9:00-9:30

9:30-10:00

10:00-10:30

10:30-11:00

11:00-11:30

11:30-12:00

12:00-12:30

12:30-13:00

13:00-14:30
14:30-15:00

15:00-15:30

15:30-16:00

16:00-16:30
16:30-17:00

17:00-17:30

17:30-18:00

The Workshop Programme

Rebecca Hwa, Philip Resnik, Breaking the Resource Bottleneck for Multilingual
Amy Weinberg Parsing

Aoife Cahill, Mairead Automatic Annotation of the Penn-Treebank with LFG
McCarthy, Josef van F-Structure Information

Genabith, Andy Way

Kiril Simov, Milen Incremental Specialization of an HPSG-Based
Kouylekov, Alexander Annotation Scheme

Simov

Bernd Bohnet, Stefan Klatt, A Bootstrapping Approach to Automatic Annotation of
Leo Wanner Functional Information to Adjectives with an
Application to German

Coffee break

Adam Lopez, Mike Nossal, = Word-Level Alignment for Multilingual Resource
Rebecca Hwa, Philip Resnik Acquisition

Necip Fazil Ayan, Bonnie J. Generating a Parsing Lexicon from an LCS-Based
Dorr Lexicon

Alberto Lavelli, Bernardo Building Thematic Lexical Resources by Bootstrapping
Magnini, Fabrizio Sebastiani and Machine Learning

Lunch break

Anja Belz Learning Grammars for Noun Phrase Extraction by
Partition Search

Fermin Moscoso del Prado An Integration of Vector-Based Semantic Analysis and

Martin, Magnus Sahlgren Simple Recurrent Networks for the Automatic
Acquisition of Lexical Representations from Unlabeled
Corpora

Pavel Kveton, Karel Oliva Detection of Errors in Part-Of-Speech Tagged
Corpora by Bootstrapping Generalized Negative n-
Grams

Coffee break

Rayid Ghani, Rosie Jones A Comparison of Efficacy and Assumptions of
Bootstrapping Algorithms for Training Information
Extraction Systems

Marisa Jiménez Using Decision Trees to Predict Human Nouns in
Spanish Parsed Text
Laura Alonso, Irene X-Tractor: A Tool for Extracting Discourse Markers

Castellon, Lluis Padro

Alessandro Lenci

Workshop Organisers

Universita di Pisa, Italy

Simonetta Montemagni Istituto di Linguistica Computazionale - CNR, Italy

Vito Pirrelli

Harald Baayen
Rens Bod

Michael R. Brent
Nicoletta Calzolari
Jean-Pierre Chanod
Walter Daelemans
Dekang Lin
Horacio Rodriguez
Fabrizio Sebastiani
Lucy Vanderwende
Frangois Yvon

Menno van Zaanen

Istituto di Linguistica Computazionale - CNR, Ttaly

Workshop Programme Committee

Max Planck Institute for Psycholinguistics - Nijmegen, The Netherlands
University of Amsterdam, Holland

Washington University, USA

Istituto di Linguistica Computazionale - CNR, Ttaly

Xerox Research Centre Europe, Grenoble, France

University of Antwerp, Belgium

University of Alberta, Edmonton, Canada

Universidad Politecnica de Catalunya

Istituto per ’Elaborazione dell’Informazione - CNR, Italy
Microsoft Research, Redmond, USA

Ecole Nationale Superieure des Telecommunications, Paris Frances

University of Amsterdam, The Netherlands

ii

Preface

Rebecca Hwa, Philip
Resnik, Amy Weinberg

Aoife Cahill, Mairead
McCarthy, Josef van
Genabith, Andy Way

Kiril Simov, Milen
Kouylekov, Alexander
Simov

Bernd Bohnet, Stefan Klatt,
Leo Wanner

Adam Lopez, Mike Nossal,

Rebecca Hwa, Philip Resnik

Necip Fazil Ayan, Bonnie J.

Dorr

Alberto Lavelli, Bernardo
Magnini, Fabrizio
Sebastiani

Anja Belz

Fermin Moscoso del Prado
Martin, Magnus Sahlgren

Pavel Kveton, Karel Oliva

Rayid Ghani, Rosie Jones

Marisa Jiménez

Laura Alonso, Irene
Castellon, Lluis Padro

Table of Contents

Page
1

Breaking the Resource Bottleneck for Multilingual 2
Parsing
Automatic Annotation of the Penn-Treebank with LI'G F- 8
Structure Information
Incremental Specialization of an HPSG-Based 16
Annotation Scheme
A Bootstrapping Approach to Automatic Annotation of 24
Functional Information to Adjectives with an Application
to German
Word-Level Alignment for Multilingual Resource 34
Acquisition
Generating a Parsing Lexicon from an LCS-Based 43
Lexicon
Building Thematic Lexical Resources by Bootstrapping 53
and Machine Learning
Learning Grammars for Noun Phrase Extraction by 63
Partition Search
An Integration of Vector-Based Semantic Analysis and 71
Simple Recurrent Networks for the Automatic
Acquisition of Lexical Representations from Unlabeled
Corpora
Detection of Errors in Part-Of-Speech Tagged Corpora 81
by Bootstrapping Generalized Negative n-Grams
A Comparison of Efficacy and Assumptions of 87
Bootstrapping Algorithms for Training Information
Extraction Systems
Using Decision Trees to Predict Human Nouns in 95
Spanish Parsed Text
X-Tractor: A Tool for Extracting Discourse Markers 100

iii

Author Index

Page
Alonso, L. 100
Ayan, N. F. 43
Belz, A. 63
Bohnet, B. 24
Cahill, A. 8
Castellon, 1. 100
Dorr, B. I. 43
Ghani, R. 87
Hwa, R. 2,34
Jiménez, M. 95
Jones, R. 87
Klatt, S. 24
Kouylekov, M. 16
Kveton, P. 81
Lavelli, A. 53
Lopez, A. 34
Magnini, B. 53
McCarthy, M. 8
Moscoso del Prado Martin, F. 71
Nossal, M. 34
Oliva, K. 81
Padro, L. 100
Resnik, P. 2,34
Sahlgren, M. 71
Sebastiani, F. 53
Simov, A. 16
Simov, K. 16
van Genabith, J. 8
Wanner, L. 24

Way, A.
Weinberg, A. 2

iv

Preface

Provision of large-scale language resources, such as tagged corpora, lexicons and repositories of pre-classified text
documents, is a crucial key to steady progress in an extremely wide spectrum of research, technological and business
arcas in the HLT sector. The continuously changing demands for language-specific and application-dependent
annotated data (e.g. at the syntactic or at the semantic level), indispensable for design validation and efficient software
prototyping, however, are daily confronted by the resource bottleneck. Handcrafted resources are often too costly and
time-consuming to be produced at a sustainable pace, and, in some cases, they even exceed the limits of human
conscious awareness and descriptive capability. The problem is even more acutely felt for low-resource languages,
since the early stages of language resource development often require gathering considerable momentum both in terms
of know-how and level of funding, of the order of magnitude normally deployed by large national projects.

Possible ways to circumvent, or at least minimise, these problems come from the literature on automatic knowledge
acquisition and, more generally, from the machine-learning community. Of late, a number of machine learning
algorithms have proved to fare reasonably well in the task of incrementally bootstrapping newly annotated data from a
comparatively small sample of already annotated resources. Another promising route consists in automatically tracking
down recurrent knowledge patterns in relatively unstructured or implicit information sources (such as free texts or
machine readable dictionaries) for this information to be moulded into explicit representation structures (e.g.
subcategorization frames, syntactic-semantic templates, ontology hierarchies etc.). In a similar vein, several strategies
have been investigated aimed at merging or integrating structured information sources into a unitary comprehensive
resource, or at customising general-purpose knowledge-bases for them to be of use in more technical domains. Finally,
the growing availability of multi-lingual parallel resources has prompted the idea of using a high-resource language
(generally English) to fertilize a low-resource language.

We believe that all these attempts at bootstrapping annotated language data are not only of practical interest, but also
point to a bunch of germane theoretical issues. Gaining insights into the deep interrelation between representation and
acquisition issues is likely to have significant repercussions on the way linguistic resources will be designed, developed
and used for applications in the years to come. As the two aspects of knowledge representation and acquisition are
profoundly interrelated, progress on both fronts can only be achieved, in our view of things, through a full appreciation
of this deep interdependency.

The papers contained in this volume (13 out of 20 submissions) significantly confirm this general view. They focus
on a variety of bootstrapping techniques to show their full potential for the provision of annotated language data. In
particular, three areas of investigation are dealt with in some detail (often concurrently in the same paper). At the level
of corpus annotation, parsers and annotated texts are increasingly used as a tightly integrated resource. Parsing
robustness is no longer an end in itself but forms part of a virtuous incremental circle whereby finer grained, more
accurate or simply more explicit levels of text analysis are built probabilistically on the basis of either under-specified
or possibly more compact annotations. This process proves to be able to provide increasingly richer annotated data and
sheds considerable light on the issue of inter-annotation translatability. At the level of lexicon design and building, a lot
of effort is being put into merging complementary levels of language information (e.g. semantic and syntax, or semantic
and morphology) to produce better lexical repositories for parsing and better computational models of the internalised
lexical competence of a speaker. This strikes us as an extremely promising route, bound to throw in sharper relief the
importance of simultancously dealing with more information levels in parsing real texts at the level of accuracy required
by HLT applications. Emphasis on the use of available machine learning technology for dealing with the novel
challenges of HLT applications is the third research prong of this volume. Current and future needs for information
extraction, classification and management appear to impose novel requirements on text processing and create novel
tasks in the HLT sector. Once more, machine-learning approaches play an important role here. Perhaps even more
significantly, these tasks provide, in turn, a key to a deeper understanding of the implicit assumptions underlying
different machine-learning techniques.

We would like to thank all the authors who showed their interest by submitting papers to the workshop. We would
also like to thank the members of the programme committee who kindly contributed to the reviewing process and the
scientific and programme committees of LREC 2002.

Alessandro Lenci
<alessandro.lenci@jilc.cnr.it>
Universita di Pisa, Italy

Simonetta Montemagni
<simonetta.montemagni@ilc.cnr.it>

Vito Pirrelli

<vito.pirrelli@ilc.cnr.it>

Istituto di Linguistica Computazionale - CNR, Italy

Breaking the Resource Bottleneck for Multilingual Parsing

Rebecca Hwa!, Philip Resnik!2, and Amy Weinberg!?

Institute for Advanced Computer Studies’
Department of Linguistics?
University of Maryland, College Park, MD 20742
{hwa, resnik, weinberg } @umiacs.umd.edu

Abstract
We propose a framework that enables the acquisition of annotation-heavy resources such as syntactic dependency tree corpora for low-
resource languages by importing linguistic annotations from high-quality English resources. We present a large-scale experiment showing
that Chinese dependency trees can be induced by using an English parser, a word alignment package, and a large corpus of sentence-
aligned bilingual text. As a part of the experiment, we evaluate the quality of a Chinese parser trained on the induced dependency
treebank. We find that a parser trained in this manner out-performs some simple baselines inspite of the noise in the induced treebank.
The results suggest that projecting syntactic structures from English is a viable option for acquiring annotated syntactic structures quickly
and cheaply. We expect the quality of the induced treebank to improve when more sophisticated filtering and error-correction techniques

are applied.

1 Introduction

There is a substantial disparity between the quality of
state of the art parsers available for English and those for
other languages. English parsers such as those of Collins
(1997) and Charniak (1999) were trained on hand anno-
tated corpora such as the Penn Treebank Project (Marcus et
al., 1993). However, experience has shown us that building
hand-crafted treebanks from scratch is too time-consuming
to be repeated for every language of interest. This bad news
can be mitigated by leveraging English annotations to auto-
matically acquired annotations for new languages. Recent
work by Yarowsky and Ngai (2001) has shown that this type
of transfer is possible for inducing part-of-speech tags for
Chinese. In this paper, we explore the application of this
technique to the more complex problem of inducing Chi-
nese dependency trees.

The input to our system is a collection of sentence-
aligned bilingual text (i.e., pairs of sentences that are trans-
lations of each other). Each English sentence is parsed us-
ing a high-quality English parser. For each pair of sen-
tences, word alignment is performed using statistical MT
models (Brown et al., 1990; Al-Onaizan et al., 1999). The
alignment then anchors the projection of the English tree to
the Chinese side (see Figure 1).

This paper presents an initial large-scale experiment,
investigating the feasibility of inducing a Chinese depen-
dency treebank using our projection algorithm and of train-
ing a parser on the resulting treebank. Due to the com-
pounded errors of various components of the system, the
induced Chinese dependency treebank is rather noisy. Ap-
plying filtering heuristics to the treebank improves its qual-
ity enough such that the parser trained on it out-performs
some simple baselines. While the parser’s performance is
still significantly less than that of a parser trained on a clean,
fully annotated (Chinese) treebank, this study suggests that
projecting syntactic structures from English is viable for ac-
quiring annotated syntactic structures quickly and cheaply.

obj
subj mod

adj det

/N

The Chinese side expressed satisfaction regarding this subject

HE AW XT xr WE

UUU

subj

Figure 1: Given an English dependency parse tree and a set
of word alignments, we infer the syntactic structure on the
Chinese side via projection from its English counterpart.

2 Overview of the Algorithm

Our approach requires three resources. First, we need
a sizable, sentence-aligned bilingual text as training cor-
pus. In our experiment, we use a bilingual text of English
and Chinese news articles. In Section 5 we discuss other
ways in which bilingual text can be acquired and sentence
aligned. Second, we require dependency parses of the En-
glish text. Our choice of dependency representation is mo-
tivated in Section 2.1. Third, word alignments are needed to
relate the sentence pair on the lexical level. In this paper, we
use alignments produced as a side-effect of training a sta-
tistical translation model (Brown et al., 1990; Al-Onaizan
et al., 1999).

Given these resources, our system behaves as follows:
for each sentence pair (£, C) in the bilingual text, the En-
glish sentence F is parsed and converted into a dependency
representation. Next, word alignment is performed for the

sentence pair. Finally, the English dependency analysis is
projected across the word alignment to the Chinese side ac-
cording to our Direct Projection Algorithm, which we out-
line in section 2.2,

2.1 Dependency Representations as Transfer Medium

Dependency relationships specify asymmetric binary
relations between two surface words: a head and its modi-
Jier. For example, in the sentence from Figure 1, “The Chi-
nese side expressed satisfaction regarding this subject,” the
word side modifies the head word expressed. The depen-
dency links may optionally be annotated with information
specifying grammatical relations between constituents such
as subject, object, modifier, etc. In our example, the link be-
tween side and expressed is labeled as subj, indicating that
the constituent The Chinese side is the subject of the verb
expressed. In this section, we argue that dependency rep-
resentation is right for our projection framework because it
captures both structural and lexical relationships between
words that are not string local; because it overcomes some
of the shortcomings of evaluating against the phrase struc-
ture representation; and because it is language independent
with respect to word order variations.

Syntactic analysis in terms of phrase structure has been
the dominant paradigm in natural language processing,
starting from early context-free grammars and continuing
up to present-day stochastic formalisms. It is preferable
over models that make Markov assumptions restricting in-
teractions among words to those that occur within the win-
dow of an n-gram. Phrase structure formalisms provide a
level of representation that allows significant constraint to
occur between grammatical categories that are not string-
local. These categories become local at the phrase struc-
ture level. For example, consider the following sentence
from the Brown Corpus:

The largest hurdle the Republicans would have to
Jace is a state law which says that before making
a first race, one of two alternative courses must
be taken.

The relationship between hurdle and is exists over a long
string-distance, owing to an embedded relative clause, and,
similarly, Republicans and face are separated in the string
by a sequence of auxiliaries and the infinitival f0. As a re-
sult, the relationships represented in the sentence are not
captured well by any n-gram model with tractable n. In
contrast, the relationship between the subject NP and the
predicate is casily encoded locally within a context-free
rule such as S — NP VP.

To take full advantage of such relationships in mod-
els based on phrase structure, however, it is necessary to
lexicalize the grammar formalism, so that lexically-based
constraints are also localized within grammar rules. By
incorporating lexical content into phrase structure rules
(e.g., S(is) — NP(hurdle) VP(is)), lexicalized grammar for-
malisms make it possible to capture syntactic constraints
such as as number agreement (e.g. the low probabil-
ity of S(are) — NP(hurdle) VP(are)) as well as seman-
tic constraints (e.g. the reasonably high probability of

S(face) — NP(Republicans) VP(face)). Work taking ad-
vantage of this insight (e.g. Collins (1997; Charniak
(1999)) has defined the breakthroughs leading to the cur-
rent state of the art in broad-coverage parsing. Implicitly or
sometimes explicitly (as in the work of Collins), what gives
lexicalized context-free representations their power is the
ability to probabilistically model the syntactic dependency
relationships between words in the structure.

Moreover, dependency analysis evaluation avoids some
of the shortcomings of constituency analysis evaluation
(Lin, 1995; Carroll et al., 1999). Standard constituency
parsing metrics compare the phrase boundaries specified
by the gold standard to that of the candidate analysis. They
also evaluate whether conditions on well formed trees (such
as a ban on crossing branches) are respected by the can-
didate. However, as Lin (1995) notes, since branching
structure is not directly tied to semantic interpretation, it
is unclear how to interpret missing, spurious, Or Cross-
ing branches. On the other hand, it is apparent that syn-
tactic dependencies, more so than syntactic constituents,
are closely tied to the who-did-what-to-whom relationships
of language. Indeed, work in lexical semantics relating
syntactic representations to thematic relationships such as
agent, theme, beneficiary, has focused primarily on syntac-
tic dependencies rather than on phrasal constituents (Baker,
1997). Since semantic dependencies form a superset based
on syntactic dependencies, we are better able to gauge how
likely a representation is to be interpretable, by measuring
the percentage of correct dependencies.

Finally, dependency structures firmly separate prece-
dence from dominance relations, such that word order vari-
ation between languages becomes less of a problem than in
constituency trees. For example, the relative string order
of a series of modifiers of a head is irrelevant in the de-
pendency representation. All are modifiers. By contrast, a
constituency tree may require a stacked structure that would
not translate well if the word order were reversed in another
language. In other words, dependency structures are more
likely to respect a homomorphism.

