
Raising the Bar: Stacked Conservative Error Correction Beyond Boosting

Dekai WU∗1, Grace NGAI†2, Marine CARPUAT∗

∗ Human Language Technology Center
HKUST

Department of Computer Science
University of Science and Technology

Clear Water Bay, Hong Kong
{dekai, marine}@cs.ust.hk

† Hong Kong Polytechnic University
Department of Computing

Kowloon
Hong Kong

csgngai@polyu.edu.hk

Abstract
We introduce a conservative error correcting model, Stacked TBL, that is designed to improve the performance of even high-performing
models like boosting, with little risk of accidentally degrading performance. Stacked TBL is particularly well suited for corpus-based
natural language applications involving high-dimensional feature spaces, since it leverages the characteristics of the TBL paradigm that
we appropriate. We consider here the task of automatically annonating named entities in text corpora. The task does pose a number
of challenges for TBL, to which there are some simple yet effective solutions. We discuss the empirical behavior of Stacked TBL, and
consider evidence that despite its simplicity, more complex and time-consuming variants are not generally required.

1. Setting the Bar: Introduction
In this paper we develop a general stacking-based

method called Stacked TBL (STBL) that error-corrects the
output of a boosting model that is already highly tuned. We
deploy TBL in an unconventional fashion, and discuss mo-
tivation and evidence to support its use. Several modifica-
tions to the traditional TBL procedure are required, but the
revised procedure remains relatively simple.

To demonstrate the applicability of STBL, we construct
a base model trained using the AdaBoost boosting algo-
rithm (Freund and Schapire, 1997). Boosting has acquired
a superior reputation for error driven learning of ensem-
ble models and, when used in corpus-based NLP systems,
typically finds a place as the ultimate stage. Two of the
best-performing three teams in the CoNLL-2002 Named
Entity Recognition shared task evaluation used boosting as
their base system (Carreras et al., 2002; Wu et al., 2002).
However, we have found that, like all learning models, even
boosting models can and do reach certain limits that other
models are less susceptible to. This holds even after careful
feature engineering to compensate is carried out. We are
thus driven to investigate the problem of correcting errors
after boosting has done its best. This establishes a high bar
for any model stacked on the boosting base model, because
it is difficult to correct the few remaining errors without
also accidentally undoing correct classifications at the same
time.

In the following sections, we first define the particu-
lar stacking approach we will use. Subsequently we de-
scribe our model in detail, and analyze issues that arise
from repurposing TBL for this task. We discuss the prin-
ciples behind our proposed solutions, and demonstrate the

1The author would like to thank the Hong Kong Re-
search Grants Council (RGC) for supporting this research in
part through research grants RGC6083/99E, RGC6256/00E, and
DAG03/04.EG09.

2The author would like to thank the Hong Kong Polytechnic
University for supporting this research in part through research
grants A-PE37 and 4-Z03S.

method’s empirical behavior. Finally, we consider evidence
that more complicated and time-consuming alternative vari-
ants of STBL are unnecessary in practice.

2. Piping versus Stacking
Stacking has become widely used since its introduction

a decade ago (Wolpert, 1992). However, a few words of
clarification on stacking are in order since it is an extremely
general concept, that is often confusingly used to lump to-
gether various approaches that are in fact methodologically
quite different.

The major division of stacking approaches is between
(1) those employing multiple heterogenous base learning
models, and (2) those employing a single base learning
model. The former case is a general alternative to simple
voting among heterogenous base models.

To avoid confusion we will use the term piping for the
latter case, i.e., stacking with a single base learning model.
In this paper we will restrict our attention to piping, specif-
ically using a boosting base model.

Usage of piping has two common subcases. First, pip-
ing provides a kind of arcing framework (Breiman, 1998),
and as such is an alternative to simple bagging models. As
an arcing procedure, however, its use appears to have been
eclipsed in recent years by boosting.

Second, for some tasks, piping is effective as a sequen-
tially chained error correcting ensemble. The investigation
in this paper falls in this category.

