. We discuss
the problem of granularity in MWU’s and conclude that HM trees are preferrable as a representation for
MWU’s. Finally we argue that novel WordNet-like resources should be developed, based on Head/Modifier
trees.
The transduction of large volumes of text to linguistically meaningful Head/Modifier pairs provides a useful
supplement to treebanks and a superior alternative to purely statistical co-occurrence-based techniques for
obtaining Multi Word Units.

1 Introduction

This working paper is concerned with the extraction
and use of a form of binary dependency trees as a
representation for multi-word units (MWU’s).

In section 2, we discuss different representations
for linguistically motivated terms and argue that
Head/Modifier pairs are a better representation for
MWU’s for applications in Linguistics and Informa-
tion Retrieval than monolithic sequences or sets of
words.

Section 3 describes the EP4IR (English Phrases
for IR) system which extracts phrases from English
text, transduces them to Head/Modifier trees and
unnests them to Head/Modifier pairs.

In section 4 and the two following it we describe
the strategies employed by the EP4IR system for the
normalization of phrases, the reduction of ambiguity
and for achieving robustness. These are crucial in
assuring the quality of the generated HM trees.

In section 7 we discuss some applications of
HM pairs as MWU’s. We present some statistics
on the HM pairs extracted from the OHSUMED
1987 collection and discuss the use of hyphen-
ated forms as a source of collocations. We pro-
pose that the Head/Modifier pairs generated by the
parser/transducer can in their turn be used in a
bootstrap process to improve the accuracy of the
parsing process and to resolve syntactic ambiguity.

Measurements given in section 7.1 show that, due
to the use of Best-Only parsing, the speed of the
system as developed for English is comparable to

that of much shallower parsing techniques, and quite
sufficient for even large-scale practical applications.

The transduction of large volumes of text to lin-
guistically meaningful Head/Modifier pairs provides
a useful supplement to treebanks and a superior al-
ternative to purely statistical co-occurrence-based
techniques for obtaining Multi Word Units. We
argue that WordNet-like resources should be made
to include Head/Modifier pairs or trees, because of
their precision in resolving word sense problems and
their value in paraphrasis.

The EP4IR grammar and its lexicon were devel-
oped in the IST-project Peking (see the (PEKING
website)). The grammar is written in the AGFL for-
malism (Koster, 1991) which was developed for the
syntactic description of natural languages and has a
number of properties making it particularly useful
for that purpose.

2 Phrases and Multi Word Units

The use of Linguistically Motivated Terms as index-
ing terms has always fascinated researchers in IR
(for an overview see (Sparck Jones, 1999)), but the
simple bag-of-words model with little linguistic sup-
port (stop-lists, lemmatization) still has not been
outdone by other, more complicated document rep-
resentations.

2.1 Phrases in Text Categorization

Text Categorization provides a good context for the
study of phrasal document representations, because
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it is easy to measure the effect of different represen-
tations on the categorization performance. There
are many more phrases than words in a language,
but luckily most categorization algorithms have a
way to cope with large feature spaces.

Instead of words, non-linguistic representations
like n-grams of consecutive characters have been in-
vestigated (Cavnar and Trenkle, 1994). But most
research has addressed the use of phrases as terms,
MultiWord Units extracted from the text. A dis-
tinction can be made between statistical phrases and
syntactical phrases, depending on the way in which
they are identified in the text. A spectrum of tech-
niques for phrase extraction has been used:

• statistical phrases, chunks or collocations: se-
quences of k non-stopwords occurring consecu-
tively (Cohen and Singer, 1996) or even taken
from anywhere in the document (Caropreso et
al, 2000)

• syntactical phrases identified by shallow parsing
(Alonso and Vilares, 2002), template matching
or finite state techniques (Grefenstette, 1996)

• Head/Modifier pairs obtained by shallow pars-
ing (Lewis, 1992) or deep parsing (Fagan, 1988;
Strzalkowski, 1995).

It is a disappointing fact that over the years none
of the experiments using any sort of statistical or
linguistical MWU’s for categorization has shown a
marked improvement over the use of single keywords.

Our own experiments in Text Categorization with
linguistically motivated MWU’s (Bel et al, 2003) and
HM pairs (Koster and Seutter, 2003) also failed to
produce a worthwile improvement over keywords,
in spite of the heavy investment in linguistical re-
sources.

2.2 Structured Head/Modifier pairs as
MWU’s

In all of the previous approaches, including our own
experiments, a phrase like software engineering was
considered as a monolithic multiword unit, and no
use was made of its inner structure. Head/Modifier
pairs however have a structure, the polarity between
head and modifier, which researchers like (Caropreso
et al, 2000) explicitly eliminate by sorting the ele-
ments, treating the pair like a set instead of a se-
quence. But that may eliminate differences like that
between the management of science and the sciencee
of management.

Apart from the conflation of equivalent terms, for
which HM pairs give more scope because head and
modifier can be independently conflated, it should
be pointed out that there is more information in the
HM pair engineering, software than in the collocation
software engineering: for computing the relevance of
a term to a class c we can use P (c|head, modifier)
in both cases, but P (c|head, modifier) only for the
HM pair – in this case the information that the doc-
ument is about another form of engineering.

Instead of (unstructured) collocations we propose
to use (structured) Head/Modifier pairs for repre-
senting MWU’s.

3 HM trees and HM pairs

We now introduce the EP4IR system for obtaining
HM pairs from English text, which performs the fol-
lowing process:

1. parsing the text by means of a robust rule-based
Best-Only parser

2. transducing the phrases found in it to
Head/Modifier trees

3. unnesting the trees to Head/Modifier pairs.

In the course of the parsing and transduction pro-
cess, the system performs also the robust recogni-
tion of Named Entities and out-of-vocabulary word-
forms, as well as a number of aboutness-preserving
syntactic normalizations (word order normalization;
elision of mood, time and modality; passive-to-active
transformation) which serve to increase recall with-
out impairing precision.

These transformations, as well as the (composi-
tional) transduction of phrases are described in the
grammar along with the structure of the phrases.

3.1 HM trees
The Head/Modifier trees produced by the transduc-
tion are binary dependency trees, structures of the
form

[head, modifier]

where both the head and modifier are either (pos-
sibly empty sequences of) words extracted from the
text or, recursively, other HM trees.

In the course of the transduction, elements which
are not considered meaningful for the aboutness of
the text (Bruza and Huibers, 2004) are rigorously
elided: articles, quantifiers, determiners and adverbs
(which according to (Arampatzis et al., 2000) con-
tribute little to the aboutness of a phrase).

The elements (heads and modifiers) of a HM tree
are prefixed with lexical types (N: for noun, A: for
adjective, V: for verb form; also X: for adverb Q:
for quantity and P: for pronoun). These prefixes,
which can be cumulated (see 5.1), can be used by
the lemmatizer and may be removed by untyping.

3.2 HM pairs and unnesting
The intuition behind a HM pair [head, modifier]
is that the modifier is joined to the head to make
it more precise, i.e. in order to distinguish between
various meanings of a polysemous head. The modi-
fier may also be empty.

The HM trees are in fact recursively composed out
of HM pairs, like

[[ N:mower, N:lawn], A:large]
[ N:operation, [V:consuming, N:time]]
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head modifier
V N P A PP

V – object relation – yes
N, P subject predicative/attributive yes

relation relation
A – – – – yes

Figure 1: Relations realized by HM pairs

Any HM tree F may be unnested into a set of HM
pairs S by repeatedly taking some pair without nest-
ing from F , replacing it by its head, and adding that
pair to the set S, until F is empty. Some (artificial)
examples:

[a, b] ==> { [a, b] }
[a, [b, c]] ==> { [b, c], [a, b] }
[[a, b], c] ==> { [a, b], [a, c] }

This process may optionally include morphological
normalization and removal of the types:

[[N:mower,N:lawn],A:large] ==>
{[mower,lawn],[mower,large]}

[N:operation,[V:consuming,N:time]] ==>
{[operation,consume],[consume,time]}

We allow the |-sign as an or-operator:

[a, b | c ] ==> { [a, b], [a, c] }
[a | b, c ] ==> { [a, c], [b, c] }

As an example, the structure of common SVOC sen-
tences may be schematically expressed by

[subject,[verb,object|complements]]

which is unnested to

{[subject,verb][verb,object]
[verb,complements]}

A tree with curly outer brackets instead of square
brackets, typically occurring nested in another one,
is unnested with an empty abstraction. The sentence
I saw the man whom you gave a book produces the
tree

{P:I,[V:saw,N:man{P;you,[V:gave,N:book|to
N:man]}]

which is unnested, lemmatized and untyped to

{[I,see],[see,man],[you,give],[give,book]
[give,to man]}

Verb/verb pairs are avoided: I prefer to read a book
yields the tree

[P;I,[V:prefer|[V:read,N:book]]

which yields the pairs

{[I,prefer][I,read][read,book]}

3.3 A Taxonomy of HM pairs

There are four main forms of pairs, corresponding to
four important syntactic (and indirectly semantical)
relationships:

1. the subject relation between the head N of an NP
and the main verb V governed by it is expressed
by a pair [N,V]

2. the object relation between a (transitive) main
verb V and its object N is expressed by a pair
[V,N]

3. the predicative relation between a subject N and
the predicate P is expressed by a pair [N,P]; a
similar pair [N,A] results from the attributive
relation between a noun N and an adjective A.
As an example, both the car is red and the red
car will yield a pairs [car,red]

4. the prepositional relation between the head of a
verb phrase or noun phrase and a PP modifying
it, e.g. [see,with telescope] or [man,with
telescope].

The prepositional relation is expressed by transduc-
ing the preposition complement as an additional
modifier (prefixed by |). The example sentences

I gave the trip to Paris to Paris
I was seen by him by the tree

are transduced to

{P:I,[V:gave,[N:trip,|to N:Paris]|to N:Paris]}
{P:him,[V:seen,P:I|by N:tree]}

which is unnested, lemmatized and untyped to

{[I,give],[give,trip],[trip,to Paris],
[give,to Paris]}

{[he,see],[see,me],[see,by tree]}

Other relationships (negation, auxiliary verbs, ad-
verbial modifiers) are presently not expressed in the
transduction, even though they are recognized by
the grammar and could easily be added.

4 Normalization in the EP4IR
grammar

In this section we describe the phrase normalization
techniques embodied in the EP4IR grammar.
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4.1 Morphological normalization

All words or collocations occurring in the HM pairs
may optionally be morphologically normalized by
lemmatization, in order to conflate different forms.
The lemmatization process is aided by the gram-
mar, which prefixes each normalizable element with
its class.

As an example, both the predicative rela-
tion [N:man, A:V:sneezing] obtained from the
sneezing man and the subject relation [N:man,
[V:sneezed,]] obtained from this man sneezed will
by unnesting, lemmatization and untyping lead to
[man, sneeze].

4.2 Syntactical normalization

For each construct described by the grammar, its
transduction is included in the rule describing the
construct. Thus, the transductions of complicated
constructs are expressed compositionally in terms of
those of their components. In the process, elements
may be elided or re-ordered and additional symbols
injected (like the [, , and ]) in order to express
uniformly the relations described above.

The syntactic normalizations implemented in this
way include de-passivation: the sentence

the train was driven by a clockwork engine
is, by unnesting and morphological normalization,
turned into
[engine, clockwork][engine, drive]
[drive, train]

4.3 Spelling normalization

Some words and some collocations (well known, well-
known, wellknown) can be written in several ways,
which have to be mapped onto one same spelling.
As an example, the word for Central Processing Unit
may variously be spelt as cpu, CPU and c.p.u, apart
from being written out in full as a collocation. In
order to bring all these variants together, words and
collocations in the lexicon may be equipped with a
unique transduction, in all these cases CPU.