These observations suggest that dependencies may be
a better choice for syntactic projection across languages
than phrasal constituents. To the extent that this assump-
tion is correct, we should be able to use word alignments as
a bridge between English and another language, retaining
some level of confidence that if dependencies are projected
across the alignment they will be correct for the new lan-
guage. Experimental results from our previous work (Hwa
et al., 2002), have indicated that while the assumption does
not always hold true, syntactic analyses projected from En-
glish to Chinese can, in principle, yield Chinese analyses
that are nearly 70% accurate (in terms of unlabeled depen-
dencies) after application of a set of linguistically princi-
pled rules.!

2.2 The Direct Projection Algorithm

Our approach is based on the intuitive idea of a direct
projection of dependency structures. We now describe our

The experiment was performed under idealized settings, pro-
jecting human annotated English dependency analyses using hu-
man annotated word alignments.

projection algorithm in more detail. Given sentence pair
(E, C), where E = eq,...,e, and C = c¢q, ..., ¢y, SYN-
tactic relations (denoted as R(z, y)) are projected from En-
glish for the following situations:

e one-to-one if e; is aligned with a unique ¢, and e¢;
is aligned with a unique ¢, if R(e;, e;), conclude
R(cz, cy).

¢ unaligned (English) if e; is not aligned with any
word in C, then create a new empty word ¢, such
that for any e; aligned with a unique ¢, R(e;, e;) =
R(cg,cy) and R(e;, €;) = R(cy, cz).

e one-to-many if e;is aligned with ¢z, . . ., ¢y, then cre-
ate a new empty word c, such that ¢, is the parent of
Cz, - - -, Cy and set e; 1o align to c, instead. We called
this a Multiply-Aligned Component, or MAC.

e many-to-one if e;, . .., e; are all uniquely aligned to
¢z, then delete all alignments between e, (i < k <)
and ¢, except for the head of e;, . . . , ;.

The many-to-many case is decomposed into a two-step
process: first perform one-to-many, then perform many-to-
one. In the cases of unaligned Chinese words, they are left
out of the projected syntactic tree. The asymmetry of the
treatment of one-to-many and many-to-one and of the un-
aligned words for the two languages arises from the asym-
metric nature of the projection.

22,1 Post-Projection Transformation

The Direct Projection Algorithm by itself does not pro-
duce good dependency trees because it does not properly
handle structural projection for the more complex cases
when the alignment is not one-to-one. Therefore, we apply
a small set of linguistically motivated rules to correct the
projected trees as a post-hoc process. It is clearly an advan-
tage to limit the correction rules to those that can apply gen-
erally, across many construction types. Wanting to avoid
unending language-specific rule tweaking, we strictly lim-
ited the possible rules. Rules were permitted to refer only
to closed class items, to parts of speech projected from the
English analysis, or to easily enumerated lexical categories
(e.g. {dollar, RMB, $, yen}). The majority of rule patterns
are variations on the same solution to the same problem.
Viewing the problem from a higher level of linguistic ab-
straction made it possible to find all the relevant cases in a
short time and express the solution compactly; in all, fewer
than twenty rules were written, and the analysis, rule writ-
ing, and verification of their correctness using the data set
took a few days.

Here are two examples of the rules we developed; see
(Hwa et al., 2002) for fuller discussion.

Rule for noun modification:

o If ¢y, ..., cy are a set of Chinese words aligned to an
English noun, replace the empty node introduced in
the Direct Projection Algorithm by promoting the last
word ¢, to its place with ¢, . . ., ¢, as dependents.

Rule for aspectual markers:

Y WY
V1 V2 V3 V4
V1 V2 V3 V4
b. / X
W1 W2 W3 W4 W5
WUWZ W3 W4 W5
C.

Figure 2: The direct projection of the dependency parse
for vy . .. vq (Figure 2a) across the word alignment (Figure
2b) results in cross dependency relationships for the link
between wy and ws and the link between wy and wsg; and
it leaves word w, unattached to the projected dependency
tree (Figure 2c¢).

o If c;,...,cy, a sequence of Chinese words aligned
with English verbs, is followed by c¢,, an aspect
marker, make c, into a modifier of the last verb c,,.

2,22 Remaining Shortcomings of the Direct
Projection Algorithm

Although the majority of the projected trees are signif-
icantly improved, the post-projection transformation rules
still do not adequately address some major deficiencies
of the Direct Projection Algorithm. The algorithm does
not ensure that the projected structure is indeed a well-
formed structure. Thus, when given unconstrained word
alignment outputs, the projected structure may contain er-
rors such as crossing dependencies (see Figure 2). More-
over, due to the asymmetry of the algorithm, the syntactic
role of unaligned foreign words cannot be inferred. The
post-projection transformation rules address this problem
to some extent by incorporating unaligned function words
back into the parse, but an intelligent treatment of the open
class of unaligned words remains a challenge of this pro-
jection approach. Furthermore, the algorithm does not ad-
dress complex translation divergences (Dorr, 1993), such
as the head-swapping phenomenon (in which the direction
of the head-modifier dependency is reversed in the foreign
language). Lopez et al. (2002) describe an alternative to
the direct projection approach that addresses some of these
problems.

3 Experimental Setup

Our previous results have shown that, given good En-
glish parses and clean alignments to Chinese translations,
the direct projection approach from English to Chinese
(together with post-processing) can lead to Chinese an-
notations that are substantially correct; unlabeled pre-
cision/recall on projected dependencies approaches 70%
(Hwa et al., 2002). While this demonstrates that the ap-
proach holds promise in automatically inducing syntactic
treebanks of reasonable quality, it is not clear how much
degradation occurs when using imperfect English parsers
and imperfect word alignment models. That question is our
focus in this paper. We report a full-scale experiment on
English and Chinese sentence pairs, evaluating the entire
framework under the realistic settings of imperfect bilin-
gual data and error-prone parsers and alignment models
(see Section 3.1). Once a Chinese dependency treebank
is induced, we use it to train a Chinese parser in a manner
similar to that of Collins (1999). The trained parser is then
evaluated on unseen test sentences taken from the Chinese
Treebank (Xia et al., 2000) and compared with two base-
lines and an upper bound.

3.1 Resources

We use about 56,000 sentence pairs from the Hong
Kong News (HKNews) corpus as our bilingual text. The
data have been automatically sentence aligned and the Chi-
nese words have been automatically segmented.? To parse
the English sentences, we use a lexicalized statistical parser
trained on the Wall Street Journal corpus (Collins, 1997).
To obtain word alignments for all sentence pairs, we train
an off-the-shelf statistical translation model, GIZA++ (Al-
Onaizan et al., 1999), using the HKNews bilingual text.
Given these resources, the direction projection algorithm
and the post-projection transformation process are then
used to induce dependency trees for the Chinese sentences
in the HKNews corpus.

3.2 Evaluation of the Induced Treebank

Because of its size, we do not directly assess the quality
of the induced treebank. Instead, we evaluate the Chinese
parser trained from it. To the extent that the trained parser
outputs reasonable structures on unseen test sentences, it
indicates that the induced treebank is a useful resource. To
evaluate the quality of the trained parser, we compare it to
two simple baseline dependency analyses: always modify
the previous word, and always modify the next word. As
an upper bound, we have also trained the same parser with
clean, hand-annotated trees from the Penn Chinese Tree-
bank (ChTB). We constructed a development set consist-
ing of 124 sentences and a test set consisting of 88 sen-
tences taken from the Chinese Treebank; all sentences are
of 40 words or less. The remaining approximately 3800
Chinese Treebank sentences are converted into their depen-
dency representation (similar to the algorithm described in

*We are grateful to Stefan Vogel of CMU for his assistance
with this corpus.

>The executable of the parser is freely available at
ftp://ftp.cis.upenn.edu/pub/mcollins/misc.

Section 2 of the paper by Xia and Palmer (2001)) and used
as training data for the upper-bound parser. We evaluate
the trained parser by comparing its output (dependency)
parse trees for the unseen test sentences against the human-
annotated gold standard parse trees (also converted to de-
pendency representation). The metrics used are the pre-
cision and recall scores on the unlabeled dependency re-
lations. A parser produced dependency link is considered
“correct” if the same head-modifier relationship exists in
the gold standard; the dependency label does not need to
match. Punctuations are not scored.

4 Results and Discussions

Tables 1 and 2 show performance comparisons for our
automatic projection approach as compared to the lower
and upper bounds. As one might expect, the quality of
the treebank induced under the real-world constraints of
imperfect data and components is noticeably worse than
one induced using clean English parses and perfect word
alignments. The Direct Projection Algorithm and its as-
sociated post-projection transformation rules are not fault-
tolerant enough to recover from the compounding errors of
the parser and alignment model. Without further process-
ing, the projected treebank would contain too much noise
to be useful for training a parser. Therefore, our attentions
turn to filtering heuristics for poorly induced dependency
trees.

We found that the most unreliable component is the
word alignment model. A cursory inspection of the align-
ment output (for the HKNews corpus) shows that, for many
sentences, the majority of the English words remain un-
aligned; and that often, an unusually high number of Chi-
nese words (e.g, five or greater) are aligned to the same
English word. The poor alignment output may have many
causes: in particular, the sentence pair input to the align-
ment model is imperfect, and the alignment model does not
perform well for language pairs with very dissimilar word-
order patterns.

This suggests that performance might improve if we fil-
ter out sentence pairs that are known to be poorly aligned.
To filter out dependency trees projected from dubious word
alignments, we have devised several simple heuristics.
First, we removed those sentences for which more than
30% of the English words were not aligned to any Chinese
word (EnoC < 0.3). The figure 30% is empirically de-
termined, based on the trained parser’s performance on the
development set. As shown in the first row of Table 1, the
parser trained on the filtered treebank does outperform the
modify-next baseline; however, the corpus size has been
drastically cut-down from around 56,000 to less than 8,000.
The second filter we apply to the corpus is to remove sen-
tences in which the size of a multiply aligned component
is greater than three (MAC > 3); that is, when more than
three Chinese words are aligned to the same English word.
The MAC value of 3 was also determined empirically using
development data. The second line of Table 1 shows that
training the parser on the induced treebank filtered by both
heuristics leads to further improvement. Finally, we return
to the crossing-dependency problem alluded to earlier in
section 2.2.2. While we do not correct the crossing depen-

| Method

| Corpus Size | Precision & Recall |

EnoC 7689 374
EnoC+MAC 5525 42.1
EnoC+MAC+NoCross 5284 429
Modify Prev (Baseline) - 14.0
Modify Next (Baseline) - 322

Table 1: The parser’s performance on the development set (%) when the training corpus has been filtered with the following
heuristics: remove sentences if too many English words have no Chinese translations (EnoC); remove sentences if too
many Chinese words are aligned to one English word (MAC); remove sentences that violate many crossing-dependency

constraints (NoCross).

dencies in this work, we remove sentences with the most
egregious crossing-dependency violations in their analy-
ses. Our experiments with development data suggested that
a sentence should be filtered out if more than 40% of its
dependency links violate the no-crossing constraint. The
combination of the three filters improved the induced tree-
bank so that a parser trained on the treebank outperforms
the simple baselines; however, the draconian filters also re-
duced the corpus from 56,000 sentences to slightly over
5,000.

Table 2 shows the trained parser’s performance on a
separate test set. As before, it is compared with two base-
lines; and as an upper bound, we train the same parser on
a clean, manually created treebank.* Similar to the out-
come of the development set, the trained parser performs
better than the baseline, but it still cannot compete with a
parser trained on a clean corpus. It is interesting to note
that after our current filtering techniques, the sizes of the
induced treebank is comparable to the clean one. However,
our method of treebank acquisition is not constrained by the
laborious manual annotation process; therefore it would be
easy for us to obtain a much larger bilingual corpus as a
starting point, as discussed below. We conjecture that the
size of the corpus will help offset the effect of the noise, as
will more sophisticated sampling techniques that exclude
the noisiest data.

5 Conclusion and Future Work

In this paper, we have described our framework for
acquiring Chinese dependency treebanks by bootstrapping
from existing linguistic resources for English. We have ex-
plicitly discussed the assumptions made and the resources
required in order for our algorithm to work. An ambitious
full-scale experiment using real-world data was performed
to investigate the feasibility of our approach. OQur results
suggest that treebank acquisition through projection is in-
deed possible; however reducing the noise in the induced
treebank is a major challenge.

This finding points us to several directions for further
research. One clear avenue is to obtain larger bilingual
texts, so that more data remain even when noisy sentence
pairs have been filtered out. Work on mining the Web
for bilingual text, such as STRAND (Resnik, 1999), BITS

“The upper-bound parser’s performance is on par with that of
the state of the art constituency parsers trained on the Chinese
Treebank, e.g. (Bikel and Chiang, 2000).

(Ma and Liberman, 1999), and PTMiner (Nie et al., 1999),
show significant promise in this regard. Once parallel Web
pages are obtained, it is possible to obtain sentence- or
segment-level alignments either via alignment of HTML
markup (Resnik, 1998) or via more sophisticated sentence-
alignment techniques (Melamed, 1998).

Beyond simply taking a “more is better” approach to
data acquisition, one way to reduce the noise in the induced
treebank is to lower the error rates of the individual com-
ponents in our projection framework. Of these, improving
the word alignment model would benefit the overall sys-
tem the most. We are actively developing alternative word
alignment models that is sensitive to this syntactic projec-
tion framework (Lopez et al., 2002). Moreover, as we have
shown in this study, filtering techniques that identify and
remove malformed trees can help reducing noise; however,
aggressive filtering alone is likely to result in over-filtering.
To render nearly 90% of the bilingual text useless places too
heavy a burden on even the best Web mining techniques.
We are experimenting with filtering strategies that attempt
to localize the potentially problematic parts of a syntactic
tree so that the rest can still contribute to the training cor-
pus. In addition, we are continuing to work on the post-
projection transformation the process to improve the qual-
ity of the projected trees.

6 Acknowledgments

This work has been supported, in part, by ONR
MURI Contract FCP0.810548265, NSA RD-02-5700,
DARPA/ITO Cooperative Agreement N660010028910 and
Mitre Contract 010418-7712. The authors would like to
thank Franz Josef Och for his help with using the GIZA++
translation model; and Adam Lopez and Mike Nossal for
helpful discussions and comments on this paper.

7 References

Yaser Al-Onaizan, Jan Curin, Michael Jahr, Kevin Knight,
John Lafferty, I. Dan Melamed, Franz-Josef Och, David
Purdy, Noah A. Smith, and David Yarowsky. 1999,
Statistical machine translation. Technical report, JHU.
citeseer.nj.nec.com/al-onaizan99statistical.html.

Mark C. Baker, 1997. Thematic Roles and Syntactic Struc-
ture, pages 73-137. Kluwer.

Daniel Bikel and David Chiang. 2000. Two statistical pars-
ing models applied to the chinese treebank. In Proceed-
ings of the Second Chinese Language Processing Work-
shop, pages 1-6.

| Method | Corpus | Size | Precision & Recall |

Modify Prev (Baseline) - - 13.5
Modify Next (Baseline) - - 35.7
Stat. Parser Induced HKNews | 5284 423
Stat. Parser (Upper-bound) Clean ChTB 3870 75.6

Table 2: A comparison of the parsers’ performance against lower and upper bounds on the test set (%).

Peter F. Brown, John Cocke, Stephen A. DellaPietra, Vin-
cent J. DellaPietra, Frederick Jelinek, John D. Lafferty,
Robert L. Mercer, and Paul S. Roossin. 1990. A sta-
tistical approach to machine translation. Computational
Linguistics, 16(2):79-85, June.

John Carroll, Guido Minnen, and Ted Briscoe. 1999. Cor-
pus annotation for parser evaluation. In LINC-99 work-
shop at the 9th Conference of the EACL, June.

Eugene Charniak. 1999. A maximum-entropy inspired
parser. Technical Report CS-99-12, Brown University.
Michael Collins. 1997. Three generative, lexicalised mod-
els for statistical parsing. In Proceedings of the 35th An-

nual Meeting of the ACL, pages 16-23, Madrid, Spain.

Michael Collins. 1999. A statistical parser for czech. In
Proceedings of the 37th Annual Meeting of the ACL, Col-
lege Park, Maryland.

Bonnie J. Dorr. 1993. Machine Translation: A View from
the Lexicon. The MIT Press, Cambridge, MA.

Rebecca Hwa, Philip Resnik, Amy Weinberg, and Okan
Kolak. 2002. Evaluating translational correspondence
using annotation projection. In Proceedings of the 40th
Annual Meeting of the ACL. To appear.

Dekang Lin. 1995. A dependency-based method for eval-
uating broad-coverage parsers. In Proceedings of the
IJCAI-95, pages 1420-1425.

Adam Lopez, Michael Nossal, Rebecca Hwa, and Philip
Resnik. 2002. Word-level alignment for multilingual re-
source acquisition. In Proceedings of the Workshop on
Linguistic Knowledge Acquisition and Representation:
Bootstrapping Annotated Language Data. To appear.

Xiaoyi Ma and Mark Liberman. 1999. Bits: A method for
bilingual text search over the web. In Machine Transla-
tion Summit VII.

Mitchell Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated corpus
of English: the Penn Treebank. Computational Linguis-
tics, 19(2):313-330.

1. Dan Melamed. 1998. Empirical Methods for Exploiting
Parallel Texts. Ph.D. thesis, University of Pennsylvania,
May.

J. Nie, M. Simard, P. Isabelle, and R. Durand. 1999. Cross-
language information retrieval based on parallel texts and
automatic mining parallel texts from the web. In Pro-
ceedings of the ACM SIGIR Conference.

Philip Resnik. 1998. Parallel strands: A preliminary in-
vestigation into mining the Web for bilingual text. In
Proceedings of the Third Conference of the Association
Jor Machine Translation in the Americas, AMTA-9S, in
Lecture Notes in Artificial Intelligence, 1529, Langhorne,
PA, October 28-31.

Philip Resnik. 1999. Mining the web for bilingual text.
In Proceedings of the 37th Annual Meeting of the ACL,
June.

Fei Xia and Martha Palmer. 2001. Converting dependency
structures to phrase structures. In Proc. of the HLT Con-
Jerence, March.

Fei Xia, Martha Palmer, Nianwen Xue, Mary Ellen
Ocurowski, John Kovarik, Fu-Dong Chiou, Shizhe
Huang, Tony Kroch, and Mitch Marcus. 2000. Develop-
ing guidelines and ensuring consistency for chinese text
annotation. In Proceedings of the Second Language Re-
sources and Evaluation Conference, June.

David Yarowsky and Grace Ngai. 2001. Inducing multilin-
gual pos taggers and np bracketers via robust projection
across aligned corpora. In Proc. of NAACL-2001, pages
200-207.

