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Abstract 
As the Semantic Web grows the number of tools that support it increases, and a new need arises: the assessment of these tools in order 
to analyse whether they can deal with actual and future performance requirements. In order to evaluate ontology tools’ performance, 
the development and use of benchmark suites for these tools is needed. In this paper we describe the design and execution of a 
benchmark suite for assessing the performance of the WebODE ontology engineering workbench. 

Introduction 
In recent years, much effort has been made to develop 
ontology editors and ontology tools for creating and 
maintaining ontologies with different knowledge models 
and with different underlying knowledge representation 
paradigms (Gómez-Pérez et al., 2003). Ontology tools are 
now used in a wide range of applications and manage 
large upper level and general ontologies, natural language 
resources like thesauri, etc. Hence, ontology tools should 
be evaluated thoroughly in order to analyze whether they 
can deal with actual and future performance requirements. 
For the time being, little effort has been put on creating 
benchmark suites and carrying out performance studies for 
ontology technology, while in other fields there is much 
work already done. For this reason, we think that there is a 
need to construct a benchmark suite for ontology tools. 
This benchmark suite will allow evaluating the ontology 
management services that these tools provide, possibly 
detecting aspects that need optimization in order to allow 
for a better performance and integration of this technology 
into other information systems.  
To carry out this benchmarking study, we have focused on 
the WebODE ontology engineering workbench (Arpírez et 
al., 2003), analyzing the performance of the public 
methods of its API. These methods allow managing the 
ontology components defined in the WebODE knowledge 
model (concepts, relations, instances, axioms, constants, 
bibliographic references and imported terms). Since these 
methods are similar in most of the ontology tools, this 
study can in the future be easily extended to other 
ontology tools, such as Protégé-2000, OntoEdit, KAON, 
etc. 
In this paper we describe, step by step, how we have 
designed and executed a structured benchmark suite in 
order to analyze the performance of these methods. 

Goals of the benchmarking 
The long term goal of benchmarking the WebODE 
ontology engineering workbench is to achieve a 
continuous improvement in the platform’s quality. There 
are other short term goals as: 
• Assess the platform’s performance, so as to be able to 

detect anomalies in it. 
• Monitor the platform, so as to be able to observe the 

performance of critical elements and the effects in 
performance when making changes in the platform. 

• Diagnose future problems of the platform. 

Design of the benchmark suite  
We have selected the 72 ontology management methods 
from WebODE’s API in order to be able to make a 
complete analysis. As every service and application 
supported by WebODE manages ontologies through its 
API methods, knowing these methods’ performance will 
let us know the performance of the services and 
applications. 
As we are interested in the platform’s temporal 
performance, the metric will be the execution time of the 
methods. 
To carry out the study, the data needed will be obtained 
from four different scenarios, where the methods will be 
executed: 
• Over a high load state. In order to be able to detect 

performance anomalies. 
• Repeatedly over the same load state. To be able to 

check the method’s stability.  
• Over incremental load states. To know the load-

performance relationship. 
• With different input parameters. To check if 

changing the method’s input parameters affects its 
performance. 

Definition of the benchmarks 
In order to have a representative and interpretable set of 
tests (Williams et al., 2003), the API methods have been 
classified into five groups according to the kind of 
operation they do: Inserts, Updates, Removes, Selects and 
Non basics. This last group consists of methods that use 
other methods from the API. 
For each selected method, one or more benchmarks have 
been defined according to the variation of its input 
parameters. So, from the 72 API methods we get 128 
different benchmarks. 
Each benchmark executes its correspondig method with 
the selected input parameters and stores the execution 
time of the method. 
If the evaluation of the platform is to be effective, the 
benchmarks must be characterized accurately (Dongarra et 
al., 1987). So, the definition of the benchmarks has been 
completed with two execution parameters and an initial 
load state. 
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Definition of the execution parameters 
As the benchmarks must be robust and scalable, allowing 
variable and unpredictable input rates and behavior (Bull 
et al., 1999; Shirazi et al., 1999), they have been 
parameterized according to two parameters: 
• Load factor (X). Sets the load factor for each 

benchmark’s initial state. 
• Number of iterations (N). Sets the number of 

consecutive executions of the method in a single 
benchmark. 