Piped classifiers differ from cascaded classifiers (e.g.,
Alpaydin (1998)) in several important respects, one of
which is that in cascading, confidence scores are not as-
signed to the predictions of the earlier classifiers. A cas-
caded classifier only attempts to classify examples that ear-
lier stages have voluntarily passed on; it does not identify
where errors are likely to have occurred and therefore is not
an error corrector per se.

Piping can, however, be viewed as a combination of cas-
cading and confidence prediction. In this view, the error
correcting stage is responsible for both predicting the con-

 21



fidence on each example that was output by the previous
stage, as well as performing corrections on low-confidence
examples. In fact, to be more precise, it is not actually nec-
essary for the error correcting stage to predict an absolute
confidence score for the base model’s output. It merely
needs to predict with high confidence when the error cor-
rector’s confidence score is relatively higher than the base
model’s.

Piping, broadly interpreted, is widespread in corpus-
based NLP. An example of piping in an NER application
very similar to the experiments described later in this paper
is Florian (2002), who used a TBL base model piped to a
forward-backward decoder model. However, narrowly in-
terpreted piping, which employs correct and sound stacking
training procedures, is rather less common, perhaps espe-
cially in NLP work.

3. Raising the Bar: Repurposing TBL for
Error Correction

Certain kinds of models are better suited to error cor-
rection than others. This is particularly true when the per-
formance of the base model is already high. The error cor-
rector model must (1) have characteristics that vary suffi-
ciently from the base model so that the corrector will make
a significant difference, and (2) be excellent at “leaving well
enough alone” so as not to miscorrect the already highly ac-
curate predictions from the boosting model.

We consider transformation-based learning to be a rea-
sonable candidate for error correction, and we call this
model Stacked TBL (STBL). The odd thing is that although
it is inherently an error-correcting paradigm, TBL has not
received much attention as an error-corrector for models
that already achieve high performance. Instead, TBL is
traditionally used by itself, trained by correcting the out-
put of relatively “dumb” base models. Even less attention
has been given to using TBL as an error corrector for high-
performance models.1

Nevertheless, TBL appeared to fit the bill since (1) its
sequential processing characteristics are very different from
the boosting model’s, and (2) it can be modified to leave
well enough alone, as we shall see in the subsequent sec-
tion.

Transformation-based learning was first introduced by
Brill (1995) for part-of-speech tagging, and it has since
been applied to a wide range of corpus-based NLP tasks,
including parsing (Brill, 1996), noun phrase chunking
(Ramshaw and Marcus, 1999), phrase chunking (Florian et
al., 2000), and dialog act tagging (Samuel et al., 1998). It is
a flexible model which is easily extensible to various tasks,
and it has the advantage of being able to achieve state-of-
the-art performance with a small set of perspicious rules.

In some ways, TBL is similar to boosting in that it is an
iterative process in which each iteration targets the residual
error from previous iterations. A traditional TBL system is
trained using the following algorithm:

1. Create an initial assignment of classifi cations using simple
statistics.

1Except, of course, when correcting TBL models themselves.

2. Generate all productive rules according to a set of allowable
templates.

3. For each rule:

(a) Apply to a copy of the current state of the training cor-
pus.

(b) Score the result of the rule application with some ob-
jective function f .

4. Select the rule with the best score.

5. Stop if the score is smaller than some pre-set threshold Th.

6. Transform the current state of the training corpus by apply-
ing the rule to it.

7. Repeat from Step 2.

The output of the TBL is therefore an ordered list of
rules, learned in a greedy fashion and scored according to
the objective function, that progressively improve upon the
performance of the learning algorithm on the training set.
During the evaluation phase, the test set is initialized with
the same initial class assignment. The rules are then ap-
plied, in the order they were learned, to the evaluation set.
The final classification of a sample is then the classification
attained when all the rules have been applied.

To repurpose TBL for our needs, we first need to simply
replace Step 1 with the classification labels that are output
by the AdaBoost.MH base model, instead of some trivial
classifier based on simple statistics.

Unfortunately, this seemingly trivial change is not as
harmless as it seems. It actually has the adverse effect of
removing one of the strongest biases that ordinarily force
TBL to generalize. This is because TBL typically relies on
the fact that its input data is initially very poorly labeled,
providing many examples to drive rule learning.