The same mechanism may be used to deal with
abbreviations and variant spellings (like leave for
the noun leaf, not to mention British vs American
spelling and typical errors like parralel for parallel).
In the current lexicon, this mechanism has been used
only sparingly.

A related problem is that of de-capitalization. The
use of capital letters may provide essential informa-
tion (e.g. in recognizing personal names) which is
lost if the text is simply de-capitalized. The strat-
egy followed in AGFL and therefore EP4IR is to take
capital letters in the lexicon literally, but to allow a
capital letter in the text to stand for a small let-
ter in the lexicon. This is based on the observation
that there are many reasons for capitalizing a small
letter (first word of the sentence, initial letters of
words in titles of publications, or just personal taste
of the author), whereas there are no general reasons
for decapitalizing a capital letter.

5 Disambiguation techniques
Ambiguity is the bane of Natural Language Process-
ing. In our case, the parser should not find all anal-
yses, but rather a single most probable one. To that
end, parsings are ranked by their number of penal-
ties, and the parser takes the/a solution with the
lowest number of penalties.

The EP4IR grammar includes a number of tech-
niques to reduce ambiguity, aimed at either syntactic
or lexical ambiguity. The lexicon used by EP4IR is
mostly based on the WordNet 1.6 lexicon (Miller et
al., 1993), using additional lexical material from var-
ious sources. WordNet is notoriously unhelpful in
assigning word classes, being much too permissive
(“if I can use this word as a noun in some sentence
then, by golly, it must be a noun”). The lexicon and
the grammar had to be adapted to one another in
order to eliminate spurious ambiguities.

5.1 Lexical disambiguation
In English, and especially in WordNet, many words
can belong to more than one syntactical category,
like the word only (adverb, adjective, possibly noun).
In order to reduce the degree of lexical ambiguity, an
attempt is made to reduce the number of categories
per word to one wherever possible, using syntactic
promotion rules.
5.1.1 Syntactic promotion
In the EP4IR lexicon words obtain as far as possible
only one word class, but certain promotion rules are
present in the grammar, allowing the acceptance of a
word from one lexical category for another category
at the price of a penalty:

• (A:→N:)
since syntactically any adjective can be used as
the head of a noun phrase, there is no sense in
including any adjective explicitly amongst the
nouns

• (V:→A:)
many adjectives are in fact participles (even
though there may be some semantic difference,
as in drunk), and the grammar will allow such
verb forms at adjective positions, as in the work-
ing man. Therefore all present and past par-
ticiples have been removed from the adjectives.
As a consequence, the grammar considers the
progressive form (he is asking the president for
clemency) as a predicative sentence.

In Wordnet, many words occur both as an adverb
and as an adjective. At predicative positions it
hardly matters whether the word is accepted as an
adverb or as an adjective. Consequently, adjectives
and adverbs that can not be used attributively have
been marked, and at predicative positions the two
are not distinguished.

In Wordnet, all particles occurring in phrasal
verbs like to go back or to put up (with something)
have also been included as adverbs. Since the EP4IR
grammar includes a detailed treatment of phrasal
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verbs, those particles (mainly prepositions) have
been removed from the adverb category. Also the
prepositions have been removed from the adjectives.
The ordinal and cardinal numerals have been re-
moved from the nouns, adjectives and adverbs, but
they may be accepted as such by promotion of num-
berals to adjectives.

5.2 Syntactic disambiguation
The two main sources of structural ambiguity in En-
glish (apart from the lexical ambiguities, mentioned
above) are NP substructure and PP attachment. In
order to obtain reliable HM pairs, ambiguity has to
be avoided, but reliable HM pairs can also be used
to reduce ambiguity.
5.2.1 Disambiguating the NP substructure
In English, any sequence of more than two nouns
and/or adjectives is ambiguous, since the rule for
noun part is both left- and right-recursive. Very
schematically:

noun phrase:
[determiner], noun part,

(connector, noun phrase; ).
noun part:
adjective, nounpart;
noun part, noun part.

In EP4IR the rule for noun part is only right-
recursive, allowing left-modification just by a single
noun

noun part:
adjective, nounpart;
noun, noun part.

but this noun may well be a collocation like trade
union, which makes the 3-noun NP trade union leader
unambiguous. Similarly, the collocations off duty
and night nurse disambiguate an off duty night nurse.
Collocations (or MWU’s) may play an important
role in disambiguating NP substructure (but see
7.4). The EP4IR lexicon contains a total of 485
MW adjectives and 78350 MW nouns, gleaned from
Wordnet or derived from the EPO1F corpus (see sec-
tion 7.3).

There is also a rudimentary treatment of NP-like
time and place expressions (like this morning) in or-
der to avoid their analysis as NP’s and therefore as
complements to the verb part.
5.2.2 Disambiguating PP attachment
In English, any sequence of two or more Preposition
Phrases is ambiguous, since the second PP may ei-
ther belong to the head of the first PP or to the same
head as the first PP. In EP4IR subcategorization in-
formation provided by the lexicon is used to prefer-
entially attach certain PP’s to the verb part (as in
to compare NP with NP or the instrumental use of
with). In particular, the passive form has a strong
affinity for by NP. Of course the (in)transitivity of
the verb is used to determine the possible presence

of the object, but in English a potential object may
still be absent (I shoot you; I shoot).

Using subcategorization information about adjec-
tives, PPs belonging to the adjective (e.g. reminis-
cent of NP) are also suitably attached. PP’s with
the preposition of are preferentially attached to the
preceding NP (but see the following section). PP’s
following the NP may be attached to it in various de-
pendency structures. This form of ambiguity is not
satisfactorily resolved for lack of information about
the subcategorization of the noun.

5.3 Collocations
By a collocation we shall mean a sequence of two or
more words that preferentially occur together (more
than is likely by chance). Additionally, the collo-
cation may have a non-compositional meaning (in
combination the words mean something else than is
to be expected from their individual meaning) and
frozen syntax, in the sense that syntactic variation
(e.g., substitution of other words) is limited.

It makes sense to include collocations like soft-
ware engineering as one word in the lexicon, in or-
der to assure that modern software engineering is
not interpreted as the engineering of modern soft-
ware. WordNet 1.6 contains a rather haphazard col-
lection of collocations, and special domains should
have their own special collocations. In the lexi-
con, collocations may include a transduction to the
same pair that they would obtain in isolation, e.g.
[engineering,software], in order to ensure that
they will be conflated with their syntactic variants
like the engineering of software.

6 Robustness measures

Under this heading we mention the measures intro-
duced to cope with the following problems:

1. words that do not occur in the lexicon

2. unknown or incorrect syntactic constructions.

6.1 Dealing with unknown words
The parser will be faced with many words (about 10
to 20% in typical IR applications) that are not in
the lexicon, for different reasons:

• names
any text will introduce personal names or names
of companies that can not usefully be foreseen
in the lexicon. The EP4IR lexicon contains the
most frequent English christian names, as well
as some haphazard names of historical Amer-
icans gleaned from Wordnet. As a robustness
device, it will also recognize words starting with
a capital letter and partly or wholly capitalized
as names, and therefore nouns. There should
be some sub-grammar around it to deal prop-
erly with titles and modes of addressing (the
third Secretary of the Central Committee of the
German Democratic Republic). The same holds,
of course, for names of companies.
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• technical terms
In a text on chemistry or medicine, many spe-
cialized words will occur that warrant the use of
special domain lexica. From WordNet and other
sources, the EP4IR lexicon contains a plethora
of chemical and biological words and colloca-
tions. For other domains, it is relatively easy to
find most of the domain words by filtering the
unknown words from a large corpus. However,
developing this word list into a full-fledged do-
main lexicon (including collocations) is a major
task.

• newly created words
Through ignorance or creativity, people are al-
ways inventing new words, mostly by com-
pounding known words (“Z-beam”; “3-phase-
constriction”) or by derivation from known
words (“downwardly”; in one patent application
even “downwardlyly”).
A number of robust rules for recognizing un-
known words with typical noun-, adjective- and
verb-endings has been included, which is espe-
cially effective in the case of medical and chemi-
cal texts. The same mechanism is of help in the
case of new words arising through ignorance or
error (e.g. in English patent applications poorly
translated from a Japanese original).
The approximate matching of unknown words
against known words from the lexicon might
deal with many spelling errors, but this last
mechanism has not been implemented yet.

• choosing between parsings
In EP4IR, use is made of penalties to penalize
unlikely analyses: from left to right the longest
segment with the lowest number of penalties is
taken. Of course these preferences are at best
justifiable heuristics; much better behaviour is
to be expected from a probabilistic parser tak-
ing syntactical and lexical frequencies into ac-
count. With the present state-of-the-art in se-
mantics, very little help can be expected from
semantical analysis.

6.2 Dealing with incorrect syntax

Conventional linguistic parsers serve to find all syn-
tactically correct analyses for each sentence of in-
put. The parser is presented with a corpus nicely
segmented into sentences, one per line. In the IR
situation however, the goal is to extract as much in-
formation as possible from the running input. The
input consists of multi-sentence paragraphs, which
are hard to segment into sentences automatically.

The parsing strategy followed in EP4IR is segment
parsing, analysing from left to right, skipping un-
known words between segments and accepting not
only complete sentences, but, failing that, also other
recognizable fragments like a noun phrase. Further-
more, the parser can relax the strict agreement rules
where necessary.

7 HM pairs as MWU’s
In this section we discuss some of the issues in using
HM pairs as MWU’s. First we give some statistics
and measurements concerning the extraction of HN
pairs from a large corpus. Then we discuss the boot-
strapping of MWU’s to derive more MWU’s and the
mining of hyphenated form to obtain MWU’s. We
discuss the problems of granularity, which HM pairs
have in common with more traditional MWU’s and
propose to use HM trees to represent MWU’s.

7.1 The OHSUMED corpus
We have analyzed all medical abstracts from 1987
in the OHSUMED corpus, taking only the narrative
parts, and transduced and unnested them to HM
pairs, omitting those with an empty modifier. This
process took 11hrs 45 minutes, 42300 seconds in to-
tal, on a 700Mhz INTEL PC. The following table
shows some statistics of the resulting pairs:

5841173 words in the corpus
2930384 HM pairs resulting
1603562 different HM pairs, of which
321772 non-hapax.

Like in earlier studies (Koster and Seutter, 2003),
about 80% of the HM phrases are hapaxes. The
parse time can be reduced by taking a faster com-
puter (my laptop is four times as fast), or using com-
puters in parallel.

The distribution of the types of the resulting HM
pairs is as follows:

head modifier
V N P A PP

V 5194 294573 22246 291320
N 248815 690470 24755 711455 249184
P 143335 8714
A 3602

7.2 Bootstrapping MWU’s
(Bolshakov, 2004) defines a collocation as

a syntactically connected and semantically
compatible pair of content words.

In this sense, we are only interested in those MWU’s
that are collocations. Although HM pairs, un-
like statistical phrases are syntactically derived and
therefore syntactically compatible, they still need
human scrutiny in order to avoid errors and verify
semantical compatibility. This problem is to a large
extent caused by unresolved ambiguity, rather than
by the text containing gibberish.