Definition of the load state 
Every benchmark must be compared according to the 
same situation. So, a common initial load state has been 
defined for each benchmark group defined previously.  
The initial load state of each individual benchmark has 
been defined as the ontology components that must exist 
in the platform in order to execute the benchmark with no 
errors.  
The initial state of each benchmark group is the union of 
the initial states of each benchmark in the group. Table 1 
shows the initial load state of the Updates group. 

Table 1: Initial load state of the Updates group 

Execution of the benchmark suite 
The benchmarks have been implemented with Java, using 
only standard libraries and with no graphical components, 
in order to have a portable benchmark suite. 
Once defined and implemented, each benchmark has been 
run several times with different number of iterations 
(N=10, 50, 75, 100, 200, 300, 500, 1000, 2000, 3000, 
4000, and 5000) and with increasing load factors (X=10, 
50, 75, 100, 200, 300, 500, 1000, 2000, 3000, 4000, and 
5000). As with a load factor of 5000 we have obtained 
enough data to be able to differentiate the methods’ 
performance and their behavior, the benchmarks haven’t 
been executed with higher load factors. 
The execution results have been stored in a hierarchical 
measurement data library, in order to be able to access 
them easily. 

Analysis of the results 
First of all, we have to bear in mind that the conclusions 
obtained after analyzing the results are usually temporary 
limited (Gray, 1993). As the methods in the API will 

undergo changes, these results just inform us about 
WebODE’s current performance, not its future one. 
The data obtained after running the benchmarks is the 
measurement of the execution times of the methods. As 
this data can’t be used directly, it must be transformed to 
obtain analyzable data. 
From the raw results we can obtain:  
• Graphs that show the behavior through time of the 

methods.  
• Statistical values worked out from the execution 

times of the methods. 
Statistical values obtained are central tendency measures 
(mean, median and mode), variation measures (variance 
and standard deviation), and Pearson’s correlation which 
will show us the linear strength of the determinations. 
Also, we have calculated the percentage of measurements 
out of interval and estimated the function determined by 
the execution times through simple regression. 
In the graphs, we can see periodically peaks representing 
high execution times, due to tasks from the systems that 
run under the platform, like Java or Oracle. That’s why we 
have worked with a “smoothed” version of the graphs, so 
they are easier to analyze. In order to smooth the graphs, 
only the medians of the values from each pixel interval 
have been drawn. 

Updates group
1 ontology with X term references

1 concept with X class attributes
X instance attributes
X synonyms

X concepts with 1 class attribute
1 instance attribute
1 synonym

X constants
X formulas
X groups

X ontologies with 1 term reference
1 concept
1 constant
1 formula
1 group

The original graph from benchmark1_1_14 (which adds 
values to class attributes using the method 
addValueToClassAttribute) can be seen in Figure 1 and its 
smoothed graph appears in Figure 2. 

Figure 1: Original graph from benchmark1_1_14 

Figure 2: Smoothed graph from benchmark1_1_14 
Let us see now the analysis for each scenario proposed 
above: 

Running over a high load state 
In order to compare the performance of the different 
methods, we have analyzed the median of its execution 
time when running the benchmarks over the maximum 
load state (X=5000), with the maximum number of 
iterations (N=5000). 
Table 2 shows the median of the execution times of the 
Updates’ group of benchmarks. 
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Benchmark Method Median
benchmark1_2_09 updateInstanceAttribute 201.0 ms.
benchmark1_2_10 updateInstanceAttribute 191.0 ms.
benchmark1_2_11 updateSynonym 120.0 ms.
benchmark1_2_12 updateSynonym 110.0 ms.
benchmark1_2_14 updateConstant 110.0 ms.
benchmark1_2_17 updateGroup 100.0 ms.
benchmark1_2_18 updateGroup 100.0 ms.
benchmark1_2_07 updateClassAttribute 80.0 ms.
benchmark1_2_08 updateClassAttribute 80.0 ms.
benchmark1_2_13 updateConstant 60.0 ms. Figure 5: Graph from benchmark1_1_18 (the execution 

time increases through iterations) 
Table 2: Execution times of the Update´s group of 

benchmarks Running over incremental load states 
Only 14 methods (19%) of the whole benchmark suite 
have an execution time greater than 250 ms. In order to compare the performance of the different 

methods when increasing the load, we have analyzed the 
function defined by the medians of the execution times of 
each benchmark from a minimal initial state (X=10) to a 
maximum one (X=5000), with the maximum number of 
iterations (N=5000). 