On the other hand, since our AdaBoost.MH base model
already produces very high accuracy classification labels,
there is very sparse data for TBL to work with. If used
in this naive fashion, this would causes STBL to go astray
easily.

For this reason it is an essential step in STBL to cor-
rectly generate n-fold cross validation partition sets via the
base model (AdaBoost.MH in this case), as more traditional
strict stacking models do. This can be a time-consuming
step and, unfortunately, in NLP piping models, is more of-
ten than not omitted. Traditional stacking models do this
primarily to avoid wasting data. This concern applies to
STBL as well. However, there is an even more important
factor for STBL in NLP applications because, in the type of
high-dimensional feature spaces and data locality in train-
ing sets common to the NLP problems, ordinary partition-
ing creates incorrect strong biases that lead immediately to
overfitting.

4. You-Break-It-You-Bought-It Pruning
On top of the sparse data problem just described, STBL

faces a second problem. Unlike the case of cascaded classi-
fiers, we have no information on the certainty of the base
model’s predictions, which would help the error correc-
tor to be more selective in making corrections. Thus to
avoid over-eagerly miscorrecting the base model’s predic-
tions, the error correction model must have extremely high

 22



confidence in any changes it makes. In other words, the er-
ror corrector must be extremely sure that it will not break
anything that it picks up.

We therefore introduce a conservative method that we
call you-break-it-you-bought-it pruning, which post-prunes
the rules of a learned STBL model to err on the side of
caution when making transforms to the current state.

The idea was inspired by the observation that the tra-
ditional (good − bad) objective function for rule scoring
that TBL uses selects rules based on the recall of their out-
puts on the gold standard classifications, and does not take
into account their precision. As a result, any given rule is
allowed to make large numbers of mistakes, as long as it
compensates with enough corrections. This does not mesh
well with our requirement, which is that the postclassifier
should avoid making errors at all costs.

To correct for this behavior, STBL includes a post-
pruning algorithm to discard potentially errorful rules. Af-
ter a transformation-based learner is trained in the usual
manner, we evaluate each learned rule independently on the
training set and record the number of mistakes and correc-
tions resulting from the transformations it proposes. The
rules are then pruned according to the following two prin-
ciples:

• Extremely risk-averse: We require the postclassifier to
be extremely cautious about not making any mistakes
along with the corrections. Assuming that the training
and testing corpora are drawn from the same distribu-
tion, if a rule makes a mistake on the training corpus,
it is more likely to make one on the test corpus. There-
fore, any rule that makes a mistake on the training set
(bad > 0) is discarded.

• Extremely high expectations: We also require the post-
classifier to have high confidence that any correction it
makes is a valid correction, and not the result of noise
aberration in the data. Therefore, any rule that does
not make at least a certain threshold number of cor-
rections (good < T) is discarded.

It can be argued that as transformation-based learning
rules are evaluated on the entire data set, post-pruning the
rules in this manner ignores any possible interaction be-
tween them; in addition, any “rule chains” that were learned
by TBL may be broken as rules are deleted from the list.
However, this is not as big a problem as it appears to be
at first blush. As TBL is error-driven, it focuses on sam-
ples with erroneous guess classifications on which rules are
learned. When TBL is repurposed as an error corrector for
another learning algorithm which has already achieved a
good performance, errors are far and few in between, and
hence the opportunities for rule interaction are decreased.

5. Experiments
To illustrate our hypothesis, we performed a series of

experiments on named entity recognition using a set of En-
glish data from the Reuters corpus. The data consisted of
two subsets in which named entities had been manually an-
notated.

The boosting and transformation-based systems used
in our experiments were both constructed using publicly
available software. For the boosting, we used Boostexter
(Schapire and Singer, 2000), which implements boosting
on top of decision stumps (decision trees of depth one).
The transformation-based model was built with the fnTBL
toolkit (Ngai and Florian, 2001), which implements several
optimizations in rule learning to drastically speed up the
time needed for training.

6. Results
Table 1 presents the results of the boosting-only and

piped models on named entity recognition. The top row
shows the performance of the boosting system; it can be
seen that boosting sets the bar very high for TBL to improve
upon. The rest of the rows show the results of stacking TBL
on top of boosting:

• STBL (Completion): The TBL system was trained to
completion (i.e. Th in Step 5 = 0, Error rate on train-
ing set = 0%).