Any unambiguous NP consisting of two elements
(nouns, adjectives, also numerals etc) can be ac-
cepted as a collocation (especially if it is frequent)
and added to the lexicon, after which it will disam-
biguate all NP’s of three elements in which it occurs,
and even some NP’s of four elements. This bootstrap
approach to collocations can save a lot of manual
work.
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7.3 Mining hyphenated forms
The mining of hyphenated forms in a text presents
a novel technique for deriving MWU’s. By a hy-
phenated form we mean a sequence of words joined
together by hyphens, such as the term Multi-Word-
Unit itself. Apart from some specialized technical
use of hyphenation (see later), they often have the
form of Noun Phrases, and syntactically occur as
modifiers a larger NP. This also explains why their
author thought it necessary to use hyphens instead
of spaces: in order to avoid ambiguity. The author
went out of his way to ensure a particular reading of
the text.

In order to investigate their nature and preva-
lence, we have extracted all hyphenated forms from
the EPO1F corpus (described in (Koster and Seut-
ter, 2003)), which consists of 16000 Patent Appli-
cations written in English, obtained from the Euro-
pean Patent Office. The corpus is about 73 Million
words long. For the extraction we used a much sim-
plified NP grammar with hyphens as word separa-
tors.

The 73 Million words included 338261 hyphen-
ated forms. Rejecting the ones that did not con-
tain at least one word from the English lexicon
left 320112 occurrences of 39474 different hyphen-
ated forms. Some examples clearly show the at-
tempt to construct a modifier for which a single word
is not available: second-from-the-right, state-of-the-
art, bread-and-butter, signal-to-noise, L-shaped, cut-
off, multi-unit.

The length distribution of the hyphenated forms
was as follows:

number of number of different
elements occurrences elements
2 305619 36026
3 12891 2725
4 14110 3248
5 1437 644
6 112 63
7 15 9
> 7 38 16

The longest linguistically meaningful hyphenated
form found in the corpus was detected-level-
comparison-and-discrimination-by-denomination,
which makes little sense without its context.
Among the longest forms were found many
chemical formulae like benzyl-dimethyl-2-hydroxy-
ethyl-ammonium-chloride and amino sequences
like gly-glu-phe-tyr-phe-asp-leu-arg-leu-lys-gly-asp-lys
which deserve a separate treatment.

Hyphenated forms are a rich source of well-
attested Multi-Word-Units.

7.4 The problem of granularity
Upon inspection of the HM pairs generated from the
OHSUMED corpus, numerous examples were found
of a noun that occurred both in some collocation
(from the EP4IR lexicon) and as the head of some
HM pair, e.g.

blood flow [flow, coronary]
heart disease [disease, bone]
malignant tumor [tumor, mammary]

Therefore the knowledge is lost that both blood flow
and coronary flow are an example of flow. For collo-
cations with a completely non-compositional mean-
ing this is is correct, but for the frequent composi-
tional collocations the loss of compositional struc-
ture is serious (a blood flow meter should be an ex-
ample of a flow meter). This problem is present in
all monolithical MWU representations (those with-
out internal structure). A similar problem occurs
in languages with compound nouns, like Dutch and
German, where it was found that adding the ele-
ments of compound nouns to a query enhanced recall
(Kraaij and Pohlmann, 1998).

A possible solution is used by EP4IR: to trans-
duce a non-compositional collocation as a monolith-
ical multiword unit and compositional ones to struc-
tured MWU’s (HM pairs and trees).

But the question also arizes whether it is always
wise to unnest HM trees into pairs. The presence of
many collocations consisting of more than two ele-
ments shows that it is necessary to use HM trees di-
rectly as MWU’s and as indexing terms for retrieval
and categorization.

7.5 HM-based linguistic resources

WordNet, although it is about words, contains a
striking number of multi-word units, as periphrastic
terms in synsets, or as short descriptions. In ap-
plying the WordNet concept to other languages, es-
pecially in EuroWordNet, it was often found that a
concept denoted by one word in one language could
only be paraphrased as a MWU in another. HM
pairs (or in some cases shallow HM trees) would
form a much better basis for a WordNet than sin-
gle words, because they are more precise, and the
problem of the unspeakable word is largely solved.
But HM trees would be even better, because they
provide a solution to the granularity problem.

8 Availability

The ‘English Phrases for IR’ (EP4IR) grammar can
be downloaded from the (AGFL website), together
with its lexicon and the AGFL parser generator sys-
tem, which is available under the GPL/LGPL li-
cence (see (Koster and Verbruggen, 2002)).

9 Conclusions

We have in this working paper investigated the
production of HM pairs and trees, and their use
as MWU’s. We gave some arguments showing
that such structured representations of MWU’s are
preferable to monolithical representations. The
problem of granularity was raised, and we conclude
that HM trees may be the best representation of
MWU’s for Information Retrieval and terminology
building.
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Applied linguistics could benefit tremendously
from the availability of linguistic resources based on
HM trees rather than words. As shown above, pars-
ing could become more precise when using pair oc-
currence frequencies. The use of HM-based terms
could solve many sense disambiguation problems
in Information Retrieval. Crosslingual Retrieval
and Categorization would benefit enormously from
monolingual and multilingual HM-based lexica in-
cluding lexico-semantical relations. Even machine
translation might get a fresh impulse from such re-
sources.

Many monolingual and multi-lingual already re-
sources developed for machine translation, embody-
ing detailed linguistic knowledge, could be used to
derive such resources. And the techniques described
in this paper can be used to generate vast numbers
of HM trees from available texts and the internet.
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Abstract
The influence of MWU recognition on parsing accuracy is investigated with respect to a deterministic dependency parser based on
memory-based learning. The effect of a perfect MWU recognizer is simulated through manual annotation of MWUs in corpus data
used for training and testing two different versions of the parser, one which is lexicalized and one which is not. The results show a
significant improvement in parsing accuracy not only for MWUs themselves but also with respect to surrounding syntactic structures. The
improvement is consistent for both versions of the parser and holds for both labeled and unlabeled accuracy. The greatest improvement
corresponds to a 5% error reduction, which is substantial given the relatively low frequency of MWUs in the data. In addition to a
quantitative analysis, we also present an analysis of some of the most important error types that are eliminated by the recognition of
MWUs.

1. Introduction
The relationship between multiword units (MWUs) and

syntactic parsing is a complex one involving several related
but distinct questions:

1. Should MWUs be recognized as such and given a spe-
cial treatment in the syntactic analysis?

2. If the answer is yes, is this analysis best performed by
the parser itself or by a specialized module applying
either before or after the parsing process?

3. If the answer is no, can it nevertheless be beneficial
to recognize MWUs before or during parsing, even
though this is not reflected in the final analysis?

The answer to the first of these questions is largely indepen-
dent of the parsing problem itself and rather depends on the
larger application in which the parsing system is embedded.
Moreover, the answer may be different for different classes
of MWUs. In information extraction, for example, multi-
word names (named entities) are highly relevant, whereas
compound prepositions are generally not. Questions of this
kind are outside the scope of this paper, though. Instead,
we will focus on the treatment of MWUs within syntactic
parsing.

If the first question is dependent on the larger applica-
tion but largely independent of the specific parsing method
used, the inverse probably holds for the second and third
question. That is, whether specialized techniques for the
analysis of MWUs improves parsing — either of MWUs
themselves or of surrounding structures — could be highly
dependent on the parsing methodology used. Many pars-
ing frameworks do include a special treatment of multiword
units, presumably on the assumption that it improves accu-
racy (Karlsson et al., 1995; Tapanainen, 1999). However,
we have not been able to find any published study where
this assumption has been tested in controlled experiments.

Although a conclusive answer to these questions would
require us to study a whole range of different parsing tech-
niques, we hope to be able to shed some light on the issues

involved by studying two different versions of a memory-
based dependency parser, one which is lexicalized and one
which is not. More precisely, we have conducted ex-
periments where we simulate a perfect MWU recognizer
through manual annotation and study the effect that such
a component would have on parsing accuracy, both with
respect to the MWUs themselves and with respect to sur-
rounding syntactic structures. It is an open question to what
extent the results can be generalized to other parsing meth-
ods, but the present study can at least be seen as a first step
towards answering the more general questions.

The rest of the paper is structured as follows. First, we
describe our general parsing method, which can be char-
acterized as deterministic dependency parsing (section 2).
Secondly, we explain how memory-based learning can be
used to guide the deterministic parser and we describe the
two different versions of the parser used in the experiments
(section 3). Next, we report a series of experiments investi-
gating the influence of MWU recognition on parsing accu-
racy (section 4). Finally, we state our conclusions and give
directions for future research (section 5).

2. Deterministic Dependency Parsing
Deterministic dependency parsing has been proposed

as a robust and efficient method for syntactic parsing that
combines properties of deep and shallow parsing (Yamada
and Matsumoto, 2003; Nivre, 2003). Dependency parsing
means that the goal of the parsing process is to construct a
labeled dependency graph of the kind depicted in Figure 1.
Deterministic parsing means that we derive a single analy-
sis for each input string, with no redundancy or backtrack-
ing, which makes it possible to parse sentences in linear
time (Nivre, 2003).

In formal terms, we define dependency graphs in the
following way:

1. Let R = {r1, . . . , rm} be the set of dependency types
(arc labels).

2. A dependency graph for a word string W = w1· · ·wn

is a labeled directed graph D = (W, A), where
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Figure 1: Dependency graph for Swedish sentence

(a) W is the set of nodes, i.e. word tokens in the input
string,

(b) A is the arc relation, i.e. a set of labeled directed
arcs (wi, r, wj) (wi, wj ∈ W , r ∈ R),

(c) for every node wj ∈ W , there is at most one arc
(wi, r, wj) ∈ A.

3. A graph D = (W, A) is well-formed iff it is acyclic,
projective and connected.

The parsing algorithm used here was first defined for
unlabeled dependency parsing (Nivre, 2003) and subse-
quently extended to labeled graphs (Nivre et al., 2004).
Parser configurations are represented by triples 〈S, I, A〉,
where S is the stack (represented as a list), I is the list of
(remaining) input tokens, and A is the (current) arc relation
for the dependency graph. (Since in a dependency graph
the set of nodes is given by the input tokens, only the arcs
need to be represented explicitly.) Given an input string W ,
the parser is initialized to 〈nil, W, ∅〉 and terminates when
it reaches a configuration 〈S,nil, A〉 (for any list S and set
of arcs A). Given an arbitrary configuration of the parser,
there are four possible transitions to the next configuration:

1. Left-Arc: In a configuration 〈t|S,n|I,A〉, if there is no
arc (w, r, t)∈A, extend A with (n, r′, t) and pop the
stack, giving the configuration 〈S,n|I,A∪{(n, r′, t)}〉.

2. Right-Arc: In a configuration 〈t|S,n|I,A〉, if there is
no arc (w, r, n)∈A, extend A with (t, r′, n) and push
the token n onto the stack, giving the configuration
〈n|t|S,I,A ∪ {(t, r′, n)}〉.

3. Reduce: In a configuration 〈t|S,I,A〉, if there is an arc
(w, r, t) ∈ A, pop the stack, giving the configuration
〈S,I,A〉.

4. Shift: In a configuration 〈S,n|I,A〉, push n onto the
stack, giving the configuration 〈n|S,I,A〉.

After initialization, the parser is guaranteed to terminate af-
ter at most 2n transitions, given an input string of length
n (Nivre, 2003). Moreover, the parser always constructs
a dependency graph that is acyclic and projective. This
means that the dependency graph given at termination is
well-formed if and only if it is connected (Nivre, 2003).