Automatic Annotation of the Penn-Treebank with LFG F-Structure
Information

Aoife Cahill, Mairead McCarthy, Josef van Genabith, Andy Way

School of Computer Applications, Dublin City University
Dublin 9, Ireland
{acahill, mcarthy, josef, away } @computing.dcu.ie

Abstract
Lexical-Functional Grammar f-structures are abstract syntactic representations approximating basic predicate-argument structure. Tree-
banks annotated with f-structure information are required as training resources for stochastic versions of unification and constraint-based
grammars and for the automatic extraction of such resources. In a number of papers (Frank, 2000; Sadler, van Genabith and Way, 2000)
have developed methods for automatically annotating treebank resources with f-structure information. However, to date, these methods
have only been applied to treebank fragments of the order of a few hundred trees. In the present paper we present a new method that
scales and has been applied to a complete treebank, in our case the WSJ section of Penn-II (Marcus et al, 1994), with more than 1,000,000

words in about 50,000 sentences.

1. Introduction

Lexical-Functional Grammar f-structures (Kaplan and
Bresnan, 1982; Bresnan, 2001) are abstract syntactic rep-
resentations approximating basic predicate-argument struc-
ture (van Genabith and Crouch, 1996). Treebanks an-
notated with f-structure information are required as train-
ing resources for stochastic versions of unification and
constraint-based grammars and for the automatic extraction
of such resources. In two companion papers (Frank, 2000;
Sadler, van Genabith and Way, 2000) have developed meth-
ods for automatically annotating treebank resources with
f-structure information. However, to date, these methods
have only been applied to treebank fragments of the order
of a few hundred trees. In the present paper we present a
new method that scales and has been applied to a complete
treebank, in our case the WSJ section of Penn-II (Marcus et
al, 1994), with more than 1,000,000 words in about 50,000
sentences.

We first give a brief review of Lexical-Functional Gram-
mar. We next review previous work and present three ar-
chitectures for automatic annotation of treebank resources
with f-structure information. We then introduce our new
f-structure annotation algorithm and apply it to the Penn-II
treebank resource. Finally we conclude and outline further
work.

2. Lexical-Functional Grammar

Lexical-Functional Grammar (LFG) is an early member
of the family of unification- (more correctly: constraint-)
based grammar formalisms (FUG, PATR-II, GPSG, HPSG
etc.). It enjoys continued popularity in theoretical and
computational linguistics and natural language processing
applications and research. At its most basic, an LFG
involves two levels of representation: c-structure (con-
stituent structure) and f-structure (functional structure).
C-structure represents surface grammatical configurations
such as word order and the grouping of linguistic units
into larger phrases. The c-structure component of an LFG
is represented by a CF-PSG (context-free phrase structure
grammar). F-structure represents abstract syntactic func-

tions such as subject, object, predicate etc. in terms of
recursive attribute-value structure representations. These
abstract syntactic representations abstract away from par-
ticulars of surface configuration. The motivation is that
while languages differ with respect to surface representa-
tion they may still encode the same (or very similar) ab-
stract syntactic functions (or predicate argument structure).
To give a simple example, typologically, English is classi-
fied as an SVO (subject-verb-object) language while Irish
is a verb initial VSO language. Yet a sentence like John
saw Mary and its Irish translation Chonaic Sedn Mdire,
while associated with very different c-structure trees, have
structurally isomorphic f-structure representations, as rep-
resented in Figure 1.

C-structure trees and f-structures are related in terms
of projections (indicated by the arrows in the examples
in Figure 1). These projections are defined in terms of
f-structure annotations in c-structure trees (describing f-
structures) originating from annotated grammar rules and
lexical entries. A sample set of LFG grammar rules with
functional annotations (f-descriptions) is provided in Fig-
ure 2. Optional constituents are indicated by brackets.

3. Previous Work: Automatic Annotation
Architectures

It would be desirable to have a treebank annotated with
f-structure information as a training resource for probabilis-
tic constraint (unification) grammars and as a resource for
extracting such grammars. The large number of CFG rule
types in treebanks (> 19,000 for Penn-II) makes man-
ual f-structure annotation of grammar rules extracted from
complete treebanks prohibitively time consuming and ex-
pensive. Recently, in two companion papers (Frank, 2000;
Sadler, van Genabith and Way, 2000) a number of re-
searchers have investigated the possibility of automatically
annotating treebank resources with f-structure information.
As far as we are aware, we can distinguish three differ-
ent types of automatic f-structure annotation architectures
(these have all been developed within an LFG framework
and although we refer to these as automatic f-structure an-

[PRED ‘SEE((sUBI)(10OBJ))’
_— \ PRED ‘JOHN’
NP SUBJ fo: [NUM SG]
a SUTJ)z l PERS 3
John NP OBI fa: { PRED "MARY }
=1 Qo= —4 7 NUMPL
‘ | | TENSE PAST]
saw Mary
S [PRED ‘FEIC{(TSUBJ)(TOBJ))’
1=| PRED ‘SEAN’
SUBJ fo: [NUM SG 1
PERS 3

SUBJ)= |

Chonaic Sean

PRED ‘MAIRE’]

OBJ :
_/'f‘“* |:NUM SG

| TENSE PAST

Figure 1: C- and f-structures for an English and corresponding Irish sentence

S NP VP
1 SUBJ = 1=l

Det N

A | 1=
v NP
e <TOBJ—1

ADV
|€T ADIN

VP S
7 XCOMP =| 7 COMP =]

Figure 2: Sample LFG grammar rules for a fragment of English

notation architectures they could equally well be used to an-
notate treebanks with e.g. HPSG feature structure or with
Quasi-Logical Form (QLF) (Liakata and Pulman, 2002) an-
notations):

e regular expression based annotation (Sadler, van Gen-
abith and Way, 2000)

e tree description set based rewriting (Frank, 2000)

e annotation algorithms

More recently, we have learnt about the QLF annotation
work by (Liakata and Pulman, 2002). Much like (Frank,
2000), their approach is based on matching configurations
in a flat, set based tree description representation.

Below we will briefly describe the first two architec-
tures. The new work presented in this paper is based on an
annotation algorithm and discussed at length in Sections 4
and 5 of the paper.

3.1. Regular Repression Based Annotation

(Sadler, van Genabith and Way, 2000) describe a regular
expression based automatic f-structure annotation method-
ology. The basic idea is very simple: first, the CFG rule set
is extracted from the treebank (fragment); second, regular
expression based annotation principles are defined; third,
the principles are automatically applied to the rule set to
generate an annotated rule set; fourth, the annotated rules
are automatically matched against the original treebank

trees and thereby f-structures are generated for these trees.
Since the annotation principles factor out linguistic gener-
alisations their number is much smaller than the number of
CFG treebank rules. In fact, the regular expression based f-
structure annotation principles constitute a principle-based
LFG c-structure/f-structure interface. We will explain the
method in terms of a simple example. Let us assume that
from the treebank trees we extract CFG rules expanding vp
of the form (amongst others):

vp:A > v:B s:C
Vp:A > v:B v:
Vp:A > v:B v:

Q

s:D
v:D s:E

Q

vp:A > v:B s:C pp:D
vp: :B s:D pp:E
vp:A > v:B v:C v:D s:E pp:F

g
\Y
<
<
Q

Q

vp:A > advp:B v:C s:D
vp:A > advp: :C v:D s:E
vp:A > advp:B v:C v:D v:E s:F

o
<
<

vp:A > advp:B v:C s:D pp:E
vp:A > advp:B v:C v:D s:E pp:F
vp:A > advp:B v:C v:D v:E s:F pp:G

Each CFG category in the rule set has been associated with
a logical variable designed to carry f-structure information.
In order to annotate these rules we can define a set of regu-
lar expression based annotation principles:

Vp:A > * v:B v:C *

@ [B:xcomp=C,B:subj=C:sub7j]

Vp:A > *("v) v:B *
@ [A=B]
vVp:A > * v:B s:C *

@ [B:comp=C]

The first annotation principle states that if anywhere in a
rule RHS expanding a vp category we find a v v sequence
the f-structure associated with the second v is the value
of an xcomp attribute in the f-structure associated in the
first v (‘*’ is the Kleene star and, if unattached to any
other regular expression, signifies any string). It is easy to
see how this annotation principle matches many of the ex-
tracted example rules, some even twice. The second prin-
ciple states that the leftmost v in vp rules is the head. The
leftmost constraint is expressed by the fact that the rule
RHS may consist of an initial string that may not contain a
v: * ("v). Each of the annotation principles is partial and
underspecified: they underspecify CFG rule RHSs and an-
notate matching rules partially. The annotation interpreter
applies all annotation principles to each CFG rule as often
as possible and collects all resulting annotations. It is easy
to see that we get, e.g., the following (partial) annotation
for:

vp:A > advp:B v:C v:D v:E s:F pp:G
@ [A=C,
C:xcomp=D,C:subj=D:subj,
D:xcomp=E,D:subj=E:subj,
E:comp=F]

In their experiments with the publicly available subsection
of the AP treebank, (Sadler, van Genabith and Way, 2000)
achieve precision and recall results in the low to mid 90 per-
cent region against a manually annotated “gold standard”.
The method is order independent, partial and robust. To
date, however, the method has been applied to only small
CFG rule sets (of the order of 500 rules approx.).

3.2. Rewriting of Flat Tree Description Set
Representations

In a companion paper, (Frank, 2000) develops an auto-
matic annotation method that in many ways is a generali-
sation of the regular expression based annotation method.
The basic idea is again simple: first, trees in treebanks are
translated into a flat set representation format in a tree de-
scription language; second, annotation principles are de-
fined in terms of rewriting rules employing a rewriting sys-
tem originally developed for transfer based machine trans-
lation architectures (Kay, 1999). We will illustrate the
method with a simple example

S:A

/ \ dom (A,B), dom(A,C),
np:B vp:C dom (C, D),

| | => pre(B,C),
John v:D cat (A,s), cat(C,vp),

| cat (D,v),
left
dom(X,Y), dom(X,Z), pre(Y,Z),
cat(X,s), cat(¥,np), cat(Z,vp)

10

==>
subj (X,Y), eq(X,Z)

Trees are described in terms of (immediate and general)
dominance and precedence relations, labelling functions as-
signing categories to nodes and so forth. In our example
node identifiers A, B, etc. do double duty as f-structure
variables. The annotation principle states that if node X
dominates both Y and Z and if Y preceeds Z and the respec-
tive CFG categories are s, np and vp then Y is the subject
of X and 7 is the same as (i.e. is the head of) X.

The tree description rewriting method has a number of
advantages:

e in contrast to the regular expression based method, an-
notation principles formulated in the flat tree descrip-
tion method can consider arbitrary tree fragments (and
not just only local CFG rule configurations).

e in contrast to the regular expression based method
which is order independent, the rewriting technology
can be used to formulate both order dependent and or-
der independent systems. Cascaded, order dependent
systems can support a more compact and perspicuous
statement of annotation principles as certain transfor-
mations can be assumed to have already applied earlier
on in the cascade.

For a more detailed, joint presentation of the two ap-
proaches consult (Frank et al, 2002). Like the regular
expression based annotation method, the tree description
based set rewriting method has to date only been applied to
small treebank fragments of the order of serveral hundred
trees.

3.3. Annotation Algorithms

The previous two automatic annotation architectures
enforce a clear separation between the statement of anno-
tation principles and the annotation procedure. In the first
case the annotation procedure is provided by our regular
expression interpreter, in the second by the set rewriting
machinery. A clean separation between principles and pro-
cessing supports maintenance and reuse of annotation prin-
ciples. There is, however, a third possible automatic anno-
tation architecture and this is an annotation algorithm. In
principle, two variants are possible. An annotation algo-
rithm may

e directly (recursively) transduce a treebank tree into an
f-structure — such an algorithm would more appropri-
ately be referred to as a tree to f-structure transduction
algorithm;

e annotate CFG treebank trees with f-structure annota-
tions from which an f-structure can be computed by a
constraint solver.

The first mention of an automatic f-structure annotation
algorithm we are aware of is unpublished work by Ron Ka-
plan (p.c.) who as early as 1996 worked on automatically
generating f-structures from the ATIS corpus to generate
data for LFG-DOP (Bod and Kaplan, 1998) applications.

Kaplan’s approach implements a direct tree to f-structure
transduction. The algorithm walks the tree looking for dif-
ferent configurations (e.g. np under s, 2nd np under vp,
etc.) and “folds” the tree into the corresponding f-structure.
By contrast, our approach develops the second, more indi-
rect tree annotation algorithm paradigm. We have designed
and implemented an algorithm that annotates nodes in the
Penn-II treebank trees with f-structure constraints. The de-
sign and the application of the algorithm is explained be-
low.

4. Automatic Annotation Algorithm Design

In our work on the automatic annotation algorithm we
want to achieve the following objectives: we want an an-
notation method that is robust and scales to the whole of
the Penn-II treebank with 19,000 CFG rules for 1,000,000
words with 50,000 sentences approx. The algorithm is
implemented as a recursive procedure (in Java) which an-
notates Penn-II treebank tree nodes with f-structure infor-
mation. The annotations describe what we call “proto-f-
structures”. Proto-f-structures

e encode basic predicate-argument-modifier structures;

e may be partial or unconnected (i.e. in some cases
a sentence may be associated with two or more un-
connected f-structure fragments rather than a single f-
structure);

e may not encode some reentrancies, e.g. in the case of
wh- and other movement or distribution phenomena
(of subjects into VP coordinate structures etc.).

Compared to the regular expression and the set rewrit-
ing based annotation methods described above, the new al-
gorithm is somewhat more coarse grained, both with re-
spect to resulting f-structures and with respect to the for-
mulation of the annotation principles.

Even though the method is encoded in the form of an
annotation algorithm (i.e. a procedure) we did not want
to completely hard code the linguistic basis for the annota-
tion into the procedure. In order to achieve a clean design
which supports maintainability and reusability of the an-
notation algorithm and the linguistic information encoded
in it, we decided to design the algorithm in terms of three
main components that work in sequence:

‘ L/R Context Annotation Principles ‘

Y

‘ Coordinate Annotation Principles ‘

4

’ Catch-all Annotation Principles ‘

Each of the components of the algorithm is presented be-
low.

In addition, at the lexical level, for each Penn-II preter-
minal category type, we have a lexical macro associat-
ing any terminal under the category with the required f-
structure information. To give a simple example, a singular
common noun nns, such as e.g. company is annotated by
the lexical macro for nns as | pred = company, | num =
sg, | pers = 3rd.

11

4.1.

The annotation algorithm recursively traverses trees in
a top-down fashion. Apart from very few exceptions (e.g.
possessive NPs), at each stage of the recursion the algo-
rithm considers local subtrees of depth one (i.e. effectively
CFG rules). Annotation is driven by categorial and simple
configurational information in a local subtree.

In order to annotate the nodes in the trees, we par-
tition each sequence of daughters in a local subtree (i.e.
rule RHS) into three sections: left context, head and right
context. The head of a local tree is computed using
Collins’ Collins (1999) head lexicalised grammar annota-
tion scheme (except for coordinate structures, where we
depart from Collins’ head scheme). In a preprocessing step
we transform the treebank into head lexicalised form. Dur-
ing automatic annotation we can then easily identify the
head constituent in a local tree as that constituent which
carries the same terminal string as the mother of the local
tree. With this we can compute left and right context: given
the head constituent, the left context is the prefix of the lo-
cal daughter sequence while the right context is the suffix.
For each local tree we also keep track of the mother cate-
gory. In addition to the positional (reduced to the simple
tripartition into head with left/right context) and categorial
information about mother and daughter nodes we also em-
ploy an LFG distinction between subcategorisable (subJj,
obj, obj2, obl, xcomp, comp ...) and non-
subcategorisable (adjn, xadjn...) grammatical func-
tions. Subcategorisable grammatical functions characterise
arguments, while non-subcategorisable functions charac-
terise adjuncts (modifiers).

Using this information we construct what we refer to
as an “annotation matrix” for each of the rule LHS cate-
gories in the Penn-II treebank grammar. The x-axis of the
matrix is given by the tripartition into left context, head
and right context. The y-axis is defined by the distinction
between subcategorisable and non-subcategorisable gram-
matical functions.

Consider a much simplified example: for rules (local
trees) expanding English np’s the rightmost nominal (n,
nn, nns etc.) on the RHS is (usually) the head. Heads
are annotated T=|. Any det or quant constituent in
the left context is annotated T spec =|. Any adjp in
the left context is annotated |€T adjn. Any nominal in
the left context (in noun noun sequences) is annotated as
a modifier |€T adjn. Any pp in the right context is an-
notated as |€T adjn. Any relcl in the right context as
l€T relmod, any nominal (phrase - usually separated by
commas following the head) as an apposition | €7 app and
so forth. Information such as this is used to populate the np
annotation matrix, partially represented in Table 1.

In order to minimise mistakes, the annotation matrices
are very conservative: subcategorisable grammatical func-
tions are only assigned if there is no doubt (e.g. an np
following a preposition in a pp is assigned T obj =|;a vp
following a v in a vp constituent is assigned T xcomp =
, | subj =T xcomp : subj and so forth). If, for any
constituent, the argument - modifier status is in doubt, we
annotate the constituent as an adjunct: |€7 adjn.

Treebanks have an interesting property: for each cate-

L/R Context Annotation Principles

| np H left context

] head | right context

subcat functions

det, quant : T spec =|

n, nn, nns : =]

non-subcat functions

adjp: |€T adjn
n,nn,nns : |€7 adjn

relcl: |€T relmod
pp: |€] adjn
n,nn, nns : |€7] app

Table 1: Simplified, partial annotation matrix for np rules

gory, there is a small number of very frequently occurring
rules expanding that category, followed by a large number
of less frequent rules many of which occur only once or
twice in the treebank (Zipf’s law).

For each particular category, the corresponding anno-
tation matrix is constructed from the most frequent rules
expanding that category. In order to guarantee similar cov-
erage for the annotation matrices for the different rule LHS
in the Penn-II treebank, we design each matrix according
to an analysis of the most frequent CFG rules expanding
that category, such that the token occurrences of those rules
cover more than 80% of the token occurrences of all rules
expanding that LHS category in the treebank. In order to
do this we need to look at the following number of most
frequent rule types for each category given in Table 2.