• STBL (Stopped): The TBL system stopped training
after the score of the rules had dropped below a thresh-
old of 3, which is a commonly-set threshold in TBL
training.

• STBL (Pruned): The TBL rules were post-pruned with
the method from Section 4.

The first item that leaps to the eye is the fact that the
naive method of piping the boosting model to TBL in fact
degrades the performance. This turns out to hold regardless
of whether TBL is trained to completion or stopped using
an early stopping criterion, and can be attributed to overfit-
ting the training set as discussed earlier.

Post-pruning the TBL rules, on the other hand, has a
positive effect—the performance of the combined system
improves beyond the already high performance of the plain
boosting model. Empirically this has proved to be a reli-
able, robust effect; we have witnessed the same pattern ex-
hibited on numerous data sets under various training condi-
tions.

System Precision Recall F-Measure1
Boosting alone 95.01% 93.98% 94.49
Boosting + STBL (Completion) 92.78% 93.78% 93.28
Boosting + STBL (Stopped) 93.94% 94.67% 94.31
Boosting + STBL (Pruned) 94.13 % 95.16% 94.64

Table 1: Results of Boosting-only and Piped Models on
Named-Entity Recognition

System Precision Recall F-Measure1
m partitioned sets from boosting 94.13 % 95.16% 94.64

+ STBL (Pruned)
m partitioned sets from boosting 95.21% 94.13% 94.67

+ m STBL (Pruned) + Voting
m partitioned sets from boosting 94.14% 95.18% 94.66

+ m STBL (Stopped)
+ Union-of-rules (Pruned)

Table 2: Other modes of Piping: Voting on n-fold-trained
TBL and Rule Consolidation

 23



7. Discussion
Training the STBL model remains a remarkably simple

yet effective procedure that consumes all the partition sets
from the AdaBoost.MH base model at once.

It has been suggested that the simple way in which
STBL combines the data from the partition sets is oversim-
plistic and could be improved upon. We do not believe this
is generally the case in practice. To test this, we constructed
several alternative models with more sophisticated mecha-
nisms for combining the base model partition sets. In one
alternative, multiple pruned STBL models are trained on
the partition sets, and they vote in the final classifier. In
another alternative, multiple STBL models are trained us-
ing early stopping criteria (compensating for the increased
number of models to train and increasing the bias toward
common rules).

Our experiments indicate that there is no need to in-
crease the complexity and training time by using the alter-
native models. The results, an example of which is given
in Table 2, consistently show no statistically significant im-
provement over the STBL model.

One interesting piece of information to investigate
would be the effect our aggressive, high-precision you-
break-it-you-bought-it pruning operation had on the rule
set. As might be expected, a large number of rules did not
pass the requirements and were deleted—out of a total of
351 rules, only 37 survived the pruning.

Figure 1 shows the performance achieved by applying
each successive rule to the system for both the pruned and
unpruned rule list. (Only the first 40 rules were included
from the unpruned rule list for comparison purposes.)

94.1

94.2

94.3

94.4

94.5

94.6

94.7

0 5 10 15 20 25 30 35 40

F
-M

ea
su

re

Rule Number

TBL, pruned rules
TBL, no pruning

Figure 1: STBL with and without Rule Pruning.

It is immediately apparent from the figure that the un-
pruned rules lead to massive unpredictable fluctuation in
performance. This is a good illustration of the fact that an
STBL, naively trained without careful attention to the input
data, will overfit and go astray very easily. In contrast, the
performance of the pruned system exhibits far less fluctu-
ation, behaves more predictably, and stays within a much
narrower range. The result is a much more robust system
which achieves a better performance.

A second item of note is that for the pruned system,
much of the performance improvement is achieved within
the first few rules. (Note that these are not necessarily

the first rules that were learned—the fact that performance
curves for the pruned and unpruned system diverge imme-
diately at the beginning indicate that the rule sets are differ-
ent.) We did not exploit this fact in our experiments (since
doing so would have entailed looking at the test set perfor-
mance), but it does give a direction for further rule pruning.