The transition system defined above is nondeterministic
in itself, since several transitions can often be applied in
a given configuration. To construct deterministic parsers
based on this system, we use classifiers trained on treebank

data in order to predict the next transition (and dependency
type) given the current configuration of the parser. In the
experiments reported here, we use memory-based learning
to train these classifiers.

3. Memory-Based Learning
Memory-based learning and problem solving is based

on two fundamental principles: learning is the simple stor-
age of experiences in memory, and solving a new problem
is achieved by reusing solutions from similar previously
solved problems (Daelemans, 1999). It is inspired by the
nearest neighbor approach in statistical pattern recognition
and artificial intelligence (Fix and Hodges, 1952), as well as
the analogical modeling approach in linguistics (Skousen,
1989; Skousen, 1992). In machine learning terms, it can be
characterized as a lazy learning method, since it defers pro-
cessing of input until needed and processes input by com-
bining stored data (Aha, 1997).

Memory-based learning has been successfully applied
to a number of problems in natural language processing,
such as grapheme-to-phoneme conversion, part-of-speech
tagging, prepositional-phrase attachment, and base noun
phrase chunking (Daelemans et al., 2002). It has also been
used to guide deterministic parsers (Veenstra and Daele-
mans, 2000; Nivre et al., 2004).

For the experiments reported in this paper, we have
used the software package TiMBL (Tilburg Memory Based
Learner), which provides a variety of metrics, algorithms,
and extra functions on top of the classical k nearest neigh-
bor classification kernel, such as value distance metrics and
distance weighted class voting (Daelemans et al., 2003).

The function we want to approximate is a mapping f
from configurations to parser actions, where each action
consists of a transition and (except for Shift and Reduce) a
dependency type:

f : Config → {LA, RA, RE, SH} × (R ∪ {nil})

Here Config is the set of all possible parser configurations
and R is the set of dependency types. However, in order
to make the problem tractable, we try to learn a function f̂
whose domain is a finite space of parser states, which are
abstractions over configurations. For this purpose we define
a number of features that can be used to define different
models of parser state. The features used in this study are
listed in Table 1.

The first five features (TOP–TOP.RIGHT) deal with prop-
erties of the token on top of the stack. In addition to the
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Feature Description
TOP The token on top of the stack
TOP.POS The part-of-speech of TOP

TOP.DEP The dependency type of TOP (if any)
TOP.LEFT The dependency type of TOP’s leftmost dependent (if any)
TOP.RIGHT The dependency type of TOP’s rightmost dependent (if any)
NEXT The next input token
NEXT.POS The part-of-speech of NEXT

NEXT.LEFT The dependency type of NEXT’s leftmost dependent (if any)
LOOK.POS The part-of-speech of the next plus one input token

Table 1: Parser state features

word form itself (TOP), we consider its part-of-speech (as
assigned by an automatic part-of-speech tagger in a pre-
processing phase), the dependency type by which it is re-
lated to its head (which may or may not be available in a
given configuration depending on whether the head is to
the left or to the right of the token in question), and the
dependency types by which it is related to its leftmost and
rightmost dependent, respectively (where the current right-
most dependent may or may not be the rightmost dependent
in the complete dependency tree).

The following three features (NEXT–NEXT.LEFT) refer
to properties of the next input token. In this case, there
are no features corresponding to TOP.DEP and TOP.RIGHT,
since the relevant dependencies can never be present at de-
cision time. The final feature (LOOK) is a simple lookahead,
using the part-of-speech of the next plus one input token.

In the experiments reported below, we have used two
different parser state models, one called the lexical model,
which includes all nine features, and one called the non-
lexical model, where the two lexical features TOP and NEXT

are omitted. The learning algorithm used is the IB1 al-
gorithm (Aha et al., 1991) with k = 5, i.e. classification
based on 5 nearest neighbors.1 Distances are measured us-
ing the modified value difference metric (MVDM) (Stanfill
and Waltz, 1986; Cost and Salzberg, 1993), and classifica-
tion is based on distance weighted class voting with inverse
distance weighting (Dudani, 1976). For more information
about the different parameters and settings, see Daelemans
et al. (2003).

4. Experiments
The data used for the experiments come from a manu-

ally annotated corpus of written Swedish, created at Lund
University in the 1970’s and consisting mainly of informa-
tive texts from official sources (Einarsson, 1976). Although
the original annotation scheme is an eclectic combination
of constituent structure, dependency structure, and topolog-
ical fields (Teleman, 1974), it has proven possible to con-
vert the annotated sentences to dependency trees with fairly
high accuracy. What makes this corpus especially suitable

1In TiMBL, the value of k in fact refers to k nearest dis-
tances rather than k nearest neighbors, which means that, even
with k = 1, the nearest neighbor set can contain several instances
that are equally distant to the test instance. This is different from
the original IB1 algorithm (Aha et al., 1991).

for this study, is the fact that several classes of MWUs have
been annotated in such a way that they can be identified
automatically. These expressions can be divided into three
broad classes, exemplified below:

• Multiword names (MN):
Torsten Nilsson (person)
Västra Frölunda (place)
Södra Kyrkogatan (street)

• Numerical expressions (NE):
3 - 4
6 X 6
1967 / 68

• Compound function words, which can be subdivided
into five categories:

1. Adverbs (AB):
så småningom (eventually)
i allmänhet (in general)
var som helst (anywhere)

2. Prepositions (PP):
på grund av (because of)
med hänsyn till (with respect to)
i samband med (in connection with)

3. Subordinating conjunctions (SN):
efter det att (after)
även om (even if)
trots att (despite the fact that)

4. Determiners (DT):
den här (this)
en och samma (one and the same)
en del (some)

5. Pronouns (PN):
den här (this)
var och en (everyone)
en del (some)

Table 2 gives frequency counts for different categories of
MWUs in the corpus and compares them to the overall
statistics for tokens and sentences. We see that compound
function words, taken together, is the largest class, followed
by multiword names, whereas numerical expressions are
rare in the corpus. The overall frequency of the annotated
MWUs can be appreciated by noting that, on average, there
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Category Example Frequency
MN Torsten Nilsson 427
NE 3 - 4 10
AB så småningom (eventually) 826
PP på grund av (because of) 256
SN efter det att (after) 167
DT den här (this) 94
PN den här (this) 30
MWUs 1810
Sentences 6316
Tokens 97623

Table 2: Statistics of the data set
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Figure 2: Treebank representations: Baseline (top) and MWU (bottom)

are 3 MWUs in 10 sentences and 2 MWUs in 100 words. It
should be emphasized, however, that this only takes into ac-
count the MWUs that could be identified through the orig-
inal corpus annotation. However, the overall frequency fig-
ures accord well with results from automatic acquisition of
MWUs with reported extraction rates of 1–3 MWUs per
100 words (Dias et al., 1999).

For the experiments we have created two different ver-
sions of the treebank. In the baseline version, each MWU is
represented as a sequence of tokens, each with its own part-
of-speech, combined into a left-headed dependency chain
with arcs labeled with the special symbol ID. In the MWU
version, each MWU is represented by a single token, which
is formed by joining the constituent tokens with under-
scores (e.g. på grund av → på grund av) and assigned a
part-of-speech appropriate for the entire MWU.

By way of illustration, Figure 2 shows one and the same
sentence in both representations. The experiments con-
sist in training and testing the memory-based dependency
parser on the two different versions of the treebank, measur-
ing the parsing accuracy both for MWUs themselves (under
the baseline condition) and for all other syntactic structures
(both conditions). All experiments have been carried out
with both the lexical and the non-lexical versions of the
parser.

For other experiments, the treebank has been divided
into three non-overlapping data sets: 80% for training 10%
for development/validation, and 10% for final testing (ran-
dom samples). The results presented in this study are all
from the validation set, i.e. all parsers have been trained on
the training set and evaluated on the validation set. (The
final test set has not been used at all in the experiments re-
ported in this paper.)

Parsing accuracy is measured in the experiments by
three different metrics:

• Attachment score (AS): The proportion of tokens
(excluding punctuation) that are assigned the correct
head (or no head if the token is a root) (Eisner, 1996;
Collins et al., 1999).

• Labeled attachment score (LAS): The proportion of
tokens (excluding punctuation) that are assigned both
the correct head and the correct dependency type (or
no head if the token is a root).

• MWU accuracy: Labeled precision, recall and Fβ=1

score for the special ID relation (only applicable under
the baseline condition).

Table 3 shows the accuracy with which the parsers can
learn to recognize MWUs by combining their component
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Model Prec Rec Fβ=1

Non-lexical 55.6 27.4 36.7
Lexical 75.7 67.1 71.1

Table 3: Parsing accuracy for MWUs only

word tokens into left-headed dependency chains labeled
with the dedicated ID relation. We see that none of the
parsers trained on the baseline data achieve a very high ac-
curacy. Not surprisingly, the lexicalized parser performs
best, with 75.7% precision and 67.1% recall for the ID re-
lation, while the non-lexicalized parser only reaches 55.6%
precision and 27.4% recall. Although these results are per-
haps not very interesting in themselves, we can at least take
the performance of the lexicalized parser, corresponding to
an Fβ=1 score of 71.1%, as a baseline for further experi-
ments with fully automatic MWU recognition. If the over-
all accuracy is going to improve, a dedicated MWU recog-
nizer will at least have to do better than the parser on its
own.

Table 4 compares the accuracy of the parsers when
trained and tested on the two versions of the data set. We
see that both parsers perform consistently better with the
MWU representation than with the baseline representation,
even if errors in the MWUs themselves are not counted.
With respect to the basic attachment score, there is an im-
provement from 83.0% to 83.5% for the non-lexical parser,
and from 84.7% to 85.3% for the lexical one. With respect
to labeled attachment, the improvement is even greater. The
non-lexical parser goes from 76.1% to 77.4%, and the lexi-
cal parser from 80.7% to 81.6%. All differences are signif-
icant beyond the 0.0001 level (McNemar’s test).

The experimental results show unequivocally that the
recognition of MWUs improves parsing accuracy not only
with respect to the MWUs themselves, but also with re-
spect to surrounding syntactic structures. The differences
are quantitatively fairly small, and the largest gain only cor-
responds to a 5% error reduction, but we have to keep in
mind that MWUs are relatively rare themselves. We noted
earlier that there are about 2 MWUs per 100 words. So, if
parsing accuracy improves by 1% then, roughly speaking,
one MWU in two makes a difference. It is therefore not
surprising that the differences are highly statistically sig-
nificant, even though they are numerically small compared
to the total number of parsing errors.

On the other hand, we must also remember that the
MWU representation used in the experiments is a simu-
lation of 100% accurate MWU recognition, which is of
course impossible to achieve in practice. It remains to be
seen how much of the theoretically possible improvement
can be realized when using automatic methods for MWU
recognition.

If we look in detail at the kind of parsing errors that are
eliminated under the MWU condition, they can be divided
into two broad classes:

• Errors that occur in the vicinity of a MWU and where
the baseline parsers are misled either by an incorrect
analysis of the MWU or by the fact that the MWU is
not recognized as a lexical unit. We will call these
MIC errors (for “MWU in context”).

• Errors that do not occur in the vicinity of a MWU but
which are due to “noise” in the training data resulting
from the failure to recognize MWUs as lexical units.
We will call these MOC errors (for “MWU out of con-
text”).