Although constructed based on the evidence of the most
frequent rule types, the resulting annotation matrices do
generalise to as yet unseen rule types in the following two
ways:

e during the application of the annotation algorithm, an-
notation matrices annotate less frequent, unseen rules
with constituents matching the left/right context and
head specifications. The resulting annotation might
be partial (i.e. some constituents in less frequent rule
types may be left unannotated).

e in addition to monadic categories, the Penn-II treebank
contains versions of these categories associated with
functional annotations (-LOC, -TMP etc. indicating
locative, temporal, etc. and other functional informa-
tion). If we include functional annotations in the cate-
gories there are approx. 150 distinct LHS categories
in the CFG extracted from the Penn-II treebank re-
source. Our annotation matrices were developed with
the most frequent rule types expanding monadic cat-
egories only. During application of the annotation al-
gorithm, the annotation matrix for any given monadic
category C is also applied to all rules (local trees) ex-
panding C-LOC, C-TMP etc., i.e. instances of the cat-
egory carrying functional information.

In our work to date we have not yet covered “con-
stituents” marked frag(ment) and x (unknown con-
stituents) in the Penn-II treebank.

Finally, note that L/R context annotation principles are
only applied if the local tree (rule RHS) does not contain
any instance of a coordinating conjunction cc. Construc-
tions involving coordinating conjunctions are treated sepa-
rately in the second component of the annotation algorithm.

12

4.2. Coorordinating Conjunction Annotation
Principles

Coordinating constructions come in two forms: like and
unlike (UCPs) constituent coordinations. Due to the (often
too) flat treebank analyses these present special problems.
Because of this, an integrated treatment of coordinate struc-
tures with the other annotation principles would have been
too complex and messy. For this reason we decided to treat
coordinate structures in a separate module. Here we only
have space to talk about like constituent coordinations.

The annotation algorithm first attempts to establish the
head of a coordinate structure (usually the rightmost coor-
dination) and annotates it accordingly. It then uses a va-
riety of heuristics to find and annotate the various coor-
dinated elements. One of the heuristics employed simply
states that if both the immediate left and the immediate
right constituents next to the coordination have the same
category, then find all such categories in the left context of
the rule and annotate these together with the immediate left
and right constituents of the coordination as individual el-
ements | €7 coord in the f-structure set representation of
the coordination.

4.3. Catch-All Annotation Principles

The final component of the algorithm utilises functional
information provided in the Penn-II treebank annotations.
Any constituent, no matter what category, left unannotated
by the previous two annotation algorithm components, that
carries a Penn-II functional annotation other than SBJ and
PRD, is annotated as an adjunct | €T adjn.

5. Results and Evaluation

The annotation algorithm is implemented in terms of a
Java program. Annotation of the complete WSJ section of
the Penn-II treebank takes less than 30 minutes on a Pen-
tium IV PC. Once annotated, for each tree we collect the
feature structure annotations and feed them into a simple
constraint solver implemented in Prolog.

Our constraint solver can handle equality constraints,
disjunction and simple set valued feature constraints. Cur-
rently, however, our annotations do not involve disjunctive
constraints. This means that for each tree in the treebank
we either get a single f-structure, or, in the case of par-
tially annotated trees, a number of unconnected f-structure
fragments, or, in case of feature structure clashes, no f-
structure.

As pointed out above, in our work to date we have not
developed an annotation matrix for frag(mentary) con-
stituents. Furthermore, as it stands, the algorithm com-
pletely ignores “movement” (or dislocation and control)

ADJP | ADVP | CONJP | FRAG | LST | NAC | NP NX PP PRN PRT | QP | RRC
25 3 3 184 4 6 64 14 2 35 2 11 12
S SBAR | SBARQ | SINV | SQ | UCP | VP | WHADJP | WHADVP | WHNP | WHPP | X
11 3 20 16 68 78 146 2 2 2 1 37

Table 2: # of most frequent rule types analysed to construct annotation matrices

phenomena marked in the Penn-II annotations in terms of
coindexation (of traces). This means that the f-structures
generated in our work to date miss some reentrancies a
more fine-grained analysis would show.

Furthermore, because of the limited capabilities of our
constraint solver, in our current work we cannot use func-
tional uncertainty constraints (regular expression based
constraints over paths in f-structure) to localise unbounded
dependencies to model “movement” phenomena. Also,
again because of limitations of our constraint solver, we
cannot express subsumption constraints in our annotations
to, e.g., distribute subjects into coordinate vp structures.

To give an illustration of our method, we give the first
sentence of the Penn-II treebank and the f-structure gener-
ated as an example in Figure 3.

Currently we get the following general results with our
automatic annotation algorithm summarised in Table 3:

f-structure | # sentences | percentage
(fragments)

0 2701 5.576
1 38188 78.836
2 4954 10.227
3 1616 3.336
4 616 1.271
5 197 0.407
6 111 0.229
7 34 0.070
8 12 0.024
9 6 0.012
10 4 0.008
11 1 0.002

Table 3: Automatic annotation results

The Penn-II treebank contains 49167 trees. The results re-
ported in Table 3 ignore 727 trees containing frag(ment)
and x (unknown) constituents as we did not provide any an-
notation for them in our work to date. At this early stage of
our work, 38188 of the trees are associated with a complete
f-structure. For 2701 trees no f-structure is produced (due
to feature clashes). 4954 are associated with 2 f-structure
fragments, 1616 with 3 fragments and so forth.

5.1. Evaluation

In order to evaluate the results of our automatic anno-
tation we distinguish between “qualitative” and “quantita-
tive” evaluation. Qualitative evaluation involves a “gold-
standard”, quantitative evaluation doesn’t.

13

5.1.1. Qualitative Evaluation

Currently, we evaluate the output generated by our au-
tomatic annotation qualitatively by manually inspecting
the f-structures generated. In order to automate the pro-
cess we are currently working on a set of 100 randomly
selected sentences from the Penn-II treebank to manu-
ally construct gold-standard annotated trees (and hence f-
structures). These can then be processed in a number of
ways:

e manually annotated gold-standard trees can be com-
pared with the automatically annotated trees using
the labelled bracketing precision and recall measures
from evalb, a standard software package to evalu-
ate PCFG parses. This presupposes that we treat an-
notated tree nodes as atoms (i.e. a complex string
such as np: T obj =| is treated as an atomic label)
and that in cases where nodes receive more than one
f-structure annotation the order of these is the same
in both the gold-standard and the automatically anno-
tated version.

e gold-standard and automatically generated f-
structures can be translated into a flat set
of functional descriptions (pred (A, see),

subj(A,B), pred(B,John), obj(A,C),
pred(C,Mary)) and precision and recall can be
computed for those.

f-structures can be transformed (or unfolded) into trees
by sorting attributes alphabetically at each level of em-
bedding and by coding reentrancies as indices. After
this transformation, gold-standard and automatically
generated f-structures can be compared using evalb.
This presupposes that both the gold-standard and the
automatically generated f-structure have identical “ter-
minal” yield.

5.1.2. Quantitative Evaluation

For purely quantitative evaluation (that is evaluation
that doesn’t necessarily assess the quality of the gener-
ated resources) we currently employ two related measures.
These measures give an indication how partial our auto-
matic annotation is at the current stage of the project. The
first measure is the percentage of RHS constituents in gram-
mar rules that receive an annotation. The table lists the an-
notation percentage for RHS elements of some of the Penn-
IT LHS categories. Because of the functional annotations
provided in Penn-II the complete list of LHS categories
would contain approx. 150 entries. Note that the percent-
ages listed below ignore punctuation markers (which are
not annotated):

Pierre Vinken,

61 years old,

will join the board as a nonexecutive

director Nov. 29.
(S (NP-SBJ (NP (NNP Pierre) (NNP Vinken)) (, ,) ADJP (NP (
CD 61) (NNS years)) JJold)) (, ,)) (VP (MD will) (VP
(VB join) (NP (DT the) (NN board)) (PP-CLR (IN as) (NP (
DT a) (JJ nonexecutive (NN director))) (NP-TMP (NNP Nov.)
CD 29)))) ())
subj : headmod : 1 num : sing
pers 3
pred : Pierre
num : sing
pers : 3
pred : Vinken
adjunct : 2 adjunct : 3 adjunct : 4 : pred : 61
pers : 3
pred : years
num : pl
pred : old
xcomp subj headmod : num : sing
pers 3
pred : Pierre
num : sing
pers 3
pred : Vinken
adjunct adjunct : 3 adjunct : 4 : pred : 61
pers : 3
pred : years
num : pl
pred : old
obj spec det : pred : the
num : sing
pers 3
pred : board
obl obJj spec det : pred : a
adjunct 5 : pred : nonexecutive
pred : director
num : sing
pers 3
pred : as
pred : join
adjunct : 6 : pred : Nov.
num : sing
pers 3
adjunct : 7 : pred : 29
pred : will
modal +
Figure 3: F-structure generated for the first sentence in Penn-II
LHS #RHS # RHS % The second, related measure gives the average num-
elements | annotated | annotated ber of f-structure fragments generated for each treebank
ADJP 1653 1468 88.80 tree (the more partial our annotation the more unconnected
ADJP-ADV 21 21 100.00 f-structure fragments are generated for a sentence). For
ADJP-CLR 27 24 88.88 45739 sentences, the average number of fragments per sen-
ADV 607 532 87.64 tences is currently: 1.26 (note again that the number ex-
NP 30793 29145 94.64 cludes sentences containing frag and x constituents).
PP 1090 905 83.02
S 14912 13144 88.14
SBAR 423 331 78.25
SBARQ 270 212 78.51
SQ 657 601 91.47 14
VP 40990 35693 87.07

6. Conclusion and Further Work

In this paper we have presented an automatic f-structure
annotation algorithm and applied it to annotate the Penn-
II treebank resource with f-structure information. The re-
sulting representations are proto-f-structures showing basic
predicate-argument-modifier structure. Currently, 38,188
sentences (78.8% of the 48,440 trees without frag and x
constituents) receive a complete f-structure; 4954 sentences
are associated with two f-structure fragments, 1,616 with
three fragments. 2,701 sentences are not associated with an
f-structure.

In future work we plan to extend and refine our auto-
matic annotation algorithm in a number of ways:

e We are working on reducing the the amount of f-
structure fragmentation by providing more complete
annotation principles.

e Currently the pred values (i.e. the predicates) in the
f-structures generated are surface (i.e. inflected) rather
than root forms. We are planning to use the output of a
two-level morphology to annotate the Penn-II strings
with root forms which can then be picked up by our
lexical macros and used as pred values in the auto-
matic annotations.

e Currently our annotation algorithm ignores the Penn-
II encoding of “moved” constituents in topicalisation,
wh-constructions, control constructions and the like.
These (often non-local) dependencies are marked in
the Penn-II tree annotations in terms of indices. In fu-
ture work we intend to make our annotation algorithm
sensitive to such information. There are two (possi-
bly complementary) ways of achieving this: The first
is to make the annotation algorithm sensitive to the in-
dex scheme provided by the Penn-II annotations either
during application of the algorithm or in terms of un-
doing “movement” in a treebank preprocessing step.
The latter route is explored in recent work by (Liakata
and Pulman, 2002). The second possibility is to use
the LFG machinery of functional uncertainty equa-
tions to effectively localise unbounded dependency re-
lations in a functional annotation at a particular node.
Functional uncertainty equations allow the statement
of regular expression based paths in f-structure. Cur-
rently we cannot resolve such paths with our constraint
solver.

e We are currently experimenting with probabilistic
grammars extracted from the automatically annotated
version of the Penn-II treebank. We will be reporting
on the results of these experiments elsewhere (Cahill
et al, 2002).

e We are planning to exploit the f-structure/QLF/UDRS
correspondences established by (van Genabith and
Crouch, 1996; van Genabith and Crouch, 1997) to
generate semantically annotated versions of the Penn-
II treebank.

15

Acknowledgements

This research was part funded by Enterprise Ireland
Basic Research grant SC/2001/186.

7. References

R. Bod and R. Kaplan 1998. A probabilistic corpus-driven
model for lexical-functional grammar. In: Proceedings
of Coling/ACL’98. 145-151.

A. Cahill, M. McCarthy, J. van Genabith and A. Way 2002.
Parsing with a PCFG Derived from Penn-II with an Au-
tomatic F-Structure Annotation Procedure. In: The sixth
International Conference on Lexical-Functional Gram-
mar, Athens, Greece, 3 July - 5 July 2002 to appear
(2002)

M. Collins 1999. Head-driven Statistical Models for Natu-
ral Language Parsing. Ph.D. thesis, University of Penn-
sylvania, Philadelphia.

J. Bresnan 2001. Lexical-Functional Syntax. Blackwell,
Oxford.

A. Frank. 2000. Automatic F-Structure Annotation of
Treebank Trees. In: (eds.) M. Butt and T. H. King,
The fifth International Conference on Lexical-Functional
Grammar, The University of California at Berkeley, 19
July - 20 July 2000, CSLI Publications, Stanford, CA.

A. Frank, L. Sadler, J. van Genabith and A. Way 2002.
From Treebank Resources tp LFG F-Structures. In: (ed.)
Anne Abeille, Treebanks: Building and Using Syntacti-
cally Annotated Corpora, Kluwer Academic Publishers,
Dordrecht/Boston/London, to appear (2002)

M. Kay 1999. Chart Translation. In Proceedings of
the Machine Translation Summit VII. “MT in the great
Translation Era”. 9-14.

R. Kaplan and J. Bresnan 1982. Lexical-functional gram-
mar: a formal system for grammatical representation.
In Bresnan, J., editor 1982, The Mental Representation
of Grammatical Relations. MIT Press, Cambridge Mass.
173-281.

M. Liakata and S. Pulman 2002. From trees to predicate-
argument structures. Unpublished working paper. Cen-
tre for Linguistics and Philology, Oxford University.

M. Marcus, G. Kim, M. A. Marcinkiewicz, R. Maclntyre,
M. Ferguson, K. Katz and B. Schasberger 1994. The
Penn Treebank: Annotating Predicate Argument Struc-
ture. In: Proceedings of the ARPA Human Language
Technology Workshop.

L. Sadler, J. van Genabith and A. Way. 2000. Automatic
F-Structure Annotation from the AP Treebank. In: (eds)
M. Butt and T. H. King, The fifth International Confer-
ence on Lexical-Functional Grammar, The University of
California at Berkeley, 19 July - 20 July 2000, CSLI Pub-
lications, Stanford, CA.

J. van Genabith and D. Crouch 1996. Direct and Under-
specified Interpretations of LFG f-Structures. In: COL-
ING 96, Copenhagen, Denmark, Proceedings of the Con-
ference. 262-267.

J. van Genabith and D. Crouch 1997. On Interpreting
f-Structures as UDRSs. In: ACL-EACL-97, Madrid,
Spain, Proceedings of the Conference. 402—409.

Incremental Specialization of an HPSG-Based Annotation Scheme

Kiril Simov, Milen Kouylekov, Alexander Simov

BulTreeBank Project
http://www.BulTreeBank.org
Linguistic Modelling Laboratory, Bulgarian Academy of Sciences
Acad. G. Bonchev St. 25A, 1113 Sofia, Bulgaria
kivs@bgcict.acad.bg, mkouylekov@dir.bg, adis_78 @dir.bg

Abstract
The linguistic knowledge represented in contemporary language resource annotations becomes very complex. Its acquiring and manage-
ment requires an enormous amount of human work. In order to minimize such a human effort we need rigorous methods for representation
of such knowledge, methods for supporting the annotation process, methods for exploiting all results from the annotation process, even
those that usually disappear after the annotation has been completed. In this paper we present a formal set-up for annotation within
HPSG linguistic theory. We present also an algorithm for annotation scheme specialization based on the negative information from the
annotation process. The negative information includes the analyses, rejected by the annotator.

1.

In our project (Simov et. al., 2001a), (Simov et al.,
2002) we aim at the creation of syntactically annotated cor-
pus (treebank) based on the HPSG linguistic theory (Head-
driven Phrase Structure Grammar — (Pollard and Sag,
1987) and (Pollard and Sag, 1994)). Hence, the elements
of the treebank are not trees, but feature graphs. The anno-
tation scheme for the construction of the treebank is based
on the appropriate language-specific version of the HPSG
sort hierarchy. On one hand, such an annotation scheme
is very detailed and flexible with respect to the linguistic
knowledge, encoded in it. But, on the other hand, because
of the massive overgeneration, it is not considered to be
annotator-friendly. Thus, the main problem is: how to keep
the consistency of the annotation scheme and at the same
time to minimize the human work during the annotation. In
our annotation architecture we envisage two sources of lin-
guistic knowledge in order to reduce the possible analyses
of the annotated sentences:

Introduction

e Reliable partial grammars.

e HPSG-based grammar: universal principles, language
specific principles and a lexicon.

The actual annotation process includes the following
steps:

e Partial parsing step:

This step comprises several additional steps: (1) Sen-
tence extraction from the text archive; (2) Morphosyn-
tactic tagging; (3) Part-of-speech disambiguation; (4)
Partial parsing;

The result is considered a 100 % accurate partial
parsed sentence.

e HPSG step:

The result from the previous step is encoded into an
HPSG compatible representation with respect to the
sort hierarchy. It is sent to an HPSG grammar tool,
which takes the partial sentence analysis as input and

16

evaluates all the attachment possibilities for it. The
output is encoded as feature graphs.

e Annotation step:

The feature graphs from the previous step are further
processed as follows : (1) their intersection is calcu-
lated; (2) on the base of the differences, a set of con-
straints over the intersection is calculated as well; (3)
during the actual annotation step, the annotator tries to
extend the intersection to full analysis, adding new in-
formation to it. The constraints determine the possible
extensions and also propagate the information, added
by the annotator, in order to minimize the incoming
choices.

This architecture is being currently implemented by es-
tablishing an interface between two systems: CLaRK sys-
tem for XML based corpora development (Simov et. al.,
2001b) and TRALE system for HPSG grammar devel-
opment (TRALE is a descendant of (Gotz and Meurers,
1997)). The project will result in an HPSG corpus based
on feature graphs and reliable grammars. One of the in-
tended applications of these language resources consists of
their exploration for improving the accuracy of the imple-
mented HPSG grammar.

The work, reported in this paper, is a step towards es-
tablishing an incremental mechanism, which uses already
annotated sentences for further specializing of the HPSG
grammar and for reducing the number of the possible
HPSG analyses. In fact, we consider the rejected analyses
as negative information about the language and therefore
the grammar has to be appropriately tuned in order to rule
out such analyses.

The structure of the paper is as follows: in the next sec-
tion we define formally what a corpus is with respect to a
grammar formalism and apply this definition to the defini-
tion of an HPSG corpus. In Sect. 3. we present a logical
formalism for HPSG, define a normal form for grammars
in the logical formalism and on the basis of this normal
form we define feature graphs that constitute a good rep-
resentation for both — HPSG grammars and HPSG cor-
pora. Sect. 4. presents the algorithm for specialization of an

HPSG grammar on the basis of accepted and rejected by the
annotator analyses produced by the grammar. Then Sect. 5.
demonstrates an example of such specialization. The last
section outlines the conclusions and outlook.