8. Conclusion and Future Directions
We have introduced a conservative model, Stacked

TBL, that can reliably improve the performance of even
high-performing models like boosting on high-dimensional
tasks such as named entity recognition. TBL has charac-
teristics that are well suited to this challenge. We have dis-
cussed the issues that arise from repurposing TBL for this
task, and described simple yet effective techniques to over-
come them. We also provided evidence that more complex
and time-consuming variants are not generally necessary,
and showed typical performance curves illustrating why
Stacked TBL performs well as a conservative error correc-
tor. The method has been applied within the context of a
larger NER system (Wu et al., 2003).

We have begun to investigate a related but even more
radical error correction model called NTPC (N-fold Tem-
plated Piped Correction), based on similar but more com-
prehensive empirical analyses across a larger range of tasks
(Wu et al., 2004). To date, all results further confirm that
templated error correcting models represent a remarkably
underutilized paradigm that, in practice, consistently helps
to combat the weaknesses of many commonly used corpus-
based NLP models.

9. References
Ethem Alpaydin. 1998. Techniques for combining multiple learners. In Ethem

Alpaydin, editor, Proceedings of Engineering of Intelligent Systems, volume 2,
pages 6–12. ICSC Press.

Leo Breiman. 1998. Arcing classifi ers. The Annals of Statistics, 26(3):801–849.
Eric Brill. 1995. Transformation-based error-driven learning and natural language

processing: A case study in part of speech tagging. Computational Linguistics,
21(4):543–565.

Eric Brill. 1996. Learning to parse with transformations. In Harry Bunt and Masaru
Tomita, editors, Recent Advances in Parsing Technology. Kluwer.

Xavier Carreras, Lluı́s Màrques, and Lluı́s Padró. 2002. Named entity extraction
using AdaBoost. In Proceedings of CoNLL-2002, pages 167–170. Taipei.

Radu Florian, John C. Henderson, and Grace Ngai. 2000. Coaxing confi dence from
an old friend: Probabilistic classifi cations from transformation rule lists. In Pro-
ceedings of EMNLP-SIGDAT 2000, Hong Kong, October. Association of Com-
putational Linguistics.

Radu Florian. 2002. Named entity recognition as a house of cards: Classifi er stack-
ing. In Proceedings of CoNLL-2002, pages 175–178. Taipei.

Yoram Freund and Robert E. Schapire. 1997. A decision-theoretic generalization
of on-line learning and an application to boosting. In Journal of Computer and
System Sciences, 55(1), pages 119–139.

Grace Ngai and Radu Florian. 2001. Transformation-based learning in the fast lane.
In Proceedings of NAACL ’01, pages 40–47, Pittsburgh, PA. ACL.

Lance Ramshaw and Mitchell Marcus. 1999. Text chunking using transformation-
based learning. In Susan Armstrong, Kenneth W. Church, Pierre Isabelle, Sandra
Manzi, Evelyne Tzoukermann, and David Yarowsky, editors, Natural Language
Processing Using Very Large Corpora. Kluwer.

Ken Samuel, Sandra Carberry, and Vijay K. Shanker. 1998. Dialogue act tagging
with transformation-based learning. In Proceedings of the 36th Annual Meeting
of the Association for Computational Linguistics, volume 2. Association of Com-
putational Linguistics.

Robert E. Schapire and Yoram Singer. 2000. Boostexter: A boosting-based system
for text categorization. Machine Learning, 2(3):135–168.

David Wolpert. 1992. Stacked generalization. Neural Networks, 5:241–259.
Dekai Wu, Grace Ngai, Marine Carpuat, Jeppe Larsen, and Yongsheng Yang. 2002.

Boosting for named entity recognition. In Proceedings of CoNLL-2002, pages
195–198. Taipei.

Dekai Wu, Grace Ngai, and Marine Carpuat. 2003. A stacked, voted, stacked model
for named entity recognition. In Proceedings of CoNLL-2003, pages 200–203.
Edmonton, Canada.

Dekai Wu, Grace Ngai, and Marine Carpuat. 2004. N-fold Templated Piped Correc-
tion. In Proceedings of IJCNLP-2004, First International Joint Conference on
Natural Language Processing. Hainan, China.

 24