MIC errors can be further subdivided into several types,
and although an exhaustive analysis of these errors is be-
yond the scope of this paper, we will discuss two of the
most important types here. The first type occurs when the
internal structure of the MWU is anomalous given its syn-
tactic function as a unit. A good example is found in Fig-
ure 3, involving the MWU vad beträffar (as regards), where
the second word token is a finite verb. Thus, the lexical
baseline parser analyzes this as a unit with clause structure,
treating the wh-pronoun vad (what) as the subject of the
verb beträffar (regards), and the following conjoined noun
phrase jordbruk och industri (agriculture and industry) as
the object of this verb. By contrast, the lexical MWU parser
recognizes vad beträffar as a compound preposition, which
yields a correct analysis of the entire structure.

The second type of error occurs when the internal struc-
ture of the MWU is compatible with its syntactic function,
but where the fact that it is not recognized as a lexical unit
results in an incorrect analysis of the surrounding structure,
typically in the form of an attachment error. Figure 4 gives
an example involving the compound adverb i regel (as a
rule), which is analyzed as an ordinary prepositional phrase
by the lexical baseline parser. Now, this does not lead to an
incorrect analysis of its syntactic function, since the adver-
bial function is perfectly compatible with a prepositional
phrase analysis. However, it leads to an incorrect attach-
ment decision in that the following agent phrase av kom-
muner (by communes) is attached as an attribute to the noun
regel (rule), instead of being treated as an adverbial to the
passive verb drivs (is run). Again, the MWU parser avoids
this problem, because the unit i regel is not only assigned an
adverbial function but is also treated as a compound adverb.

In the foregoing example, the error consists in making
an incorrect attachment to the MWU, but it is also com-
mon for the baseline parsers to make incorrect attachments
of MWUs, where the corresponding MWU parsers make
correct attachments. A rather amusing example is the fol-
lowing:
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Condition Non-lexical Lexical
AS LAS AS LAS

Baseline 83.0 76.1 84.7 80.7
MWU 83.5 77.4 85.3 81.6

Table 4: Parsing accuracy excluding MWUs

Vi skulle ha stoppat dem i kassetter i stället för
att slicka igen kuvert.

Baseline: We should have put them into cassettes
in the rack in order to seal envelopes.

MWU: We should have put them into cassettes
instead of sealing envelopes.

While the lexical MWU parser correctly analyzes i stället
för (instead of) as a compound preposition introducing an
adverbial modifier, the baseline parser treats i stället (in
the place) as a prepositional phrase, attaching it as a post-
modifier to the noun kassetter (cassettes). However, since
the word form stället is ambiguous and can also mean “the
rack”, and since för att can be analyzed as a compound sub-
ordinating conjunction (in order to), it is actually possible
to derive a coherent (but contextually incorrect) analysis of
the sentence where i stället is indeed a prepositional phrase,
possibly acting as a nominal post-modifier.

MOC errors are harder to categorize than MIC errors
since they are more indirectly related to the analysis of
MWUs as such. But we can illustrate the phenomenon with
a case that is fairly frequent in the Swedish data, namely
the two-word sequence så att. This can either be a multi-
word subordinating conjunction with a consecutive mean-
ing (corresponding to so that in English), or the adverb så
(so, like that) followed by either the subordinating conjunc-
tion att (that) or the infinitive marker att (to). Now, when
trained on a corpus where these two cases are only distin-
guished through their syntactic analysis and not as one ver-
sus two lexical units, the parser will have to learn to dis-
ambiguate them syntactically. This will typically result in
errors going in both directions, i.e. not only MWUs being
analyzed as syntactic combinations but also syntactic com-
binations being analyzed as MWUs. And whereas the for-
mer type of error can be eliminated by recognizing MWUs
prior to parsing new input, the latter type will remain unless
the same MWU recognition is also applied to the training
data for the parser.

Finally, it may be worth noting that the recognition of
MWUs also improves the robustness of the parsers. Thus,
while the lexical baseline parser fails to produce a well-
formed dependency graph (i.e. a complete projective tree)
for 13.3% of the sentences in the test data set, the corre-
sponding figure for the lexical MWU parser is only 10.8%.
(The corresponding figures for the non-lexical parser are
8.8% and 7.8%.) An inspection of the problematic sen-
tences reveals that accuracy and robustness go hand in hand
in this case. We have seen examples above where the base-
line parsers make the wrong attachment because they fail
to recognize MWUs properly. In the case of incomplete
sentences, the consequence is instead that the parsers make

no attachment. But the cause of the problem is the same in
both cases.

To sum up, we have seen that the recognition of MWUs
can improve the quality of data-driven parsing in several
different ways. First of all, it may improve the consistency
of the training data, by eliminating word sequences that
can be interpreted both as MWUs and as syntactic com-
binations, which leads to an improvement in overall pars-
ing accuracy. Secondly, it can eliminate parsing errors both
within MWUs and in their relation to surrounding syntactic
structures. Finally, the gain in accuracy may also lead to an
improvement in robustness.

5. Conclusion
In this paper, we have investigated the influence of

MWU recognition on parsing accuracy for a determinis-
tic dependency parser based on memory-based learning.
We have simulated the effect of a perfect MWU recognizer
through manual annotation of MWUs, in particular multi-
word names and compound function words, in corpus data
used for training and testing two different versions of the
parser, one lexicalized and one non-lexicalized.

The results show a significant improvement in parsing
accuracy not only for MWUs themselves, but also with
respect to surrounding syntactic structures. The improve-
ment holds for both labeled and unlabeled attachment ac-
curacy and is consistent for both versions of the parser.
The greatest improvement (labeled attachment for the non-
lexical parser) corresponds to a 5% error reduction, which
is substantial given the relatively low frequency of MWUs
in the data. In addition to the quantitative analysis, we have
also presented an analysis of some of the most important er-
ror types that are eliminated by the recognition of MWUs,
making a distinction between errors that occur in the con-
text of MWUs (MIC errors) and errors that occur in other
contexts but are due to the presence of unanalyzed MWUs
in the training data (MOC errors).

The results presented in this study can be taken as an
indication of the maximum gain in parsing accuracy that
can be achieved by using MWU recognition prior to train-
ing and parsing, at least when restricted to the MWU cat-
egories represented in our data. An important topic for fu-
ture research is to see how much of this potential can be
realized in practice, when relying on automatic recogni-
tion of MWUs rather than manually annotated corpus data.
However, it should also be remembered that since the orig-
inal corpus annotation in our case was done for a different
purpose than facilitating syntactic parsing, we do not know
to what extent the recognized categories of MWUs are the
most suitable to improve parsing performance. This may
mean that the potential for improvement is actually greater
than indicated by our experimental results.
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Finally, it should be pointed out again that we have re-
ally only considered a special case of the general questions
formulated in the introduction. What we have shown is that
for a particular kind of parser, a deterministic dependency
parser guided by memory-based learning, there is a small
but significant gain in accuracy that results from recogniz-
ing MWUs prior to training and parsing. It is an open ques-
tion how far these results can be generalized to other pars-
ing methods, in particular methods that are grammar-based
rather than data-driven.
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Figure 3: Syntactically anomalous MWU: Baseline (top) and MWU (bottom)
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Abstract

The paper presents an approach to interactively refining user
search formulations and its evaluation in the new High Accuracy
Retrieval from Documents (HARD) track of TREC-12. The
method consists of showing to the user a list of noun phrases,
extracted from the initial document set, and then expanding the
query with the terms taken from the phrases selected by the user.
The results show that the method yielded significant gains in
retrieval performance. The paper also discusses post-TREC
experiments conducted to explore the use of Pointwise Mutual
Information measure in selecting multiword units for query
expansion and the use of n-grams in the search process.

1  Introduction
Query expansion following relevance feedback is a well-
established technique in information retrieval, which aims
at improving user search performance. It combines user
and system effort towards selecting and adding extra
terms to the original query. The traditional model of query
expansion following relevance feedback is as follows: the
user reads a representation of a retrieved document,
typically its full-text or abstract, and provides the system
with a binary relevance judgement. After that the system
extracts query expansion terms from the document, which
are added to the query either manually by the searcher –
interactive query expansion, or automatically – automatic
query expansion. Intuitively interactive query expansion
should produce better results than automatic, however this
is not consistently the case  (Beaulieu 1997, Koenemann
and Belkin 1996, Ruthven 2003).

In this paper we present a new approach to
interactive query expansion, which we developed and
tested within the framework of the High Accuracy
Retrieval from Documents (HARD) track of TREC (Text
Retrieval Conference).

1.1 HARD track

The Text REtrieval Conference (TREC), co-sponsored by
the National Institute of Standards and Technology and
U.S. Department of Defense, was started in 1992 to
support research into large-scale evaluation of text
retrieval methodologies.

The main goal of the new HARD track in TREC-12 is
to explore what techniques could be used to improve
search results by using two types of information:

1. Extra-linguistic contextual information about the user
and the information need, which was provided by track
organisers in the form of metadata. It specifies the
following:

Genre – the type of documents that the searcher is
looking for. It has the following values:
- Overview (general news related to the topic);
- Reaction (news commentary on the topic);
- I-Reaction (as above, but about non-US

commentary)
- Any.
Purpose of the user’s search, which has one of the
following values:
- Background (the searcher is interested in the

background information for the topic);
- Details (the searcher is interested in the details of

the topic);
- Answer (the searcher wants to know the answer to

a specific question);
- Any.
Familiarity of the user with the topic on a five-point
scale.
Granularity – the amount of text the user is expecting
in response to the query.  It has the following values:
Document, Passage, Sentence, Phrase, Any.
Related text – sample relevant text found by the users
from any source, except the evaluation corpus.

2. Relevance feedback given by the user in response to
topic clarification questions. This information was elicited
by each site by means of a (manually or automatically)
composed set of clarification forms per topic. The forms
are filled in by the annotators (users), and provide
additional search criteria.

In more detail the HARD track evaluation scenario
consists of the following steps:

1) The track organisers invite annotators, each of whom
formulates one or more topics. An example of a typical
HARD topic is given below:

Title: Red Cross activities

Description: What has been the Red Cross's international
role in the last year?

Narrative: Articles concerning the Red Cross's activities
around the globe are on topic. Has the RC's role changed?
Information restricted to international relief efforts that do
not include the RC are off-topic.
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Purpose: Details

Genre: Overview

Granularity: Sentence

Familiarity: 2

2) Participants receive Title, Description and Narrative
sections of the topics, and use any information from them
to produce one or more baseline runs.

3) Participants produce zero or more clarification forms
with the purpose of obtaining feedback from the
annotators. Only two forms were guaranteed to be filled
out and returned. According to the HARD track
specifications, a clarification form for each topic must fit
into a screen  with 1152 x 900 pixels resolution, and the
user may spend no more than 3 minutes filling out each
form.

4) All clarification forms from different sites for a topic
are filled out by the annotator, who has composed that
topic.

5) Participants receive the topic metadata and the
annotators’ responses to clarification forms, and use any
data from them to produce one or more final runs.

6) Two runs per site (baseline and final) are judged by the
annotators. Top 75 documents, retrieved for each topic in
each of these runs, are assigned binary relevance
judgement by the annotator – author of the topic.

7) The annotators’ relevance judgements are then used to
calculate the performance metrics (see section 3).

The evaluation corpus used in the HARD track
consists of 372,219 documents, and includes three
newswire corpora (New York Times, Associated Press
Worldstream and Xinghua English) and two governmental
corpora (The Congressional Record and Federal Register).
The overall size of the corpus is 1.7Gb.

The primary goal of our participation in the track was
to investigate how to achieve high retrieval accuracy
through relevance feedback. The secondary goal was to
study ways of reducing the amount of time and effort the
user spends on making a correct relevance judgement.