2. HPSG Corpus

In our work we accept that the corpus is complete with
respect to the analyses of the sentences in it. This means
that each sentence is presented with all its acceptable syn-
tactic structures. Thus a good grammar will not overgen-
erate, i.e. it will not assign more analyses to the sentences
than the analyses, which already exist in the corpus. Before
we define what an HPSG corpus is like, let us start with a
definition of a grammar-formalism-based corpus in general.
Such an ideal corpus has to ensure the above assumption.

Definition 1 (Grammar Formalism Corpus) A corpus C
in a given grammatical formalism G is a sequence of ana-
lyzed sentences where each analyzed sentence is a member
of the set of structures defined as a strong generative ca-
pacity (SGC) of a grammar 1 in this grammatical formal-
ism:

vS.5 € C — S e sae(I),

where I is a grammar in the formalism G, and

if 0(S) is the phonological string of S and T'(0(S)) is the
set of all analyses assigned by the grammar T to the phono-
logical string o(S), then

vS'.8" eT'(a(S)) — S € C.

The grammar I' is unknown, but implicitly represented
in the corpus C. We could state that if such a grammar
does not exist, then we consider the corpus inconsistent or
uncomplete.

In order to define a corpus in HPSG with respect to this
definition, we have to define a representation of HPSG anal-
ysis over the sentences. This analysis must correspond to
a definition of strong generative capacity in HPSG. Fortu-
nately, there exist such definitions - (King 1999) and (Pol-
lard 1999). We adopt them for our purposes. Thus in our
work we choose:

e Alogical formalism for HPSG — King’s Logic (SRL)
(King 1989);

e A definition of strong generative capacity in HPSG as
a set of feature structures closely related to the special
interpretation in SRL (exhaustive models) along the
lines of (King 1999) and (Pollard 1999).

e A definition of corpus in HPSG as a sequence of sen-
tences that are members of SGC(I") for some grammar
I' in SRL.

It is well-known that an HPSG grammar in SRL for-
mally comprises two parts: a signature and a theory. The
signature defines the ontology of the linguistic objects in
the language and the theory constraints the shape of the lin-
guistic objects. Usually the descriptions in the theory part
are presented as implications. In order to demonstrate in a
better way the connection between the HPSG grammar in
SRL and the HPSG corpus, we offer a common representa-
tion of the grammar and the corpus.

17

We define a normal form for HPSG grammars which
ideologically is very close to the feature structures defining
the strong generative capacity in HPSG as it has proposed
in the work of (King 1999) and (Pollard 1999). We de-
fine both the corpus and the grammar in terms of clauses
(considered as graphs) in a special kind of matrices in SRL.
The construction of new sentence analyses can be done us-
ing the inference mechanisms of SRL. Another possibility
is such a procedure to be defined directly using the rep-
resentations in the normal form. In order to distinguish the
elements in our normal form from the numerous of kinds of
feature structures we call the elements in the normal form
feature graphs. One important characteristic about our fea-
ture graphs is that they are viewed as descriptions in SRL,
i.e. as syntactic entities.

In other works (Simov, 2001) and (Simov, 2002) we
showed how from a corpus, consisting of feature graphs, a
corpus grammar could be extracted along the lines of Rens
Bod’s ideas on Data-Oriented Parsing Model (Bod, 1998).
Also, in (Simov, 2002) we showed how one could use the
positive information in the corpus in order to refine an ex-
isting HPSG grammar. In this paper we discuss and illus-
trate the usage of the negative information compiled as a
by-product during the annotation of the corpus.

3. Logical Formalism for HPSG

In this section we present a logical formalism for HPSG.
Then a normal form (exclusive matrices) for a finite the-
ory in this formalism is defined and then we show how it
can be represented as a set of feature graphs. These graphs
are considered a representation of grammars and corpora in
HPSG.

3.1. King’s Logic — SRL

This section presents the basic notions of Speciate Re-
entrancy Logic (SRL) (King 1989).

by (S,F,A) is a finite SRL signature iff S is
a finite set of species, F is a set of features, and A :
S x F — Pow(S) is an appropriateness function. T =
(Uz, Sz, Fz) is a SRL interpretation of the signature X
(or X-interpretation) iff

Uz is a non-empty set of objects,

St is a total function from U7 to S,

called species assignment function,
JF7 is a total function from F to the set of partial
function from U7 to Uz such that
for each ¢ € F and each v € Uz, if Fr(¢)(v)|!
then Sz(Fz(¢)(v)) € A(Sz(v), ¢), and
for each ¢ € F and each v € Uz, if A(Sz(v), ¢)
is not empty then Fz(¢)(v) |,

JF7 is called feature interpretation function.

T is a term iff 7 is a member of the smallest set 7 .M
such that (1) : € 7 M, and (2) for each ¢ € F and each
T € TM, 17¢ € TM. For each Y-interpretation Z, Pz
is a term interpretation function over 7 iff (1) Pz(:) is
the identity function from Uz to Uz, and (2) for each ¢ €
F and each 7 € T M, Pz(7¢) is the composition of the
partial functions Pz(7) and Fz(¢) if they are defined.

! f(0)| means the function f is defined for the argument o.

0 is a description iff 0 is a member of the smallest set
D such that (1) for each ¢ € S and for each 7 € T M,
T~o€ D,(2)foreachts € TMand 1 € TM, 1y
7o € Dandm % 175 € D, (3)foreachd € D, - € D, (4)
foreach §; € Dand 5 € D, [(51 /\(52] € D, [(51 \/52] € D,
and [0y — d2] € D. Literals are descriptions of the form
T ~ 0,T] & To, T| % Ty or their negation. For each -
interpretation Z, D7 is a description denotation function
over Z iff Dy is a total function from D to the powerset of
Uz, such that

Dz(r ~ o) ={v €Uz | Pz(r)(v) |,

Sz(Pz(7)(v)) = o},

Dz(m = 19) ={v €Uz | Pr(m1)(v) |, Pz(12)(v) |,

and Pz(m)(v) = Pz(m2)(v)},

Dz(m # 712) = {v € Uz | Pz(11)(v) . Pz(72)(v) |,

and Pz(11)(v) # Pr(72)(v)}

Dz(=0) = Uz \ Dz(9),

Dz([61A 02]) =Dz (61) N Dz(d2),

DI([61V 52]) :DI((sl) U DI(52), and

Dy ([81 — 62)) = Ur\Dz(61)) UDz(5).

Each subset # C D is an SRL theory. For each X-
interpretation Z, 77 is a theory denotation function over
T iff 77 is a total function from the powerset of D to
the powerset of Uz such that for each § C D, 77(0)
N{Dz(0)|6 € 0}. Tz(0) = Uz. A theory 0 is satisfiable iff
for some interpretation Z, 77(0) # (. A theory 6 is mode-
lable iff for some interpretation Z, 77(0) = Uz, T is called
a model of #. The interpretation Z exhaustively models 6
iff

7 is a model of 0, and

for each @’ C D,

if for some model Z’ of 0,
T (0') # 0,

then 77(6") # 0.

An HPSG grammar I' = (3, 8) in SRL consists of: (1)
a signature 3 which gives the ontology of entities that exist
in the universe and the appropriateness conditions on them,
and (2) a theory 6 which gives the restrictions upon these
entities.

~
~

3.2. Exclusive Matrices

Following (King and Simov, 1998) in this section we
define a normal form for finite theories in SRL — called
exclusive matrix. This normal form possesses some desir-
able properties for representation of grammars and corpora
in HPSG.

First, we define some technical notions. A clause is a
finite set of literals interpreted conjunctively. A matrix is a
finite set of clauses interpreted disjunctively.

A matrix g is an exclusive matrix iff for each clause
o€ i,

(E0) if A € a then) is a positive literal,

(El):=: € q,

(E2)if i =~ €athenes = 711 € @,

E3)if i~ €aand s ~ 73 € athenm & 73 € @,

Ed)ifrop~TpcathenTt=T€aq,

ESifri mrmea, mo ~Ti¢Eaand 29 R T2 € a then

T = T2 €

(E6)if T ~ 7 € athenforsome o € S, 7 ~ 0 € q,

(E7)if forsomeoc € S, 7~ o € athenT =~ T € a,

E8)if 1 =1 €a, 71 ~ 01 €aand T2 ~ 02 € a then

18

o1 = o3,
(E9)if 7 ~ 01 € vand 7¢ ~ o2 € athen 02 € A(01, P),
(E10)if 7 ~ 0 € a, 7¢p € Term(u) and A(o, ¢) # (then
TORTY E a,
(ElDif #7175 € athenTi & 71 € aand 72 & T2 € a,
(E12)if 1 = 71 € aand 72 = T2 € « then
TIRTe Eaorm % T2 € a, and
EB)m e Zaorm %12 & a,
where {0,01,02} C S, ¢ € F, and {7,711, 72,73} C
T M, and Tern is a function from the powerset of the sets
of literals to the powerset of 7 .M such that
Term(a) = {7 | (m)T¢p =7 €a,7 € TM,d € F*}U
{r|(~)r" =71 €a,7r€TM,¢p € F*}U
{r| (=)o €a,r€TM,p € F*}U
{r| ()T #7179 €, 7€ TM,¢p € F*}U
{r| ()1 ~oc€a,TeTM,p € F*}
There are two important properties of an exclusive ma-
trix o = {a1,...,a,}: (1) each clause « in i is satisfiable
(for some interpretation Z, 77(a) # (), and (2) each two
clauses a1, g in i have disjoint denotations (for each in-
terpretation Z, 77(a1) N 7z(a1) = 0). Also in (King and
Simov, 1998) it is shown that each finite theory with respect
to a finite signature can be converted into an exclusive ma-
trix which is semantically equivalent to the theory. Relying
on the definition of model (where each object in the domain
is described by the theory) and the property that each two
clauses in an exclusive matrix have disjoint denotation, one
can easy prove the following proposition.

Proposition 2 Let 6 be a finite SRL theory with respect to
a finite signature, [be the corresponding exclusive matrix
andT = (U, S, F) be a model of 0. For each object v € U
there exists a unique clause o € i such that v € T ().

3.3. Feature Graphs

As it was mentioned above, an HPSG corpus will com-
prise a set of feature structures representing the HPSG anal-
yses of the sentences. We interpret these feature structures
as descriptions in SRL (clauses in an exclusive matrix).

Let ¥ = (S, F,.A) be a finite signature. A directed,
connected and rooted graph G=(N,V, p, S) such that

N is a set of nodes,

V:N x F— N is a partial arc function,

p is aroot node,

S: N — 8 is a total species assignment function,

such that
for each vy, 5 € N and each ¢ € F
if V(v1, ¢) | and V(v1, @) = va,
then S(v2) € A(S(11), ¢),
is a feature graph wrt 3.

A feature graph G = (N, V), p,S) such that for each
node v € N and each feature ¢ € F if A(S(v),) | then
V(v, ¢) | is called a complete feature graph (or complete
graph).

According to our definition feature graphs are a kind
of feature structures which are treated syntactically rather
than semantically. We use complete feature graphs for rep-
resenting the analyses of the sentences in the corpus.

We say that the feature graph G is finite if and only if
the set of nodes is finite.

For each graph G = (N, V, p, S) and node v in N with
Glo= N, VN, pv,S|n,) we denote the subgraph of G
starting on node v.

Let Gi = (N1,V1,p1,81) and G = (N2, Va, p2, So)
be two graphs. We say that graph G; subsumes graph G,
(Go T G) iff there is an isomorphism v : N1 — N3,
N} C N, such that

v(p1) = po,

for each v, ' € N and each feature ¢,

Vi (v, ¢) = V' iff Va(y(v), ¢) = v(v'), and
foreach v € N1, §1(v) = So{y(v)).

The intuition behind the definition of subsumption by
isomorphism is that each graph describes “exactly” a chunk
in some SRL interpretation in such a way that every two
distinct nodes are always mapped to distinct objects in the
interpretation.

For each two graphs G; and G5 if Go C Gy and G; C Gy
we say that G; and G- are equivalent. For convenience, in
the following text we consider each two equivalent graphs
equal.

For a finite feature graph G = (N, V), p, S), we define a
translation to a clause. Let

Term(G)= {:YU{7 | 7= :61... ¢n,n < [N, V(p, 7) |}
be a set of terms. We define a clause ag:
ag ={r~oc| 7€ Term(G), V{p,7) |, SV{p, 7)) = c}U

{n=m|n € Term(G), 72 € Term(G),

V{p, 1) |, V(p, 72) |, and V(p, 1) = V(p, 72) }U
{r # 12|71 € Term(G), 2 € Term(G),

V{p, 1) L. V{p, 72) |, and V{p, 71) # V(p, 72) }.

We interpret a finite feature graph via the interpretation
of the corresponding clauses

Rz(9) = Tz(ag).

Let G be an infinite feature graph. Then we interpret it
as the intersection of the interpretations of all finite feature
graphs that subsume it:

Rz(9) = Ngrg'gr<wRz(0g).

The clauses in an exclusive matrix p can be represented
as feature graphs. Let u be an exclusive matrix and o € p,
then

Go = (Na, Va, Pa, Sa) is a feature graph such that

No ={|7|a | 7 = 7 € a} is a set of nodes,

Vo : No x F— N, is a partial arc function, such that
Va(|m1las @) L and Vo(|71a, 8) = [72]a iff
TIRTIEQ, TarTEq, pEF, and o~ EQ,

P is the root node |:|,, and

S, : Ny — S is a species assignment function,

such that
Sol|T|a) =0 iff T ~ 0 € a.

Proposition 3 Let p be an exclusive matrix and o € L.
Then the graph G, is semantically equivalent to .

34.

In this paper we do not present a concrete inference
mechanism exploiting feature graphs. As it was mentioned
above, one can use the general inference mechanisms of
SRL in order to construct sentence analyses. However, a
much better solution is to employ an inference mechanism,
which uses directly the graph representation of a theory.

Inference with Feature Graphs

2||X|| is the cardinality of the set X

19

Such an inference mechanism can be defined along the lines
of Breadth-First Parallel Resolution in (Carpener 1992) de-
spite the difference in the treatment of the feature structure
in (Carpener 1992) (Note that (Carpener 1992) treats fea-
ture structures as semantic entities, but we consider our
feature graphs syntactic elements.). One has to keep in
mind that finding models in SRL is undecidable (see (King,
Simov and Aldag 1999)) and some restrictions in terms of
time or memory will be necessary in order to use Breadth-
First Parallel Resolution-like algorithm. A presentation of
such an algorithm is beyond the scope of this paper.

3.5. Graph Representation of an SRL Theory

Each finite SRL theory can be represented as a set of
feature graphs. In order to make this graph transformation
of a theory completely independent from the SRL particu-
lars, we also need to incorporate within the graphs the in-
formation from the signature that is not present in the the-
ory yet. For each species the signature encodes the defined
features as well as the species of their possible values. We
explicate this information in the signature by constructing
a special theory:

A

O ={V [

[:0~:9]]}.
0€ES A(o,0)#£0,0EF

Then for each theory 6 we form the theory 6¢ = 6 U Oy,
which is semantically equivalent to the original theory (be-
cause we add only the information from the signature which
is always taken into account, when a theory is interpreted).
We convert the theory 0¢ into an exclusive matrix which
in turn is converted into a set of graphs GR called graph
representation of 6.

The graph representation of a theory inherits from the
exclusive matrixes their properties: (1) each graph G in GR
is satisfiable (for some interpretation Z, Rz(G) # 0), and
(2) each two graphs G1, G- in GR have disjoint denotations
(for each interpretation Z, Rz (G1) N Rz(G2)=0). We can
reformulate here also the Prop. 2.

Proposition 4 Let 0 be a finite SRL theory with respect to
a finite signature, L be the corresponding exclusive matrix,
GR be the graph representation of 0 and T = (Uz, Sz, Fr)
be amodel of 0. For each object v € U there exists a unique
graph G € GR such that v € R(G).

There exists also a correspondence between complete
graphs with respect to a finite signature and the objects in
an interpretation of the signature.

Definition 5 (Object Graph) Let X = (S, F, A) be a fi-
nite signature, T = (Uz, Sz, Fz) be an interpretation of ¥
and v be an object in U, then the graph G, = (N, V, p, S),
where
N={"eld|Ir€eTMand P(1)(v) ="}
V: N x F— N is a partial arc function, such that
V(vi, ¢) | and Vivy, ¢) = v iff
v1 EN,ve €N, peF, and Fr(¢)(v1) = vs,
p = v is the root node, and
S:N — 8 is a species assignment function, such that
S’y = Sz {(v'),
is called object graph.

It is trivial to check that each object graph is a com-
plete feature graph. Also, one easy can see the connection
between the graphs in the graph representation of a theory
and object graphs of objects in a model of the theory.

Proposition 6 Let 0 be a finite SRL theory with respect to a
finite signature, GR be the graph representation of 0, T =
(Uz,S81,F71) be a model of 6, v be an object in Uz, and
Go = (N, V, p,8) be its object graph. For each node v €
N, there exists a graph G; € GR, such that G|,C G;.

This can be proved by using the definition of a model of
a theory, the Prop. 4 and the definition of a subgraph started
at a node.

3.6. Outcomes: Feature Graphs for HPSG Grammar
and Corpus

Thus we can sum up that feature graphs can be used for
both:

e Representation of an HPSG corpus. Each sentence in
the corpus is represented as a complete feature graph.
One can easily establish a correspondence between the
objects in an exhaustive model of (King 1999) and
complete feature graphs or a correspondence between
the elements of strong generative capacity of (Pollard
1999) and complete feature graphs. Thus complete
feature graphs are a good representation for an HPSG
corpus;

e Representation of an HPSG grammar as a set of fea-
ture graphs. The construction of a graph representa-
tion of a finite theory demonstrates that using feature
graphs as grammar representation does not impose any
restrictions over the class of possible finite grammars
in SRL. Therefore we can use feature graphs as a rep-
resentation of the grammar used during the construc-
tion of an HPSG corpus, as described above.

Additionally, we can establish a formal connection be-
tween a grammar and a corpus using the properties of fea-
ture graphs.

Definition 7 (Corpus Grammar) Let C be an HPSG cor-
pus and I' be an HPSG grammar. We say that I is a gram-
mar of the corpus C' if and only if for each graph G¢ in C
and each node v € G¢ there is a graph G¢ in G such that
Ge |,E Ge-

It follows by the definition that if C' is an HPSG corpus
and I is a corpus grammar of C' then I accepts all analyses
inC.