In every case, the percentage of values out of interval is 
very low (less than 2%), which is an acceptable value. 
Pearson’s correlation coefficient shows what can be seen 
to the naked eye, that there is little linear strength between 
the values, because of the numerous peaks in the 
execution times. Although some of the estimated functions are constant, 

like the one shown in Figure 6, most of them have a 
positive slope as can be seen in Figure 7. Only in 11 
methods (15%), this slope is greater than 0.02. Running repeatedly over the same load state 

In order to compare whether there is a variation in the 
performance when running a method repeatedly, the key 
factor is the behavior of the functions defined by the 
execution times when running the benchmarks over the 
maximum load state (X=5000), with the maximum 
number of iterations (N=5000). 

 

In most cases, execution times remain constant through 
time (like in Figure 3), in some cases the execution time 
diminishes (like in Figure 4), although this is not worrying 
because performance increases. But, there are 4 methods 
(5%) whose execution time increases through time with a 
slope greater than 0.02 (like in Figure 5). Figure 6: Graph from the medians of benchmark1_2_04 

(the estimated function is constant) 

Figure 3: Graph from benchmark1_2_09 (the execution 
time remains constant through iterations) 

Figure 7: Graph from the medians of benchmark1_4_10 
(the estimated function’s slope is positive) 

Besides, Pearson’s correlation coefficient values show a 
high linear relation, meaning that the evolution through 
time of the execution times behaves linearly. 

Running with different input parameters 
In order to compare the performance of the different 
methods when changing its input parameters, we have 
analyzed the behavior of  the benchmarks that use the 
same method when running over the maximum load state 
(X=5000), with the maximum number of iterations 
(N=5000). Figure 4: Graph from benchmark1_3_10 (the execution 

time decreases through iterations) In general, the method’s performance is not sensible to 
parameter changes. The only exceptions are 12 methods 
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(16%) whose execution times differ significantly when 
changing input parameters. 
There are two kinds of variations: the execution times 
behave differently over time, like in Figure 8 where the 
benchmarks that execute the method 
addValueToClassAttribute are shown, or their values are 
very different, as the benchmarks that use the method 
getClassAttribute which appear in Figure 9. 

Figure 8: Graphs from benchmark1_1_14 and 
benchmark1_1_15 (execution times behave differently) 

Figure 9: Graphs from benchmark1_4_11 and 
benchmark1_4_12 (execution times are very different) 

Development of improvement 
recommendations 

Once the data has been analyzed, the next step is the 
development of improvement recommendations. These 
recommendations include those methods whose execution 
times: 
• Are higher than 250 ms. 
• Increase over time with slope greater than 0.02. 
• Increase when augmenting load with slope greater 

than 0.02. 
• Vary when modifying its input parameters. 
So, improvement recommendations include 21 of the 72 
WebODE’s API methods (29%). 

Adapt the system 
From the improvement recommendations obtained after 
the analysis of the results, the WebODE’s development 
team has identified the changes that must be implemented 
in the platform in order to improve its performance. 
After rerunning the benchmark suite, we have checked the 
decrease of the execution times in the improved methods.  
For example, the study showed that the methods that 
manage instance attributes (addValueToInstanceAttribute, 
removeValueFromInstanceAttribute, getInstanceAttribute 
and getInstanceAttributes) were among the slowest. After 

optimizing a SQL query from an internal piece of code 
used by these methods, their overall performance 
improved as can be seen in Table 3. 

Benchmark Before After Improvement

benchmark1_1_18 600 ms. 461 ms. 23%
benchmark1_1_19 471 ms. 371 ms. 21%
benchmark1_3_12 390 ms. 331 ms. 15%
benchmark1_3_13 281 ms. 240 ms. 14%
benchmark1_4_15 280 ms. 230 ms. 17%
benchmark1_4_16 300 ms. 250 ms. 16%

Table 3: Execution times before and after improving 
instance attribute management 

Conclusions and future work 
After benchmarking the WebODE ontology engineering 
workbench: 
• We have identified the slowest methods, the 

bottlenecks and the performance anomalies of the 
platform. 

• We have determined precisely the platform’s 
performance. 

In the future, we plan to: 
• Extend benchmarking to other ontology tools 

(OntoEdit, Protégé-2000, KAON, etc.). 
• Include other metrics to measure properties like 

correctness, stability, etc. 
• Carry out a synthetic study about the performance of 

services and applications that use WebODE. 
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