Traditionally in bibliographical and library IR
systems the hitlist of retrieved documents is represented in
the form of the titles and/or the first few sentences of each
document. Based on this information the user has to make
initial implicit relevance judgements: whether to refer to
the full text document or not. Explicit relevance feedback
is typically requested by IR systems after the user has
seen the full-text document, an example of such IR system
is Okapi (Robertson et al. 2000, Beaulieu 1997).
Reference to full text documents is obviously time-
consuming, therefore it is important to represent
documents in the hitlist in such a form, that would enable
the users to reliably judge their relevance without
referring to the full text. Arguably, the title and the first
few sentences of the document are frequently not
sufficient to make correct relevance judgement. Query-
biased summaries, usually constructed through the
extraction of sentences that contain higher proportion of
query terms than the rest of the text – may contain more

relevance clues than generic document representations.
Tombros and Sanderson (1998) compared query-biased
summaries with the titles plus the first few sentences of
the documents by how many times the users have to
request full-text documents to verify their relevance/non-
relevance. They discovered that subjects using query-
biased summaries refer to the full text of only 1.32%
documents, while subjects using titles and first few
sentences refer to 23.7% of documents. This suggests that
query-biased representations are likely to contain more
relevance clues than generic document representations.

We have experimented with a similar approach in
HARD track. Given the restrictions on the available space
for relevance feedback, we created micro-summaries that
consisted of single sentences for each of the top ranked
documents in the baseline run. The sentences were
selected according to concentration of the content-bearing
and query-related words in them. The users were asked to
select those sentences that might indicate relevant
documents. Contrary to our preliminary experiments, the
official HARD track runs for this method was not
successful (Vechtomova 2004). In this paper we,
therefore, describe the more successful method of directly
eliciting query expansion terms from the users and
evaluation of its effectiveness in HARD track of TREC
2003.

The method extracts noun phrases from top-ranked
documents retrieved in the baseline run and asks the user
to select those, which might be useful in retrieving
relevant documents. The selected phrases are then used in
constructing an expanded query, which retrieves a new set
of documents. This approach aims to minimise the amount
of text the user has to read in relevance feedback, and to
focus the user’s attention on the key information clues
from the documents.

The remainder of this paper is organised as follows:
section 2 presents the query expansion method we
developed, section 3 discusses its evaluation, sections 4
and 5 describe post-TREC experiments we have
conducted with phrases. Section 6 concludes the paper
and outlines future research directions.

2 Query Expansion Method
The user feedback mechanism that we evaluated consists
of automatically selecting noun phrases from the top-
ranked documents retrieved in the baseline run, and
asking the users to select all phrases that contain possibly
useful query expansion terms.

The research question explored here is whether noun
phrases provide sufficient context for the user to select
potentially useful terms for query expansion.

An important question in query expansion is which
part of the document should be used in extracting
expansion terms/phrases. Two common approaches in IR
are: (1) to extract candidate terms from the entire
document; (2) to extract them only from the best matching
passages. The rationale for the second approach is that
documents may be about multiple topics, not all of which
are relevant to the user’s query, therefore we would
reduce the amount of noise by extracting terms/phrases
only from those parts of the documents, which are likely

-48-



to be related to the user’s query.
We developed a method of selecting sentences in the

documents, which are (1) most likely to be related to the
query, and (2) have high information density.  The best n
sentences are then used for extracting noun phrases. In
more detail the sentence selection algorithm is outlined
below.

In all our experiments we used an experimental IR
system Okapi (Robertson et al. 2000), and its best-match
search function BM25.

2.1 Sentence selection
The sentence selection algorithm consists of the following
steps:

We take N top-ranked documents, retrieved in
response to query terms from the topic title. The full-text
of each of the documents is then split into sentences. For
every sentence that contains one or more query terms, i.e.
any term from the title field of the topic statement, two
scores are calculated: S1 and S2.

Sentence selection score 1 (S1) is the sum of idf of all
query terms present in the sentence.

Sentence selection score 2 (S2):

Where: Wi – Weight of the term i, see (3);
fs – length normalisation factor for sentence s, see (4).

The weight of each term in the sentence, except
stopwords, is calculated as follows:

Where: idfi – inverse document frequency of term i in the
corpus; tfi – frequency of term i in the document; tmax – tf
of the term with the highest frequency in the document.

To normalise the length of the sentence we
introduced the sentence length normalisation factor f:

Where: smax – the length of the longest sentence in the
document, measured as the number of non-stopwords it
contains; slen – the length of the current sentence.

All sentences in the document were ranked by S1 as
the primary score and S2 as the secondary score. Thus, we
first select the sentences that contain more query terms,
and therefore are more likely to be related to the user’s
query, and secondarily, from this pool of sentences select
the one which is more content-bearing, i.e. containing a

higher proportion of terms with high tf*idf weights.

2.2 Noun phrase selection
We take top 25 documents from the baseline run, and
select 2 sentences per document using the algorithm
described above. We have not experimented with
alternative values for these two parameters.

We then apply Brill’s rule-based tagger (Brill 1995)
and BaseNP noun phrase chunker (Ramshaw and Marcus
1995) to extract noun phrases from these sentences.

The phrases are then parsed in Okapi to obtain their
term weights, removing all stopwords and phrases
consisting entirely of the original query terms. The
remaining phrases are ranked by the sum of weights of
their constituent terms. Top 78 phrases are then included
in the clarification form for the user to select. This is the
maximum number of phrases that could fit into the
clarification form.

All user-selected phrases were split into single terms,
which were then used to expand the original user query.
The expanded query was then searched against the HARD
track database using Okapi BM25 search function. The
official TREC evaluation results are discussed in section
3.

Following TREC 2003 we have also experimented
with:
1) the use of phrases in searching instead of single

terms;
2) the use of an association measure (pointwise mutual

information) in selecting noun phrases for query
expansion.

These experiments and their results are discussed in
sections 4 and 5.

3   Evaluation
The runs submitted to the HARD track were evaluated in
three different ways. The first two evaluations are done at
the document level only, whereas the last one takes into
account the granularity metadata.

1. SOFT-DOC – document-level evaluation, where only
the traditional TREC topic formulations (title,
description, narrative) are used as relevance criteria.

2. HARD-DOC – the same as the above, plus ‘purpose’,
‘genre’ and ‘familiarity’ metadata are used as
additional relevance criteria.

3. HARD-PSG – passage-level evaluation, which in
addition to all criteria in HARD-DOC also requires
that retrieved items satisfy the granularity metadata
(Allan 2004).

Document-level evaluation was done by the
traditional IR metrics of mean average precision and
precision at various document cutoff points.  In this paper
we focus on document-level evaluation. Passage-level
evaluation is discussed elsewhere (Vechtomova  et al.
2004).
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3.1  Document-level evaluation
For all of our runs we used Okapi BSS (Basic Search
System). For the baseline run we used keywords from the
title field only, as these proved to be most effective in our
preliminary experiments. Topic titles were parsed in
Okapi, weighted and searched using BM25 function
against the HARD track corpus.

Document-level results of the submitted runs are
given in table 1. UWAThard1 is the baseline run using
original query terms from the topic titles. UWAThard3 is
an experimental run using the query expansion method
described earlier. Query expansion resulted in 18%
increase in average precision (SOFT-DOC evaluation)
and 26.4% increase in average precision (HARD-DOC
evaluation). Both improvements are statistically
significant (using t-test at .05 significance level). On
average 19 phrases were selected by users per topic.

Run SOFT-DOC
Evaluation

HARD-DOC
evaluation

P@ 10 AveP P@ 10 AveP
UWAThard1
(baseline run) 0.4875 0.3134 0.3875 0.2638

UWAThard3
(experimental

run)
0.5958 0.3719 0.4854 0.3335

Table 1: Document-level evaluation results

In total 88 runs were submitted by participants to the
HARD track. All our submitted runs are above the median
in all evaluation measures shown in table 1. The only
participating site, whose expansion runs performed better
than our UWAThard3 run, was the Queen’s college group
(Kwok et al. 2004). Their best baseline system achieved
32.7% AveP (HARD-DOC) and their best result after
clarification forms was 36%, which gives 10% increase
over the baseline. We have achieved 26% improvement
over the baseline (HARD-DOC), which is the highest
increase over baseline among the top 50% highest-scoring
baseline runs.

3.2. Analysis of performance by topic
We have conducted a topic-by-topic analysis of its
performance in comparison with the baseline. Figure 1
shows the average precision (HARD-DOC) of these two
runs by topic. It is not surprising, that performance of
query expansion following blind feedback tends to depend
on performance of the original query. The fewer relevant
documents are retrieved at the top of the ranked list by the
original query, the fewer good candidate query expansion
terms are extracted, and hence the lower is the
performance of the expanded run. This tendency is
evident from Figure 1.

We have analysed two groups of topics: (1) topics,
which yielded significantly worse results in runs with the
expanded query (UWAThard3) than runs with the original
query terms (baseline); and (2) topics, which had low
performance both with the original and the expanded
queries. Some examples of topic titles in the first group
are: “Corporate mergers” (topic 222), “Sports scandals”
(223), “Oscars” (53) and “IPO activity” (196).  One factor

that all of these topics have in common is that query
expansion phrases selected by the users from the

Figure 1: Results by topic of the baseline (UWAThard1)
and the query expansion run (UWAThard3)

candidate phrases shown to them contain a large number
of proper names.

Generally, proper names are considered to be good
candidates for query expansion, as they usually have
relatively low collection frequency. However, in our
current model, we break user-selected multi-term phrases
into their constituent terms and use them in the search
process. For example, a proper name “Dan Leonard”
selected by users for query expansion in topic 223
(“Sports scandals”) was decomposed into single terms,
each of which could match references to unrelated
individuals.  This results in many false matches. The
situation is also aggravated in many cases by high idf
values of some of the proper name components, which
dominate the search results.

Examples of topic titles in the second group are:
“National leadership transitions” (187), “School
development” (182),  “Virtual defense” (115), “Rewriting
Indian history” (177) and “Restricting the Internet” (186).
The majority of terms in these queries have very high
number of postings, which suggests that they are either
topic-neutral words (e.g., restrict, rewrite, transition), or
they represent ideas or entities that were popular in
newswire and governmental publications at the time (e.g.,
Internet, Indian). Moreover, these queries do not represent
fixed phrases, i.e., that co-occur frequently in English
language.  Compare queries in this group to the query
“Mad cow disease” (65), which performed very well.
Although, the number of postings of individual terms is
very high, the query represents a fixed expression, which
occurs as a phrase in 213 documents.

Another reason of failure, which applies to both
groups above, is over-stemming. We used Porter’s
stemmer with the strong stemming function in our
searches. This function reduces various derivatives of the
same lexeme to a common stem. For example, topic
“Product customization” failed, because stems ‘product’
and ‘custom’ matched such words as ‘production’,
‘productivity’, ‘customer’, ‘customs’.  Strong stemming is
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seen as a recall-enhancing technique. Weak stemming is
likely to be more appropriate to the HARD task, as we are
more interested in achieving high precision, rather than
recall. Weak stemming keeps suffixes, and removes only
endings, such as plural forms of nouns and past tense
forms of verbs.

Another common reason for failure is that, some topic
titles simply have insufficient information, for example in
topic 186 (“Restricting the Internet”), the Description and
Narrative sections narrow down the relevance criteria to
the documents related to governmental restrictions of the
Internet use in China.

4 Use of Statistical Association Measures
for Noun Phrase Selection

In this and the following section we describe post-TREC
experiments that we have conducted with the goal of
better understanding the effect of noun phrases on
retrieval performance.