4. Incremental Specialization using Negative

Information

Let us now return to the annotation process. We start
with an HPSG grammar which together with the signature
determines the annotation scheme. We convert this gram-
mar into a graph representation GR. In the project we rely
on the existing system (TRALE) for processing of HPSG
grammars (TRALE is based on (G6tz and Meurers, 1997)).

20

TRALE works with HPSG grammars represented as gen-
eral descriptions, but the result from the sentence process-
ing is equivalent to a complete feature graph. It is also rel-
atively easy to convert the grammar into a set of feature
graphs.

Having GR we can analyze partial analyses of the sen-
tences as it was described in the introduction. The partial
analyses are used in order to reduce the number of the pos-
sible analyses. Let us suppose that the set of complete
feature graphs GR.A is returned by the TRALE system.
Then these graphs are processed by the annotator within the
CLaRK system and some of the analyses are accepted to be
true for the sentence. Thus, they are added to the corpus and
the rest of the analyses are rejected. Let GRN be the set
of rejected analyses and GRC be the set of all analyses in
the corpus up to now plus the new accepted ones. Our goal
now is to specialize the initial grammar GR into a gram-
mar GR, such that it is still a grammar of the corpus GRC
and it does not derive any of the graphs in GRN. Using
Prop. 6 we can rely on a very simple test for acceptance or
rejection of a complete graph by the grammar: “If for each
node in a complete graph there exists a graph in the gram-
mar that subsumes the subgraph started at the same node,
then the complete graph is accepted by the grammar.” So,
in order to reject a graph G in GRA it is enough to find
a node v in G such that for the subgraph G |, there is no
graph G’ € GR4 such that G |,C G’. We will use this de-
pendency in the process of guiding the specialization of the
initial grammar.

In order to apply this test we have to consider not
only the graphs in GRC and GRN, but also their com-
plete subgraphs. We process further the graphs in GRN
and GRC in order to determine which information en-
coded in these graphs is crucial for the rejection of the
graphs in GRN. Let sub(GRN) be the set of the com-
plete graphs in GRA and their complete subgraphs and let
sub(GRC) be the set of the complete graphs in GRC and
their complete subgraphs. We divide the set sub(GRN)
into two sets: GRN' and GRN ~, where GRN
sub(GRN) N sub(GRC) contains all graphs that are equiv-
alent to some graph as well in GRP? and GRN ™~ =
sub(GRN) \ sub(GRC) contains subgraphs that are pre-
sented only in sub(GRN).

Then we choose all graphs G in GR ¢ such that for some
G' € GRN ™ itholds G’ C G. Let this set be GR, . This
is the set of graphs in the grammar GR which we have to
modify in order to achieve our goal.

Then we select from sub(GRC) all graphs such that
they are subsumed by some graph from GR, . Let this set
be GRP. These are the graphs that might be rejected by
the modified grammar. Thus, the algorithm has to disallow
such a rejection.

Thus our task is to specialize the graphs in the set GR
in such a way that the new grammar (after substitution of
GR, with the new set of more specific graph into GR)
accepts all graphs in GR'P and rejects all graphs in GRN .

The algorithm works by performing the following steps:

3This is based on the fact that the accepted analyses can share
some subgraphs with the rejected analyses.

1. It calculates the set GRN ~;
2. It selects a subset GR, of GRo;
3. It calculates the set GRP;

. It tries to calculate a new set of graphs GR such that
each graph G in the new set GR is either member of
GR, oritis subsumed by a graph in GR . Each new
graphin GR] can not have more nodes than the nodes
in the biggest graph in the sets GRP and GRN . This
condition ensures the algorithm termination. If the al-
gorithm succeeds to calculate a new set GR; then it
proceeds with the next step. Otherwise it stops without
producing a specialization of the initial grammar.

5. It checks whether each graph in GRP is subsumed by
agraphin GR . If ‘yes’ then it prolongs the execution
with the next step. Otherwise it returns to step 4 and
calculates a new set GR .

6. It checks whether there is a graph in GRN such that
it is subsumed by a graph in GR] and all its com-
plete subgraphs in GRA ~ are subsumed by a graph in
GR; . If ‘yes’ then it returns to step 4 and calculates
anew set GR{ . Otherwise it returns the set GR| as a
specialization of the grammar GR .

When the algorithm returns a new set of graphs GR|
which is a specialization of the graph set GR , then we
substitute the graph set GR, with GR] in the grammar
GR(and the result is a new, more specific grammar GR 1
such that it accepts all graphs in the corpus GRC and rejects
all graphs in GRN.

In general, of course, there exist more than one special-
ization. Deciding which one is a good one becomes a prob-
lem, which cannot be solved only on the base of the graphs
in the two sets GRP and GRN . In this case two repairing
strategies are possible: either additional definition of cri-
teria for choosing the best extension, or the application of
some statistical evaluations.

If the algorithm fails to produce a new set of graphs
GR; then there is an inconsistency in the acceptance of
the graphs in GRC and/or in the rejection of the graphs in
GRN. This could happen if the annotator marks as wrong
an analysis (or a part of it) which was marked as true for
some previous analysis.

5. Example

In this section we present an example. This example is
based on the notion of list and member relation encoded as
feature graphs. The lists are encoded by two species: nl
for non-empty lists and el for empty lists. Two features are
defined for non-empty lists: F' for the first element of the
list and R for the rest of the list. The elements of a list are
of species v. The member relation is also encoded by two
species: m for the recursive step of the relation and em for
the non-recursive step. For the recursive step of the relation
(species m) three features are defined: L pointing to the list,
E for the element which is a member of the list and M for
the next step in the recursion of the relation. The next set
of graphs constitutes an incomplete grammar for member

21

relation on lists. The incompleteness results from the fact
that there is no restriction on the feature F.

nl TLl .el em oV
R
R
v F ’I"Ll v nl v
el nl m em
R L E W
v, F nl
m m

Here the two graphs on the left represent the fact that
the rest of a non-empty list could be a non-empty list or an
empty list. They also state that each non-empty list has a
value. Then there are two graphs for the species m. The
first states that the relation member can have a recursive
step as a value for the feature M if and only if the list of
the second recursive step is the rest of the list of the first
recursive step. The second graph just completes the ap-
propriateness for the species m saying that the value of the
feature L is also of species non-empty list when the value of
the feature M is non-recursive step of the member relation.
There are also three graphs with single nodes for the case
of empty lists, non-recursive steps of member relations and
for the values of the lists. They are presented at the top right
part of the picture. Now let us suppose that the annotator
would like to enumerate all members of a two-element list
by evaluation of the following (querly) graph with respect to

the above grammar. i¢
Query graph: R
VLt Ini
A
R
v, F nl
L

m
The grammar returns two acceptable analyses. One for
the first element of the list and one for the second element
of the list.
Positive analyses:

1€l 1el
R
Ve L Anl
R
v, F nl em
L
E
m

The grammar also accepts 11 wrong analyses in which
the F features either point to wrong elements of the list or
they are not connected with element of the list at all. Here
are the wrong analyses.

Negative analyses 1 and 2:

A€ gel
R
v, F “nl
R
v, F nl em v
L ME

Negativelanalyses 3 and 4:
e

A

R

v, F |nl em

R\L

m
The next step is to determine the set GRN ~. This set
contains 12 complete graphs: all graphs in the set GRN
and one subgraph that is not used in the positive analyses.
We will not list these graphs here. The graphs from the
grammar that subsumes the graphs in GRN ™~ are the two
graphs for the member relation. We repeat them here.

nl
R
nl m Y il em Y
L E W
m m

Now we have to make them more specific in order to

22

reject the negative examples from GRAN ™ but still to ac-
cept the two positive examples. The next two graphs are an
example of such more specific graphs.

nl
R
nl By e F n em
L
L §) FE
m m

By the first graph the negative examples 3, 4, 5,7, 8, 10
and 11 are rejected, and by the second graph the negative
examples 1, 2, 5, 6, 7, 8, 9, 10 are rejected. Thus both
specializations are necessary in order to reject all negative
examples. The new grammar still accepts the two positive
examples.

6. Conclusion

The presented approach is still very general. It defines a
declarative way to improve an annotation HPSG grammar
represented as a set of feature graphs. At the moment we
have implemented only partially the connection between
TRALE system and CLaRK system. Thus, a demonstra-
tion of the practical feasibility of the approach remains for
future work.

Similar approach can be established on the base of the
positive information only (see (Simov, 2001) and (Simov,
2002)), but the use of the negative information can speed
up the algorithm. Also, the negative as well as positive in-
formation can be used in creation of a performance model
for the new grammar along the lines of (Bod, 1998).

7. Acknowledgements

The work reported here is done within the BulTreeBank
project. The project is funded by the Volkswagen Stiftung,
Federal Republic of Germany under the Programme “Co-
operation with Natural and Engineering Scientists in Cen-
tral and Eastern Europe” contract 1/76 887.

We would like to thank Petya Osenova for her com-
ments on earlier versions of the paper. All errors remain
ours, of course.

8. References

Rens Bod. 1998. Beyond Grammar: An Experience-Based
Theory of Language. CSLI Publications, CSLI, Califor-
nia, USA.

Bob Carpenter. 1992. The Logic of Typed Feature Struc-
tures. Cambridge Tracts in Theoretical Computer Sci-
ence 32. Cambridge University Press.

T. Gotz and D. Meurers. 1997. The ConTroll system as large
grammar development platform. In Proceedings of the
ACL/EACL post-conference workshop on Computational
Environments for Grammar Development and Linguistic
Engineering. Madrid, Spain.

PJ. King. 1989. A Logical Formalism for Head-Driven
Phrase Structure Grammar. Doctoral thesis, Manchester
University, Manchester, England.

PJ. King. 1999. Towards Thruth in Head-Driven Phrase
Structure Grammar. In V. Kordoni (Ed.), Tiibingen Stud-
ies in HPSG, Number 132 in Arbeitspapiere des SFB
340, pp 301-352. Germany.

P. King and K. Simov. 1998. The automatic deduction of
classificatory systems from linguistic theories. In Gram-
mars, volume 1, number 2, pages 103-153. Kluwer Aca-
demic Publishers, The Netherlands.

P. King, K. Simov and B. Aldag. 1999. The complexity
of modelability in finite and computable signatures of a
constraint logic for head-driven phrase structure gram-
mar. In The Journal of Logic, Language and Information,
volume 8, number 1, pages 83-110. Kluwer Academic
Publishers, The Netherlands.

C.J. Pollard and I.A. Sag. 1987. Information-Based Syn-
tax and Semantics, vol. 1. CSLI Lecture Notes 13. CSLI,
Stanford, California, USA.

C.J. Pollard and I.A. Sag. 1994. Head-Driven Phrase Struc-
ture Grammar. University of Chicago Press, Chicago,
Illinois, USA.

C.J. Pollard. 1999. Strong Generative Capacity in HPSG.
in Webelhuth, G., Koenig, J.-P., and Kathol, A., editors,
Lexical and Constructional Aspect of Linguistic Expla-
nation, pp 281-297. CSLI, Stanford, California, USA.

K. Simov. 2001. Grammar Extraction from an HPSG Cor-
pus. In: Proc. of the RANLP 2001 Conference, Tzigov
chark, Bulgaria, 5-7 Sept., pp. 285-287.

K. Simov, G. Popova, P. Osenova. 2001. HPSG-based syn-
tactic treebank of Bulgarian (BulTreeBank). In: “A Rain-
bow of Corpora: Corpus Linguistics and the Languages
of the World”, edited by Andrew Wilson, Paul Rayson,
and Tony McEnery; Lincom-Europa, Munich, pp. 135—
142.

K. Simov, Z. Peev, M. Kouylekov, A. Simov, M. Dimitrov,
A. Kiryakov. 2001. CLaRK - an XML-based System for
Corpora Development. In: Proc. of the Corpus Linguis-
tics 2001 Conference, pages: 558-560.

K. Simov. 2002. Grammar Extraction and Refinement from
an HPSG Corpus. In: Proc. of ESSLLI-2002 Workshop
on Machine Learning Approaches in Computational Lin-
guistics, August 5-9.(to appear)

K.Simov, P.Osenova, M.Slavcheva, S.Kolkovska, E.Bala-
banova, D.Doikoff, K.Ivanova, A.Simov, M.Kouylekov.
2002. Building a Linguistically Interpreted Corpus of
Bulgarian: the BulTreeBank. In: Proceedings from the
LREC conference, Canary Islands, Spain.

23

A Bootstrapping Approach to Automatic Annotation of Functional Information
to Adjectives with an Application to German

Bernd Bohnet, Stefan Klatt and Leo Wanner

Computer Science Department
University of Stuttgart
Breitwiesenstr. 20-22

70565 Stuttgart, Germany
{bohnet|klatt|wanner } @informatik.uni-stuttgart.de

Abstract
We present an approach to automatic classification of adjectives in German with respect to a range functional categories. The approach
makes use of the grammatical evidence that (i) the functional category of an adjectival modifier determines its relative ordering in an NP,
and (ii) only modifiers that belong to the same category may appear together in a coordination. The coordination context algorithm is
discussed in detail. Experiments carried out with this algorithm are described and an evaluation of the experiments is presented.

1.

Traditionally, corpora are annotated with POS, syntac-
tic structures, and, possibly, also with word senses. How-
ever, for certain word categories, further types of informa-
tion are needed if the annotated corpora are to serve as
source, e.g., for the construction of NLP lexica or for var-
ious NLP-applications. Among these types of information
are the semantic and functional categories of adjectives that
occur as premodifiers in nominal phases (NPs) (Raskin and
Nirenburg, 1995). In this paper, we focus on the functional
categories such as ‘deictic’, ‘numerative’, ‘epithet’, ‘classi-
fying’, etc. As is well-known from the literature (Halliday,
1994; Engel, 1988), the functional category of an adjecti-
val modifier in an NP predetermines its relative ordering
with respect to other modifiers in the NP in question, the
possibility of a coordination with other modifiers, and to a
certain extent, also the reading in the given communicative
context. Consider, e.g. in German,

Introduction

(1) Viele junge kommunale Politiker ziehen aufs Land
‘Many young municipal politicians move to the

country side’.
but

*Viele kommunale junge Politiker ziehen aufs Land
‘Many municipal young politicians move to the
country side’.

(2) Viele ehemalige Politiker ziehen aufs Land

‘Many previous politicians move to the country

side.’

but

*Ehemalige viele Politiker ziehen aufs Land
‘Previous many politicians move to the country
side.’

Jung ‘young’ and kommunal ‘municipal’, viele ‘many’
and ehemalig ‘previous’ belong to different functional cat-
egories, which makes them unpermutable in the above
NPs and implies a specific relative ordering: cate-
gory(jung) < category(kommunal) and category(viele) <

24

category(ehemalig). In contrast, jung ‘young’ and dy-
namisch ‘dynamic’ belong to the same category; they can
be permuted in an NP without an impact on the grammati-
cality of the example:

(3) Viele junge, dynamische Politiker ziehen aufs Land
‘Many young, dynamic politicians move to the

country side’.

and

Viele dynamische, junge Politiker ziehen aufs Land
‘Many dynamic, young politicians move to the
country side’.

They can also appear in a coordination:

(4) Viele junge und dynamische Politiker ziehen aufs
Land
‘Many young and dynamic politicians move to the

country side’.

Viele dynamische und junge Politiker ziehen aufs
Land

‘Many dynamic and young politicians move to the
country side’.

while, e.g., viele and kommunal cannot:

(5) *Viele junge und kommunale Politiker ziehen aufs
Land
‘Many young and municipal Stuttgart politicians

move to the country side’.

In such applications as natural language generation and
machine translation, it is important to have the function of
the adjectives specified in the lexicon. However, as yet, no
large lexica are available that would contain this informa-
tion. Therefore, an automatic corpus-based annotation of
functional information seems the most suitable option.

In what follows, we present a bootstrapping approach to
the functional annotation of German adjectives in corpora.
The next section presents a short outline of the theoretical
assumptions we make with respect to the function of ad-
jectival modifiers and their occurrence in NPs and coordi-
nation contexts, before in Section 3. the preparatory stage

and the annotation algorithms are specified. Section 4. con-
tains then the description of the experiments we carried out
in order to evaluate our approach, and Section 5. contains
the discussion of these experiments. In Section 6., we give
some references to work that is related to ours. In Sec-
tion 7., finally, we draw some conclusions and outline the
directions we intend to take in this area in the future.

2. The Grammatical Prerequisits

Grammarians often relate the default ordering of adjec-
tival modifiers to their semantic or functional categories;
see, among others, (Dixon, 1982; Engel, 1988; Dixon,
1991; Frawley, 1992; Halliday, 1994). (Vendler, 1968) mo-
tivates it by the order of the transformations for the deriva-
tion of the NP in question. (Quirk et al., 1985) state that the
position of an adjective in an NP depends on how inherent
this adjective’s meaning is: adjectives with a more inherent
meaning are placed closer to the noun than those with a less
inherent meaning. (Seiler, 1978) and (Helbig and Buscha,
1999) argue that the order is determined by the scope of the
individual adjectival modifiers in an NP. For an overview of
the literature on the topic, see, e.g., (Raskin and Nirenburg,
1995).

As mentioned above, we follow the argumentation that
the order of adjectives in an NP is determined by their
functional categories. In this section, we first outline the
range of functions of adjectival modifiers known from the
literature especially for German, present then the function-
dependent default ordering, and discuss, finally, the results
of an empirical study carried out to verify the theoretical
postulates and thus to prepare the grounds for the automatic
functional category annotation procedure.

2.1.

In the literature, different ranges of functional cate-
gories of adjectival premodifiers have been discussed. For
instance, (Halliday, 1994), proposes for English the follow-
ing categories of the elements in an NP that precede the
noun:

Ranges of Functions of Adjectival Modifiers

(i) deictic: this, those, my, whose,. . .;
(i) numerative: many, second, preceding, ...;
(iii) epithet: old, blue, pretty, ...;
(iv) classifier: electric, catholic, vegetarian, Spanish,

In (Engel, 1988), a slightly different range of categories
is given for German adjectival premodifiers:

(i) quantitative:
‘few’, ...

viele ‘many’, einige ‘some’, wenige

(i1) referential: erst ‘first’, heutige ‘today’s’, diesseitige
‘from-this-side’, ...

(iii) qualificative: schon ‘beautiful’, alt ‘old’, gehoben ‘up-

s

per’, ...