In the phrase selection method, described in section 2,
noun phrases, output by the noun phrase chunker, were
ranked using the average idf of their constituent terms.
This method is suitable for determining the
informativeness of the individual words in the phrase,
however it does not tell us whether the n-gram is a fixed
multiword unit or a chance co-occurrence of words. In our
HARD track experiments we noted that some of the
phrases output by the chunker were, in fact, unsatisfactory
chance word combinations.

We decided to explore the question whether the use
of multiword units selected by Pointwise Mutual
Information (Church et al. 1991) rather than any n-grams
extracted by the phrase chunker in selecting terms for
query expansion would result in better retrieval
performance. We have conducted several experimental
runs to address the above question, which are outlined
below:

Run 1: All n-grams (n >= 2), output by the noun
phrase chunker, were ranked by the average idf of their
constituent terms. Single terms from the top m phrases
were added to the original query terms from the topic title
and searched using BM25 function.

Run 2: From each n-gram (n >= 2), output by the
noun phrase chunker, we extracted all bigrams of adjacent
words. For each bigram, Pointwise Mutual Information
(PMI) was calculated as follows:

Where: 
f(x,y) - the number of documents in the corpus containing
words x and y adjacent to each other and in the same order
of occurrence;
f(x) and f(y) - the numbers of documents that contain
words x and y respectively;
N – the number of documents in the corpus.

The reasons for using numbers of documents instead
of word frequencies are pragmatic: numbers of documents
are easily obtainable from the IR system Okapi, whereas

calculating actual bigram frequencies is computationally
expensive. We recognise, however, that the PMI score is
more accurate when word frequencies are used.

N-grams were ranked by the highest PMI of their
constituent bigrams. This is a rather crude selection
method, but given the fact that we apply it to syntactically
selected noun phrases,  it is likely to produce satisfactory
results.

Single terms from the top m n-grams were used in
retrieval in the same manner as in run 1.

Run 3: PMI has limitations as a tool for selecting
strongly associated bigrams, one of which is that it is
biased towards low frequency words. Following Manning
and Schuetze (1999), we used I(x,y)*f(x,y) for ranking
bigrams in this run. The other parameters in this run are
the same as in run 2.

Run 4: The same as run 1; all n-grams with n >= 1 are
used.

Run 5: The same as run 4; n-grams containing no
bigrams with PMI > 0 are removed.

In all runs the number of query expansion
terms/phrases (m) was set to 30. The results are presented
in table 2.

Run Precision
@ 10

Average
Precision

Run 1 0.5220 0.2837
Run 2 0.5180 0.2730
Run 3 0.5220 0.2782
Run 4 0.4980 0.2805
Run 5 0.5200 0.2776

Table 2: Evaluation results

Top phrases ranked by
average idf of their
constituent terms

Top phrases ranked by the
highest I(x,y)*f(x,y) of their

constituent bigrams
VietCombank Ho Chi Minh City Japanese yen

emotive topic U.S dollar

15-nation bloc VietCombank Ho Chi Minh City

VND-euro exchange rate central bank

rollercoaster day monetary policy

unified currency exchange rate risks

HKFE's other Rolling Forex
futures contracts

dollar euro exchange rate

Euro Transaction exchange rate stability

Shorten Euro Transition Period
Brussels

VND-euro exchange rate

third pillar percentage point

BSS 15-nation bloc

Rolling Forex Euro Futures
Contract

euro trades

tighter controls oil pricing

euro zone neutral stance

Own Single Currency euro zone nations

euro bonds euro zone

Monday's local newspaper De
Morgen

currency traders

euro's launch Monday's local newspaper De
Morgen

Table 3: Top-ranked phrases (phrases in the shaded cells
are selected by both methods).
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The results do not provide any evidence that PMI is
more useful than idf in selecting phrases for automatic
query expansion. We have not tried other association
measures, which may produce different results than PMI.
Nevertheless, PMI or I(x,y)*f(x,y) can still be useful in
selecting candidate query expansion phrases to be shown
to the user in interactive query expansion. Table 3 shows
top phrases ranked by idf , and I(x,y)*f(x,y) for the topic
(180) “Euro Introduced”.

5 Use of Phrases vs. Single Words in Search
Intuitively, the use of phrases, such as compound terms
and proper names in search is expected to result in higher
precision than the use of their constituent words
separately.

We hypothesise that adjacent pairs of words, which
have strong degree of association, will result in higher
search precision when used in search as a phrase, as
opposed to when used as single words.

To test this hypothesis we conducted an experiment,
comparing two experimental retrieval runs against the
baseline. The runs are described in more detail below.

Baseline run: All terms from TREC titles were used
in search as single terms. BM25 search function was used
to perform the search. This was exactly the same way we
searched in the baseline run of HARD track.

Experimental run 1: All bigrams of adjacent words in
TREC titles were extracted. For each bigram, Pointwise
Mutual Information was calculated.

All bigrams with PMI > 0 are used in search as a
phrase, i.e. using Adjacency1 operator. Bigrams with
PMI < 0 are split into individual words.

For example, in the topic title “Amusement Park
Safety”

I (amusement, park) = 1.66
I (park, safety) = -7.6

The logical representation of the final query will be:

(amusement Adjacency park) BM25 safety

Experimental run 2: The same as the experimental
run 1 above, but all terms in the title are also added to the
query as single terms, for example:

(amusement Adjacency park) BM25 safety BM25
amusement BM25 park

The rationale behind including all terms into the
query as single terms, is to relax the search criteria: if the
phrase is rare, and retrieves only few documents, use of
single terms will ensure that other documents which
contain parts of the phrase will also be retrieved.
Typically, phrases have quite high idf, therefore top
retrieved documents are very likely to contain the phrases,
                                                
1 Adjacency is a pseudo-Boolean operator, which retrieves
an unranked set of all documents, which contain the
specified terms in adjacent positions in the same order as
they were entered in the search statement.

used in the query.
Only 16 topic titles out of 50 had any bigrams with

positive PMI. Both experimental runs had worse overall
average precision than the baseline (see table 4). Only 2
topics in the experimental run 1 had better AveP than the
baseline, whereas 7 topics in the experimental run 2 had
better AveP than the baseline (see figure 2).

Run Precision
@ 10

Average
precision

Single terms
(baseline)

0.5240 0.3087

Bigrams + remaining
single terms
(experimental run 1)

0.5000 0.2819

Bigrams + all single
terms
(experimental run 2)

0.5180 0.3065

Table 4: Phrase search evaluation results

One of the reasons for this counter-intuitive result
could be the fact that the bigrams may contain terms that
are themselves in the query; either as single terms or as
part of other bigrams. Robertson and his colleagues
suggest that search term weighting should take into
account the case of bigrams that have as their constituent
terms single query terms, and propose a weighting scheme
that adjusts their weights (Robertson et al. 2004).
However, their method does not take into account the case
of two or more bigrams that share a common term. We
need further research to understand and deal with the
complex case of bigrams containing other query terms,
either, those which are part of other bigrams or exist as
single terms in the query.

Figure 2: Results in average precision by topic of the two
experimental runs and the baseline run.

6  Conclusions and Future Work
In this paper we presented a user-assisted search
refinement technique, which consisted in showing to the
user a list of noun phrases, extracted from the initial
document set, and then expanding the query with the
terms from the user-selected phrases.
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The focus of our experiments in the HARD track of
TREC-12 was on developing effective methods of
gathering and utilising the user’s relevance feedback. The
evaluation results suggest that the expansion method
overall is promising, demonstrating statistically
significant performance improvement over the baseline
run. More analysis needs to be done to determine the key
factors influencing the performance of individual topics.

Post-TREC experiments conducted suggest that the
use of PMI as a means of selecting n-grams for the
purpose of term selection for query expansion is not
promising. However, we should note that there was a
number of simplifying assumptions in the use of PMI for
the above purpose, which might have had a negative
impact on its usefulness. It seems, however, possible that
the use of PMI multiplied by the joint term frequency in
selecting candidate query expansion phrases would result
in a better selection of phrases to be shown to the user in
interactive query expansion. We intend to experiment
with alternative association measures to draw more strong
conclusions about the usefulness of multiword units in IR.

After the official TREC results, we also conducted
experiments to explore the use of phrases in searching.
The results were not positive and confirmed the
conclusions of the previous experiments reported in IR
literature. We noted the difficulty in adjusting the weights
of bigrams in searching when their constituent terms
include other search terms.

Acknowledgements
This material is based on work supported in part by
Natural Sciences and Engineering Research Council of
Canada.

References
Allan, J. (2004). HARD Track Overview. Proceedings of

the Twelfth Text Retrieval Conference, November 18-
21, 2003, Gaithersburg, MD.

Beaulieu, M. (1997). Experiments with interfaces to
support Query Expansion. Journal of Documentation,
53(1), pp. 8-19

Brill, E. (1995). Transformation-based error-driven
learning and natural language processing: a case study
in part of speech tagging. Computational Linguistics,
21(4), pp. 543-565.

Church, K., Gale, W., Hanks, P. and Hindle D. (1991).
Using statistics in lexical analysis. In Lexical
Acquisition: Using On-line Resources to Build a
Lexicon, ed. U. Zernik, Englewood Cliffs, NJ:
Lawrence Elbraum Associates, pp. 115-164.

Koenemann, J. and Belkin, N. J. (1996). A case for
interaction: a study of interactive information retrieval
behavior and effectiveness. Proceedings of the Human
Factors in Computing Systems Conference, Zurich, pp.
205-215.

Kwok, L. et al. (2004). TREC2003 Robust, HARD and
QA track experiments using PIRCS. Proceedings of the
Twelfth Text Retrieval Conference, November 18-21,
2003, Gaithersburg, MD.

Manning, C.D. and Schuetze, H. (1999). Foundations of
Statistical Natural Language Processing, The MIT

Press, Cambridge, Massachusetts, 1999.
Ramshaw, L. and Marcus, M. (1995). Text Chunking

Using Transformation-Based Learning. Proceedings of
the Third ACL Workshop on Very Large Corpora,
MIT.

Robertson, S.E., Zaragoza, H. and Taylor, M. (2004).
Microsoft Cambridge at TREC–12: HARD track.
Proceedings of the Twelfth Text Retrieval Conference,
November 18-21, 2003, Gaithersburg, MD.

Robertson, S.E., Walker, S. and Beaulieu, M. (2000).
Experimentation as a way of life: Okapi at TREC.
Information Processing and Management, 36, pp. 95-
108.

Ruthven, I. (2003).  Re-examining the potential
effectiveness of interactive query expansion.
Proceedings of the 26th ACM-SIGIR conference,
Toronto, Canada, pp. 213-220.

Sparck Jones, K., Walker, S. and Robertson, S.E. (2000).
A probabilistic model of information retrieval:
development and comparative experiments. Information
Processing and Management, 36(6), pp. 779-808 (Part
1); pp. 809-840 (Part 2).

Tombros, A. and Sanderson, M.  (1998). Advantages of
Query Biased Summaries in Information Retrieval.
Proceedings of the 21st ACM SIGIR conference,
Melbourne, Australia, pp. 2-10.

Vechtomova, O., Karamuftuoglu, M. and Lam, E. (2004).
Interactive Search Refinement Techniques for HARD
Tasks. Proceedings of the Twelfth Text Retrieval
Conference, November 18-21, 2003, Gaithersburg, MD.