(iv) classifying: regional ‘regional’, staatlich ‘state’,

katholisch ‘catholic’, ...

25

(v) origin: Stuttgarter ‘from-Stuttgart’, spanisch ‘Span-
ish’, marsianisch ‘from-Mars’, ...

The function of a modifier may vary with the context of
the NP in question or even be ambiguous (Halliday, 1994;
Tucker, 1995). Thus, Ger. zweit ‘second’ belong to the
referential category in the NP zweiter Versuch ‘second at-
tempt’; in zweiter Preis ‘second price’, it belongs to the
classifying category. Fast in fast train can be considered
as qualificative or as classifying (if fast train means ‘train
classified as express’).

Two modifiers are considered to belong to the same cat-
egory if they can appear together in a coordination or can
be permutated in an NP:

Ger. eine rote oder weil3e Rose
‘ared or a white rose’

6) a.

dritter oder vierter Versuch
‘third or fourth attempt’

c. elektrische oder mechanische Schreibmaschine
‘an electric or mechanic typewriter’

but not

@)

a. ""eine rote und langstielige Rose
‘ared and long-stemmed rose’

b. *rote und holldndische Rosen

‘red and Dutch roses’

c. *eine schone oder elektrische Schreibmaschine
‘a beautiful or electric typewriter’

The credibility of the coordination test is limited, how-
ever. Consider

®)

?? Eine schone und rote Rose
‘a beautiful and red rose’

where schon ‘beautiful’ and rot ‘red’ both belong to the
qualitative category, but still do not permit a coordination
easily.

Adjectival modifier function taxonomies are certainly
language-specific (Frawley, 1992). Nonetheless, as the tax-
onomies suggested by Halliday and Engel show, they may
overlap to a major extent. Often, the difference is more of
a terminological than of a semantic nature. In our work, we
adopt Engel’s taxonomy.

2.2. The Default Ordering of Adjectival Modifiers

Engel (Engel, 1988) suggests the following default or-
dering of modifier functions:
quantitative < referential < qualificative < classifying <

origin
Cf,e.g.
quant. | referent. | qual. | class. | origin
viele ehemalige | junge kommunale | Stuttgarter
‘many’ | ‘previous’ | ‘young’ | ‘municipal’ | ‘Stuttgart’
as in
(9) Viele ehemalige junge kommunale Stuttgarter Poli-

tiker ziehen aufs Land
‘Many previous young municipal Stuttgart politi-
cians move to the country side’.

According to Engel, a violation of this default ordering
leads to ungrammatical NPs. (1-3) in the Introduction il-
lustrate this violation.

2.3. Empirical Evidence for the Theoretical Claims

In the first stage of our work, we sought empirical ev-
idence for the theoretical claims with respect to the func-
tional category motivated ordering and the functional cate-
gory motivated coordination restrictions. Although, in gen-
eral, these claims have been buttressed by our study, coun-
terexamples were found in the corpus with respect to both
of them.

2.3.1. Default Ordering: Counterexamples

Especially adjectives of the category ‘origin’ tended to
occur before classifying or qualificative modifiers instead
of being placed immediately left to the noun—as would be
required by the default ordering. For instance, spanisch
‘Spanish’ occured in 3.5% of its occurrences in the corpus
in other positions; cf., for illustration:
(10)

a. (das) spanische héfische Bild

‘(the) Spanish courtly picture’

(der) spanische schwarze Humor
‘(the) Spanish black humour’

. (der) spanischen sozialistischen Partei
‘(the) Spanish socialist partyqat’

To be noted is that in such NPs as (der) spanische
schwarze Humor and deutsche katholische Kirche ‘Ger-
man catholic church’ the noun and the first modifier form
a multiword lexeme rather than a freely composed NP
(i.e. schwarzer Humor ‘black humour’ and katholische
Kirche ‘catholic church’). That is, the preceding modifiers
(spanisch ‘Spanish’/deutsch ‘German’) function as modi-
fiers of the respective multiword lexeme, not of the noun
only. This is also in accordance with (Helbig and Buscha,
1999)’s scope proposal.

2.3.2. Coordination Restrictions: Counterexamples

It is mainly ordinals that occur, contrary to the theoret-
ical claim, in coordinations with modifiers that belong to a
different category. For instance, erst ‘first” appears in the
corpus in 9.74% cases of its occurrence in such “heteroge-
neous” coordinations. Cf., for illustration:

QY

a. (die) erste und wichtigste Aufgabe

‘(the) first and the most important task’

(eines der) ersten und augentilligsten Projekte
‘one of the first and conspicuous projects’

(die) oberste und erste Pflicht
‘(the) supreme and first duty’

As a rule, in such cases the ordinals have a classifying
function, which is hard to capture, however.

26

2.3.3. Grammaticality of the Counterexamples

An evaluation of the counterexamples found in the cor-
pus revealed that not all of these examples can, in fact, be
considered as providing counter evidence for the theoreti-
cal claims. The grammaticality of a considerable number
of these examples has been questioned by several speakers
of German,; cf., for instance:

(12) a. *(die) ersten und fehlerhaften Informationen

‘(the) first and erroneous informations’

" jiingster und erster Président
‘youngest and first president’

. ""(die) oberste und erste Pflicht
‘(the) supreme and first duty’

3. The Approach

The empirical study of the relative ordering of adjectival
modifiers in NPs and of adjectival modifier coordinations in
the corpus showed that the theoretical claims made with re-
spect to the interdependency between functional categories
and ordering respectively coordination context restrictions
are not always proved right. However, deviances from these
claims encountered are not numerous enough to question
these claims. Therefore, in our approach to the automatic
annotation of adjectival modifiers in NPs with functional
information outlined below, we make use of them.

The basic idea underlying the approach can be summa-
rized as follows:

1. take a small set of samples for each functional cate-
gory as point of departure;

. look in the corpus for coordinations in which one of
the elements is in the starting set (and whose func-
tional category is thus known) and the other element
is not yet annotated and annotate it with the category
of the first element;

alternatively:

look in the corpus for all NP-contexts in which one of
the elements is in the starting set, assign to its left and
right neighbors all categories that these can may have
according to the default ordering;

. attempt to further constrict the range of categories of
all modifiers that are still assigned more than one cat-

egory;

add the unambiguously annotated modifers to the set
of samples and repeat the annotation procedure;

. terminate if all adjectival modifiers have been anno-
tated a unique functional category or no further con-
strictions are possible.

Note that we do not take the punctuation rule into ac-
count, which states that adjectival modifiers of the same
category are separated by a comma, while modifiers of dif-
ferent categories are not separated. This is because this rule
is considered to be unreliable in practice. Furthermore, we
do not use such hints as that classifying modifiers do not
appear in comparative and superlative forms. See, however,
Section 7.

3.1. The Preparatory Stage

The preparatory stage consists of three phases: (i)
preprocessing the corpus, (ii) pre-annotation of modifiers
whose category is a priori known, and (iii) compilation of
the sets of modifiers from which the annotation algorithms
start.

3.1.1. Preprocessing the Corpus

To have the largest possible corpus at the lowest possi-
ble cost, we start with a corpus that is not annotated with
POS. When preprocessing the corpus, first token sequences
are identified in which one or several tokens with an attribu-
tive adjectival suffix (-e, -es, -en, -er, or -em) are written
in small letters and are followed by a capitalized token as-
sumed to be a noun.! The tokens with an attributive suffix
may be separated by a blank, a comma or have the con-
junction und ‘and’ or the disjunction oder ‘or’ in between:
cf.:

(13) a. (das) erste richtige Beispiel
‘(the) first correct example’

b. rote, blaue und griine oder schwarze Hosen
‘red, blue and green or black pants’

Note that this strategy does not capture certain marginal
NP-types; e.g.:

(a) NPs with an irregular adjectival suffix; e.g., -a: (eine)
lila Tasche ‘(a) purple bag’, rosa Haare ‘pink hair’,
etc.;

(b) NPs with adjectival modifiers that start with a capital.

However, NPs of type (a) are very rare and can more
reliably be annotated manually. NPs of type (b) are, first
of all, modifiers at the beginning of sentences and attribu-
tive uses of proper nouns; cf. Sorgenloses ‘free of care’ in
Sorgenloses Leben — das ist das, was ich will! lit. ‘Free-
of-care life—this is what I want’ and Franfurter ‘Frankfurt’
in Frankfurter Wiirstchen ‘Frankfurt sausages’. The first
type appears very seldom in the corpus and can thus be
neglected; for the second type, other annotation strategies
proved to be more appropriate (Klatt, forthcoming).

After the token sequence identification, wrongly se-
lected sequences are searched for (cf., e.g., eine schone
Bescherung ‘a nice mess’, where eine ‘a’ is despite its suf-
fix obviously not an adjective but an article). This is done
by using a morphological analysis program.

3.1.2. Pre-Annotation
In the pre-annotation phase, the following tasks are car-
ried out:

e Adjectival modifiers of the category ‘quantitative’ are
manually searched for and annotated. This is because
the set of these modifiers is very small (einige ‘some’,
wenige ‘few’, viele ‘many’, mehrere ‘several’) and
would not justify the attempt of an automatic anno-
tation.

"Recall that in German nouns are capitalized.

e In (Engel, 1988), ordinals are by default considered
to be referential. Therefore, we use a morphological
analysis program to identify ordinals in order to anno-
tate them accordingly in a separate procedure.

e Engel considers attributive readings of verb participles
to be qualitative. This enables us to annotate partici-
ples with the qualitative function tag before the actual
annotation algoritm is run.

3.1.3. Compiling the Starting Sets

Once the corpus is preprocessed and the pre-annotation
is done, the starting sample sets for the annotation algo-
rithms are compiled: for each category, a starting set of
samples is manually chosen. The number of samples in
each set is not fixed. In the experiments we carried out to
evaluate our approach the size of sets varied from one to
four (cf. Tables 3 and 5 below).

3.2. The Annotation Algorithms

The annotation program consists of two algorithms that
can be executed in sequence or independently of each other.
The first algorithm processes coordination contexts only.
The second algorithm processes NP-contexts in general.

3.2.1. The Coordination Context Algorithm

The coordination context algorithm makes use of the
knowledge that two adjectival modifiers that appear to-
gether in a conjunction or disjunction belong to the same
functional category. As mentioned above, it loops over the
set of modifiers whose category is already known (at the
beginning, this is the starting set) looking for coordinations
in which one of the elements is member of this set and the
other element is not yet annotated. The element not yet
annotated is assigned the same category as carried by the
element already annotated.

The algorithm can be summarized as follows:

1. For each starting set in the starting set configuration
do:

(a) Mark each element in the set as starting
element and as processed.

(b) Retrieve all coordinations in which one of the
starting elements occurs;
for the not yet annotated elements in the coordi-
nations do

— mark each of them as preprocessed;

— annotate each of them with the same category
as assigned to its already annotated respective
neighbor;

— make a frequency distribution of them.

(c) determine the element in the above frequency dis-
tribution with the highest frequency that is not
marked as processed and mark this element as
the next iteration candidate of the functional
category in question.

2. Take the next iteration candidate with the highest
frequency of the sets of all categories and mark it as
processed. Stop, if no next iteration candidate

can be found in any of the newly annotated elements
of one of the categories.

3. Find all new corresponding coordination neighbors,
add these elements to the set of preprocessed el-
ements for the given category and make a new fre-
quency distribution.

Determine the next iteration candidate for the
given category as done in step lc.

5. Continue with step 2.

Note that the coordination context algorithm does not
loop over one of the categories a predetermined number
of times and passes on then to the next category in or-
der to repeat the same procedure. Rather, the switch
from category to category is determined solely on the basis
of the frequency distribution: the most frequent modifier
not yet annotated is automaticaly chosen for annotation—
independently of the category that has been assigned be-
fore. This strategy has two major advantages:

e it takes into account that the distribution of the modi-
fiers in the corpus over the functional categories is ex-
tremely unbalanced: the set of ‘quantitatives’ counts
only a few members while the set of ‘qualitatives’ is
very large.

e it helps avoid an effect of “over-annotation” in the
course of which the choice of an element that has al-
ready been selected as next iteration candidate for
a specific category as next iteration candidate for a
different category would lead to a revision of the anno-
tation of all other already annotated elements involved
in coordinations with this element.

Especially the second advantage contributes to the
quality of our annotation approach. However, obviously
enough, this algorithm assigns only one functional category
to each adjective. That is, a multiple category assignment
that is desirable in certain contexts must be pursued by an-
other algorithm. This is done by the NP-context algorithm
discussed in the next subsection.

Table 1 shows a few iterations of the coordination con-
text algorithm with the starting sets of Experiment 1 in Sec-
tion 4.. Here and henceforth the functional categories are
numbered as follows:

1 2 3 4 5
1 1 1 ! l
quant. referent. qualificat. class. origin

In the first iteration, the most frequent “next iteration
candidate” of category 1 is solch ‘such’with a frequency
of 10, the most frequent of category 2 is letzt ‘last’ with a
frequency of 71, and so on. The candidate of category 4
wirtschaftlich ‘economic’ possesses the highest frequencys;
therefore it is chosen for annotation and taken as “next iter-
ation starting element” (see Step 2 in the algorithm outline).
After adding all elements that occur in a coordination with
wirtschaftlich to the candidate list, in iteration 2 the next
element for annotation (and thus also the starting element)
is chosen. This is done as described above for Iteration 1.

28

It. | cat.l | cat.2 cat.3 cat4 cat.5
1 | solch | letzt klein wirtschaftlich franzosisch
10) | (71) (195) (350) (93)

2 | solch | letzt klein sozial franzosisch
10) | (71) (195) (295) 93)

3 | solch | letzt klein kulturell franzosisch
10) | (71) (195) (208) 93)

4 | solch | letzt klein | gesellschaftlich franzosisch
10) | (71) (195) (119) 93)

5 | solch | letzt | mittler | gesellschaftlich franzosisch
10) | (71) (370) (119) 93)

6 | solch | letzt alt | gesellschaftlich franzosisch
10) | (71) (84) (119) (93)

7 | solch | letzt alt okonomisch franzosisch
10) | (71 (84) (105) 93)

8 | solch | letzt alt okologisch franzdsisch
10y | (71) (84) (118) 93)

9 | solch | letzt alt militdrisch franzosisch
10) | 7D (34) a4 93)

10 | solch | letzt alt militdrisch | amerikanisch
10) | 7D (34) a4 95)

Table 1: An excerpt of the first iterations of the coordination
context algorithm

3.3. The NP-Context Algorithm

The NP-context algorithm is based on the functional
category motivated relative ordering of adjectival modifiers
in an NP as proposed by Engel (see Section 2.).

In contrast to the coordination-context algorithm, which
always ensures a non-ambiguous determination of the cat-
egory of an adjective, the NP-context algorithm is more of
an auxiliary nature. It helps to (i) identify cases where an
adjective can be assigned multiple categories, (ii) make hy-
potheses with respect to categories of adjectival modifiers
that do not appear in coordinations, (iii) verify the category
assignment of the coordination-context algorithm.

The NP-context algorithm allows for a non-ambiguous
determination of the category only in the case of a “com-
prehensive” NP, i.e., when all positions of an NP (from
‘quantitative’ to ‘origin’ are instantiated. Otherwise, rel-
ative statements of the kind as in the following case are
possible:

Given the NP (der) schone, junge, griine Baum
‘(the) beautiful, young, green tree’, from which
we know that jung ‘young’ is qualitative, we can
conclude that schon may belong to one of the fol-
lowing three categories: quantitative, referential,
or also qualitative, and that griin is either qualita-
tive or classifying.

In other words, the following rules underlie the NP-
context algorithm:
Given an adjective in an NP whose category X is known:

e assign to all left neighbors of this adjective the cat-
egories Y with Y = 1,2,..., X (i.e., all categories
with the number < X))

e assign to all right neighbors of this adjective the cate-
gories Z with Z = X, X +1,...,5 (i.e., all categories
with the number > X

The NP-context algorithm varies slightly depending on
the task it is used for—the verification of the categories as-
signed by the coordination-context algorithm or putting for-
ward hypotheses with respect to the category of adjectives.
When being used for the first task, it looks as follows:

1. for all adjectives that received a category tag during
the coordination-context algorithm do

e overtake this tag for all instances of these adjec-
tives in the NP-contexts

2. do for each candidate that has been annotated a
category

e for each of the five categories C' do

— assign tentatively C to candidate

— evaluate the NP-context of candidate as
follows:

(a) if the other modifiers in the context do not
possess category tags, mark the context as
unsuitable for the verification procedure

(b) else, if with respect to the numerical cate-

gory labels (see above) there is a decreas-

ing pair of adjacent labels (i.e. of neighbor
adjectives), mark this NP-context as reject-
ing C' as category of candidate, other-

wise mark the NP-context as accepting C'

as category of candidate

3. Choose the category whose choice received the high-
est number of confirmative coordination contexts

Table 2 shows the result of the verification of the cat-
egory of a few adjectives. The first column contains the
adjective whose category is verified. The second column
contains the numerical category labels; with a ‘+’ the cate-
gory prognosticated by the coordination-context algorithm
is marked.? In the third column, the number of confirma-
tions of the corresponding category by NP-contexts is in-
dicated (i.e. in the case of neu ‘new’, 6083 NP-contexts
confirm category 3 (‘qualificative’) of neu, 5048 confirm
category 4 (‘classifying’), etc.). In the fourth column, the
number of NP-contexts is specified that do not provide
any evidence for the corresponding category. And in the
fifth column the number of NP-contexts is indicated that
negate the corresponding function. For four adjectives in
Table 2 (neu ‘new’, groB ‘big’, finanziell ‘“financial’, and
bosnisch ‘Bosnian’) the NP-context algorithm confirmed
the category suggested by the coordination-context algo-
rithm; for two adjectives different categories were sug-
gested (for deutsch ‘German’ 4 (classifying) instead of 5
(origin) and for politisch “political’ 5 instead of 4).

In the current version of the NP-context algorithm, for
adjectival modifiers of category 4 or 5, the correct category

MIn all six cases, the coordination-context algorithm assign-
ment was correct.