-53-



Comparative Evaluation of C-value in the Treatment of Nested Terms

Špela Vintar
Department of Translation

University of Ljubljana
� � � � 	 � �  � � � � �

– 1000 Ljubljana
spela.vintar@guest.arnes.si

Abstract

In statistical term extraction systems the identification and selection of nested term candidates often presents a challenge. The paper
presents an implementation and evaluation of C-value, a heuristic that ranks and/or discards nested terms according to their stability in
the corpus. The method was tested for English and Slovene, for both the overall performance of the term extractor improved using the
proposed treatment of nested terms.

1. Introduction

For term extraction purposes, terms are essentially multi-
word units with the additional property of "termhood".
While nesting, i.e. the occurrence of smaller units within a
larger lexical unit, is usually not the primary concern in
collocation extraction for general language applications, it
presents a core problem in term extraction systems,
particularly in those based on statistical methods. A
statistical term extractor should be able to, firstly, identify
an instance of nesting and, secondly, decide which of the
nested candidates are to be extracted.

In robust applications, as well as in several known
commercial term extraction systems that involve little or
no linguistic pre-processing, adequate treatment of nesting
may be essential to the overall performance of the term
extractor. If, for example, the trigram axial compressive
force is extracted from an untagged corpus, the system
will most probably detect also the statistical relevance of
the bigrams axial compressive and compressive force.
While the latter may indeed be terminologically relevant,
the former is clearly noise and does not correspond to any
of the typical terminological patterns in English.

Even in systems which use morphosyntactic analysis and
extract, for example, noun phrases, the ranking of nested
terms may not be an easy task. Consider for example the
collocation reactor coolant system replacement and the
nested bi- and trigrams it contains. Should reactor coolant
and coolant system both be retained, while system
replacement rejected? Is the extracted fourgram at all
terminologically relevant? Clearly such decisions depend
on the purpose of the term extraction task and on the
requirements of the target users.

We report on an implementation of C-value for the
treatment of nested terms in a bilingual term extraction
system. The system was designed for English and Slovene
in two parallel versions: the statistical version which
works with raw texts and no morphosyntactic tagging to
extract term candidates monolingually and then identify

translation equivalents, while the hybrid version uses
tagged corpora and syntactic term patterns.

The focus of the experiments reported here is on statistical
collocation extraction and the evaluation of the term
ranking achieved through the treatment of nesting. First
we briefly describe the term extraction method used in
both versions of the system, then we present the treatment
of nesting and finally compare results obtained for
English and Slovene. The last section gives a discussion
of the approach together with some ideas for
improvement.

2. Related Work
One method for ranking nested collocations is C-value
(Frantzi & Ananiadou, 1996). The method is a purely
statistical measure of the stability of a collocation in a
given corpus. If a candidate string is not found as nested,
the C-value is calculated from its total frequency and
length. If it is found as nested, the C-value is calculated
from its total frequency, length, frequency as a nested
string, and the number of longer candidate terms it
appears in. C-value was later supplemented by the authors
and used in combination with morphologically processed
data (Frantzi&Ananiadou, 1999). We use a slightly
modified version of C-value as described by
Nakagawa&Mori (1998).

That NLP applications for Slavic languages heavily
depend on morphological processing is a long known fact.� � � � � � � �  � # % ' � ) ) * , . / 	 � 2 � 3 5 # � � 2 5 # / 	 � 3 / 	 5 ; /

-
syntactic clues for the terminological processing of
Serbian. It is however our belief that there is – and will be
for some time – still need for robust, statistical
applications able to handle a wide variety of languages.
Term extractors are for example incorporated into
Translation Memory systems, where term candidates are
identified largely on the basis of frequency and existing
term banks, independently of the language pair.

An alternative method for the resolution of nesting, or
rather collocation extraction with an integrated ranking of
nestings, was proposed by Silva et al. (1999). It uses
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LocalMax, an algorithm that measures the "glue" between
words and proposes possible term boundaries.

It is, however, our observation that many term extraction
methods involve no explicit strategy to tackle this
problem, which probably means that in cases of nesting
no additional ranking is performed and all variants are
extracted if they fulfil other criteria of termhood.

3. Term Extraction Methods
In the statistical version of the term extraction system, the
measure used to extract collocations is the Log-Likelihood
Ratio (LL), which had been identified as a reliable
indicator of terminologically relevant collocations by
various authors (Dunning, 1993). LL applies well to
special purpose corpora because it will extract rare
collocations and is more appropriate for sparse data. The
system is currently tuned to extract contiguous
collocations of length 2-6 units.

To determine the termhood of a candidate collocation, we
use the Term Frequency - Inverse Document Frequency
(tf.idf) of single words. Although this measure of term
weighting is traditionally used in Information Retrieval, is
works well for term extraction.

where N is the number of all documents in a collection,
tfi,j is the frequency of the term wi in the document
collection dj and the document frequency dfi is the number
of documents where the term occurs at least once. The
tf.idf method is a useful measure of termhood only in
cases where the corpus for term extraction, or the
document collection, is heterogeneous. If the method were
applied to a special domain corpus all general terms of the
domain would have been missed.

The hybrid version of the term extractor was designed to
extract predefined tag patterns regardless of their
frequency in the corpus. The patterns were determined in
co-operation with domain experts on the basis of observed
sequences of part-of-speech tags in the corpus. For
Slovene, instead of just part-of-speech it is useful to
include other relevant grammatical categories which help
identify term phrases. For example, case information is
crucial in detecting noun phrase boundaries.

Because nesting is primarily the problem of statistical
term extractors, we will limit the results presented to those
obtained without morphological information or syntax
patterns.

Some results presented by the statistical term extraction
system before the treatment of nesting are presented in
Table 1.

Candidate term C-value
Economic Zone 79.92
Economic operators 29.92
Election Day 219.92
Environmental Fund 29.92
Environmental Impact 49.92
Environmental Protection 309.92
Environmental Protection Program 219.85
European Commission 109.92
European Communities 339.92
European Union 79.93
European Union hereinafter 59.86
European standards 29.93

Table 1: Examples of English extracted term
candidates

4. Implementation of C-value
C-value is a well-known, but not as widely used method
of resolving nested collocations (Frantzi/Ananiadou 1996,
Nakagawa/Mori 1998), which ranks terms according to
their stability in the corpus. C-value is defined as:

where “a” is a collocation, t(a) is the frequency of “a” in
longer candidates of collocations and c(a) is the number of
longer candidates of collocations including “a”. If
frequencies are low, the value may be negative, so that for
more transparent results it might be advisable to multiply
the frequencies accordingly.

Looking at the examples in Table 1 we see that C-value
for longer, but less stable or less relevant collocations, like
European Union hereinafter, is indeed smaller. The
highest C-score in our corpus was assigned to Bank of
Slovenia, a good and terminologically relevant collocation
which might compete with the Bank of Slovenia, Bank of
Slovenia shall or the Bank of. At this point we must give a
short explanation of the way C-value weights
collocations. If the longer phrase is equally frequent and
the shorter phrase occurs with no other modifiers, as is the
case with the Bank of Slovenia, the longer collocation will
be assigned a higher score, as can be seen from the
formula. For this reason, constant modifiers such as
articles or fixed pronouns must be dealt with in some
other way, e.g. by employing a stopword filter over the
candidate list.

C-value helps select the most relevant candidate from a
list of related collocations. Because the score relies
heavily on the frequency of the phrase, we cannot define a
general threshold to filter out nested phrases. It should
also be noted that although the original implementation of
C-value suggests its efficiency also as a term weighting
method, termhood cannot really be determined solely on
the basis of length and frequency.

When dealing with Slovene, absence of morphological
processing will invariably have a negative effect on term
extraction in general, and especially on the calculation of
C-value. Consider the following example:









=

≥+
=

0,0

1,log))log(1(
),(.

,,

tf

tf
df
N

tf
jiidftf

ji
i

ji

)
)(

)(
)()(1)(()(

ac
at

afreqalengthavalueC −−=−

-55-



Candidate term C-value
Ekonomska cona 61.87
Ekonomske cone 71.87
Ekonomske cone Koper 63.75
Ekonomske cone Maribor 63.75

Table 2: Example from Slovene

Because of case inflections, the base form Ekonomska
cona receives a lower score than its two obviously inferior
variations, Ekonomske cone Koper and Ekonomske cone
Maribor. Also, the score of the Slovene term is lower than
the non-inflected English equivalent Economic Zone (see
Table 1).

Nevertheless, the method proved extremely useful in
discarding syntactically incomplete collocations, for
example Adjective + Adjective or Noun + Adjective,
where the final noun was missing.

Candidate term C-value
Okrajna volilna 61.89
Okrajna volilna komisija 123.79
Opravljanje nadzora 31.89
Opravljanje zavarovalnih 71.89
Opravljanje zavarovalnih poslov 143.80

Table 3: Example with resolved nesting

5. Results
Candidate lists were produced with both versions of the
term extractor, statistical and hybrid, and evaluated by a
professional terminologist. Although the system extracted
bilingual term pairs from a parallel corpus, evaluation was
performed only for the Slovene part, because Slovene was
the mother tongue of the evaluator. The statistical system
achieved 0.49 precision at 0.48 recall after the treatment
of nesting, and the linguistic version 0.51 precision at 0.65
recall. To evaluate the impact of the treatment of nesting
on the system, we compared the candidate lists before and
after the treatment of nesting. The former would have
achieved only 0.31 precision with an insignificantly
higher recall of 0.52.

Stat.-before Stat.-after Ling.
Precision 0.31 0.49 0.51
Recall 0.52 0.48 0.65

Table 4: System evaluation

For English, the evaluation of the treatment of nesting
showed that the English candidate list of 2706 items
contained 487 or 18% nestings, of which 81% were
correctly identified and removed.

It should perhaps be noted that the external evaluator
sometimes selected both term variants, the nested shorter
collocation and the longer collocation. This is perfectly
logical considering the nature of terminological work and
the multifarious purposes of terminological resources.
Therefore, for some applications nested terms represent
no noise and thus call for no special ranking.

6. Discussion

Overall results of the system may seem rather poor,
however the evaluation methodology was extremely strict
in the sense that it allowed only candidates of a very high
quality and terminological significance.

An important disadvantage of this method is its
incompleteness, i.e. the limitation of collocation length. In
itself there is no limit, however the formula contains the
factor defined as “number of larger units containing a”.
Clearly, when we extract collocations we impose some
sort of length limit, meaning that for the longest units C-
value will be 0 because no larger units will contain them.

As mentioned above, the efficiency of the system depends
highly on some prerequisites, for example that
collocations containing articles, pronouns, numerals or
non-lexical verbs at the beginning or end must be
processed beforehand using either a stopword filter or a
threshold of term relevance, such as tf.idf.

Furthermore, some issues concerning term nesting remain
subject to discussion as to whether or not they depend on
the domain and the target user (see also Estopa 1999).
Considering examples such as steam generator
replacement project we see that the longer collocation is
highly significant in a given context, but may be irrelevant
for the domain of nuclear engineering in general. The
latter, especially for the purposes of traditional
terminography, would rather include terms like steam
generator. We argue that C-value can be used as a
valuable tuning parameter in adjusting a term extractor to
the user’s requirements.

7. Conclusion
The paper presented an implementation of C-value for
selecting and discarding nested term variants from term
candidate lists produced with a statistical term extraction
system. Results show that the method improves the
performance of the system both for English and Slovene.
Since the method is useful primarily in statistical term
extraction, it would have been beside the point to propose
moprhosyntactic processing as a path for future
improvements. Rather, for inflected languages it might be
useful to include string-based merging of word forms,
which would enable a more accurate calculation of the C-
value.
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