29

neu +3 6083 697 112
4 5048 697 1147

2 4289 697 1906

1 4195 697 2000

5 3360 697 2835

grof3 +3 6015 353 74
2 5314 353 775

4 5070 353 1019

1 4391 353 1698

5 3634 353 2455

deutsch 4 4992 498 109
+5 4933 498 168

3 4911 498 190

2 1111 498 3990

1 397 498 4704

politisch 5 3615 253 11
+4 3519 253 107

3 3353 253 273

2 267 253 3359

1 160 253 3466

finanziell +4 1322 130 1
5 1321 130 2

3 1310 130 13

2 46 130 1277

1 25 130 1298

bosnisch +5 223 24 2
4 217 24 8

3 214 24 11

2 17 24 208

1 11 24 214

Table 2: Examples of categorial classification by the NP-
context algorithm

is quite often listed as the second best choice. To avoid an
incorrect annotation, further measures need to be taken (see
also Section 7.).

4. Experiments with the Coordination
Algorithm

To evaluate the performance of the algorithms sug-
gested in the previous section, we carried out experiments
in two phases, three experiments each phase. The phases
varied with respect to the size of the corpora used; the ex-
periments in each phase varied with respect to the size of
the starter sets.

In what follows, the experiments with the coordination
algorithm only are discussed.

4.1. The Data

The experiments of the first phase were run on the
Stuttgarter-Zeitung (STZ) corpus, which contains 36 Mio
tokens; the experiments of the second phase were run on
the corpus that consisted of the STZ-corpus and the Frank-
furter Rundschau (FR) corpus with 40 Mio tokens; cf. Ta-
ble 3. The first row in Table 3 shows the number of adjec-
tival modifier coordinations and the number of premodifier
NPs without coordinations in the STZ-corpus and in the
STZ+FR-corpus; the second row shows the number of dif-
ferent adjectives that occur in all of these constructions in
the respective corpus.

STZ STZ+FR
coord | NP coord | NP
contexts 18648 | 67757 || 36985 | 120673
diff. adjectives 5894 | 10035 8003 12993

Table 3: Composition of the adjectival premodifier contexts
in our corpora

number of adjectival mods.
exp | type 2 3 41 5167 >
1-3 | coord 17228 | 1238 | 149 | 31 | 2 18648
1-3 | NP 66692 | 1059 6 67757
4-6 | coord | 34035 | 2598 | 298 | 47 | 6 | 1 36985
4-6 | NP 118886 | 1772 15 120673

Table 4: Statistics on the size of the adjectival groups in
STZ and STZ+FR

This gives us a ratio of 6.7 between the number of
NPs and the number of different adjectives (i.e., the aver-
age number of NPs in which a specific adjective occurs)
for the STZ-corpus and a ratio of 10.0 for the STZ+FR-
corpus. Not surprisingly, larger corpora show a higher ad-
jective repetition rate than small corpora do.

Table 4 contains the statistics on the size of modifier co-
ordinations and the number of adjectival modifiers in NPs
in general across both of our corpora. Adjectival modifier
groups of size 3 or greater were thus very seldom.

Table 5 contains the data on the composition of both
corpora with respect to ordinals and participles of which
we assume to know a priori to which category they belong:
ordinals to the category 2 (‘referential’) and participles to
the category 3 (‘qualitative’); see Section 2.

The starter sets consisted for the experiments 1 and 4
of one sample per category: an adjectival modifier of the
corresponding category with a high frequency in the STZ-
corpus. For the experiments 2 and 5, two, respectively
three, high frequency samples for each category were added
to starter sets. For the experiments 3 and 6, the starter sets
were further extended by an additional modifier which has
been assigned a wrong category in the experiments before.
Table 6 shows the composition of the starter sets used for
the experiments.

Apart from these “regular” members of the starter sets,
to the starter sets of category 2 all ordinals and to the starter
sets of category 3 all participles available in the respective
corpus were added.

To have reliable data for the evaluation of the perfor-
mance of the annotation program, we let an independent
expert annotate 1000 adjectives with functional category

STZ STZ+FR
ordin. | part. || ordin. | part.
diff. modifs 24 | 2023 25 | 2851
total occur. 914 | 5135 2291 | 10045

Table 5: The distribution of ordinals and participles in STZ
and STZ+FR

30

exp. | cat.l cat.2 cat.3 cat.4 cat.5
1/4 | ander | heutig | grof politisch deutsch
2/5 ander | heutig | grof} politisch deutsch
solch | letzt alt demokratisch | amerikanisch
einzig | rot kommunal franzosisch
3/6 | ander | heutig | gro politisch deutsch
solch | letzt alt demokratisch | amerikanisch
einzig | rot kommunal franzosisch
mittler | schon | katholisch russisch
Table 6: The composition of the starter sets
exp. | intotal | assigned | —assigned p (%)
1 5894 5515 379 | 82.90%
2 5894 5515 379 | 84.30%
3 5894 5515 379 | 84.44%

Table 7: Results of the experiments 1 to 3

information. The manually annotated data were then com-
pared with the output of our program to estimate the preci-
sion figures (see below).

4.2. Phase 1 Experiments

In the experiments 1 to 3, we were able to assign a func-
tional category to 93,6% of the adjectival modifiers with all
three starter sets. In 379 cases, the program could not as-
sign a category; we discuss these cases in Section 5.. Ta-
ble 7 summarizes the results of the experiments 1 to 3 (‘p’
stands for “precision”).

Many of the 1000 manually annotated tokens occur only
a few times in the corpus (and appear thus in a few co-
ordinations). Low frequency tokens negatively influence
the precision rate of the algorithm. The diagrams in Fig-
ures 1 to 3 illustrate the number of erroneous annotations
in the experiments 1 to 3 in relation to the number of co-
ordinations in which a token chosen as next for annotation
appears as element at the moment when n tokens from the
manually annotated token set have already been annotated.
For instance, in Experiment 1, the first time when less than
or 100 coordinations are considered to determine the cate-
gory of a token, 9 of the 1000 members of the test set were
annotated correctly, the first time when less than or 75 co-
ordinations are considered, 17 of 1000 received the correct
category, the first time when less than or 50 coordinations
are considered, 31 tokens received the correct category and
one a wrong one. And so on. Note, when less than or 5
coordinations were considered for the first time, only 41
annotations (out of 565) were wrong. This gives us a preci-
sion rate of ((565 — 41)/565) x 100 = 92.74%.

Figures 2 and 3 show the annotation statistics for Exper-
iments 2 and 3. Note that in Experiment 2 the precision rate
for high frequency adjectives is considerably better than in
Experiment 1: when 5 coordination contexts are available
for the annotation decision, only 26 mistakes were made
(instead of 41 in Experiment 1). Figure 3 shows that by a
further extension of the starter set, no reasonable improve-
ment of the results is achieved.

180
160
140 -
120 -
100
80 4
60 -
40 4
20 4

0 -
100 75 50 25 15
9 17 32 79 145

Figure 1: The annotation statistics in Experiment 1

180

160
140
120 |
100 |
80 -
60 -
40 1
20 1

0 0 1 2 5
0 | |
100 75 50 25 15

11 14 29 84 151

Figure 2: The annotation statistics in Experiment 2

4.3. Phase 2 Experiments

In experiments 4 to 6 we were able to assign with all
three starter sets a functional category to 94,1% of the ad-
jectival modifiers, i.e/, to 0.5% more than in the experi-
ments of Phase 1. However, as Table 8 shows, the precision
rate decreased slightly. Figures 4 to 6 show the annotation
statistics for the Phase 2 experiments.

5. Discussion

In what follows, we first discuss the first 20 iterations of
the coordination algorithm in Experiment 1 and Experiment
2, respectively, and present then the overall results of the
experiments.

180
160 -
140 -
120 -
100 -
80 |
60
40 |
20

1 1 2 2 4
0 -
100 75 50 25 15
10 13 27 82 147

Figure 3: The annotation statistics in Experiment 3

exp. | intotal | assigned | —assigned p (%)
4 3003 7558 445 | 84.08 %
5 8003 7558 445 | 84.08%
6 8003 7558 445 | 84.92%
Table 8: Results of the experiments 4 to 6
180
160 1
140 4
120 4
100 4
80 -
60 -
40 4
20 - o o 5 3
0 —
100 75 50 25
27 44 79 166

Figure 4: The annotation statistics in Experiment 4

5.1. A Snapshot of the Iterations in Experiments 1
and 2

Table 9 shows the first twenty iterations in Experiment
1, and Table 10 the first twenty iterations in Experiment 2.
They look very similar despite the different starting sets in
both experiments. Thus, in both nearly the same modifiers
are annotated in nearly the same order—except neu, which
is in Experiment 1 annotated in iteration 14, while in Exper-
iment 2 in iteration 3. At the first glance, one might think
that both experiments show the same results. However, as
already pointed out above, the bigger starter set in Experi-
ment 2 results in a considerably better precision rates with
high and middle frequency adjectives.

5.2. Evaluation of the Experiments

Table 11 shows the distribution of the adjectival modi-
fiers in the six experiments among the five functional cate-
gories.

Let us now consider some wrong annotations and some
cases where the program was not able to assign a category.

In Table 12, some wrong annotations of category ‘3’
(qualitative) in Experiment 1 are listed. The first column
of the table specifies in which iteration of the algorithm the

180
160 -
140 -
120 -
100 -
80 |
60
40 |
20

100 75 50 25
27 49 77 174

Figure 5: The annotation statistics in Experiment 5

160

140 -

120 -

100 -

80

60

40 -

20 1

100
27

Figure 6: The annotation statistics in Experiment 6

Nr. | adjective cat. | it. freq | freq
1 | wirtschaftlich 4 350 | 851
2 | sozial 4 295 | 707
3 | kulturell 4 208 | 382
4 | klein 3 195 | 688
5 | mittler 3 370 | 482
6 | gesellschaftlich 4 119 | 178
7 | 6konomisch 4 105 | 167
8 | okologisch 4 118 | 164
9 | franzosisch 5 93 | 251

10 | amerikanisch 5 95 | 286
11 | europdisch 5 102 | 179
12 | ausldndisch 5 88 | 128
13 | alt 3 84 | 473
14 | neu 3 307 | 417
15 | britisch 5 81 | 100
16 | italienisch 5 78 | 118
17 | militdrisch 4 74 | 127
18 | letzt 2 71 99
19 | finanziell 4 68 | 264
20 | technisch 4 78 | 258

Table 9: The first 20 iterations in Experiment 1

Nr. | adjective cat. | it. freq | freq
1 | wirtschaftlich 4 356 | 851
2 | sozial 4 307 | 707
3 | neu 3 304 | 417
4 | kulturell 4 210 | 382
5 | klein 3 199 | 688
6 | mittler 3 373 | 482
7 | gesellschaftlich 4 119 | 178
8 | okonomisch 4 105 | 167
9 | okologisch 4 119 | 164

10 | europdisch 5 102 | 179
11 | ausléndisch 5 88 | 128
12 | britisch 5 81 | 100
13 | italienisch 5 78 | 118
14 | militdrisch 4 74 | 127
15 | finanziell 4 68 | 264
16 | technisch 4 78 | 258
17 | religios 4 67 | 132
18 | englisch 5 67 76
19 | jung 3 63 | 112
20 | personell 4 60 | 141

Table 10: The first 20 iterations in Experiment 2

32

exp. | cat.l | cat2 | cat.3 | cat4 | cat.5 Z
8 39 | 4506 711 251 | 5515
8 39 | 4434 785 | 249 | 5515
7 76 | 4377 791 264 | 5515

13 55 | 5938 | 1186 | 366 | 7558

13 55 | 5938 | 1186 | 366 | 7588

13 63 | 5926 | 1200 | 356 | 7558

QN | | W —

Table 11: Distribution of the adjectival modifiers

Nr. | adjective cat. | it. freq | freq
64 | unter 3 33 43
151 | marktwirtschaftlich 3 16 26
780 | sozialdemokratisch 3 4 9
782 | kommunistisch 3 4 17
807 | katholisch 3 5 77
808 | evangelisch 3 57 57
809 | protestantisch 3 13 17
810 | anglikanisch 3 5 5
811 | reformerisch 3 4 4

Table 12: Some errors in Experiment 1

respective adjective has been assigned a category. ‘it freq’
(iteration frequency) specifies the number of the coordina-
tions with this adjective as element that were available in
the corresponding iteration; ‘total freq” specifies how many
times the adjective occured in coordinations in the corpus
in total.

The correct category of unter “‘under’ would have been 2
(‘referential’); that of marktwirtschaftlich ‘free-enterprise’
4 (‘classifying’), that of kommunistisch ‘communist’ 4, etc.
Note the case of katholisch ‘catholic’. Its total frequency of
77 is much higher as that of the adjectives processed be-
fore. However, it was chosen with an iteration frequency
of only 5, i.e., only 5 coordinations have been considered
to determine its category. The consequence is that the fol-
lowing adjectives (cf. iterations 808-811) also received a
wrong annotation.

Table 13 shows the first 10 of the 445 adjectives that
have not been assigned a category in Experiment 6.

Consider, e.g., the coordination constructions in
which, e.g., neunziger ‘ninety/nineties’ occurs: achtziger
‘eighty/eighties’ COORD neunziger (11 times) and
siebziger ‘seventy/seventies’ COORD achtziger COORD
neunziger (1 time). That is, we run into a deadlock here:

adjective freq

1. | sechziger 248
2. | siebziger 195
3. | fuinfziger 147
4. | dreiliger 102
5. | achtziger 93
6. | zwanziger 81
7. | vierziger 61
8. | zehner 21
9. | neunziger 12
10. | deutsch-polnisch 6

Table 13: Unprocessed adjectives in Experiment 6

gradable adj.
scalar gradables
attitude-based
numerical scale
literal scale
member
non-scalar gradables
non-scalar adj.
proper non-scalars
event-related non-scalars
true relative non-scalars

Figure 7: The taxonomy that underlies the adjective classi-
fication by Raskin and Nirenburg

neunziger cannot be assigned a category because all its co-
ordination neighbors did not receive a category either.

6. Related Work

To our knowledge, ours is the first approach to the au-
tomatic classification of adjectives with respect to a range
of functional categories. In the past, approaches to the clas-
sification of adjectives focused on the classification with
respect to semantic taxonomies. For instance, (Raskin and
Nirenburg, 1995) discuss a manual classification procedure
in the framework of the MikroKosmos. The taxonomy they
refer to is is shown in Figure 7.

Obviously, an automatization of the classification with
respect to this taxonomy is still beyond the state of the art in
the field. On the other side, (Engel, 1988)’s functional cat-
egories seem to suffice to solve, e.g., the problem of word
ordering in text generation.

(Hatzivassiloglou and McKeown, 1993) suggest an al-
gorithm for clustering adjectives according to meaning.
However, they do not refer to a predetermined (semantic)
typology or set of functional categories.

(Hatzivassiloglou and McKeown, 1997) determine the
orientation of the adjectives (negative vs. positive). The
orientation is a useful lexical information since it has an
impact on the use of adjectives in coordinations: only ad-
jectives with the same orientation appear easily in conjunc-
tions; cf. "*stupid and pretty but stupid but pretty. So far,
we do not annotate orientation information.

(Shaw and Hatzivassiloglou, 1999)’s work explicitly ad-
dresses the problem of the relative ordering of adjectives. In
contrast to ours, their approach suggests a pairwise relative
ordering of concrete adjectives, not of functional or seman-
tic categories.

7. Conclusions and Future Work

We presented two simple algorithms for the classifica-
tion of adjectives with respect to a range of functional cat-
egories. One of these algorithms, the coordination con-
text algorithm, has been discussed in detail. The precision
rate achieved by this algorithm is encouraging. It is better
for high frequency adjectives than for low frequency adjec-
tives.

Our approach can be considered as a first step into the
right direction. In order to achieve better results, we intend
to extend our approach along two lines:

33

e incorporation of additional linguistic clues (e.g., that
classifier modifiers do not appear in comparative and
superlative forms, that modifiers of the same category
can be separated by a comma while those of different
categories cannot, etc.);

e combination of our strategies with strategies for the
recognition of certain semantic categories (e.g., of city
and region names, of human properties, etc.)

The middle-range goal of our project is to compile a
lexicon for NLP that contains besides the standard lexical
and semantic information functional information.

8. References

R. Dixon. 1982. Where Have All the Adjectives Gone?
and Other Essays in Semantics and Syntax. Mouton,
Berlin/Amsterdam/New York.

R. Dixon. 1991. A New Approach to English Grammar, On
Semantic Principles. Clarendon Paperbacks, Oxford.

U. Engel. 1988. Deutsche Grammatik. Julius Groos Ver-
lag, Heidelberg.

W. Frawley. 1992. Linguistic Semantics. Erlbaum, Hills-
dale, NJ.

M.A.K. Halliday. 1994. An Introduction to Functional
Grammar. Edward Arnold, London.

V. Hatzivassiloglou and K.R. McKeown. 1993. Towards
the automatic identification of adjectival scales: Cluster-
ing adjectives according to meaning. In Proceedings of
the ACL "93, pages 172-182, Ohio State University.

V. Hatzivassiloglou and K.R. McKeown. 1997. Predicting
the semantic orientation of adjectives. In Proceedings of
the ACL "97, pages 174—181, Madrid.

G. Helbig and J. Buscha. 1999. Deutsche Grammatik. Ein
Handbuch fiir den Auslinderunterricht. Langenscheidt
Verlag Enzyklopédie, Leipzig.

Stefan Klatt. forthcoming. Ein Werkzeug zur Annotation
von Textkorpora und Informationsextraktion. Ph.D. the-
sis, Universitit Stuttgart.

R. Quirk, S. Greenbaum, G. Leach, and J. Svartvik. 1985.
A Comprehensive Grammar of the English Language.
Longman, London.

V. Raskin and S. Nirenburg. 1995. Lexical semantics of ad-
jectives. a microtheory of adjectival meaning. Technical
Report MCCS-95-287, Computing Research Laboratory,
New Mexico State University, Las Cruces, NM.

H. Seiler. 1978. Determination: A functional dimension
for interlanguage comparison. In H. Seiler, editor, Lan-
guage Universals. Narr, Tiibingen.

J. Shaw and V. Hatzivassiloglou. 1999. Ordering among
premodifiers. In Proceedings of the ACL ’99, pages 135—
143, University of Maryland, College Park.

G.H. Tucker. 1995. The Treatment of Lexis in a Systemic
Functional Model of English with Special Reference to
Adjectives and their Structure. Ph.D. thesis, University
of Wales College of Cardiff, Cardiff.

Z. Vendler. 1968. Adjectives and Nominalization. Mouton,
The Hague.

Word-level Alignment for Multilingual Resource Acquisition

Adam Lopez*, Michael Nossal*, Rebecca Hwa*, Philip Resnik*'

*University of Maryland Institute for Advanced Computer Studies
TUniversity of Maryland Department of Linguistics
College Park, MD 20742
{alopez, nossal, hwa, resnik } @umiacs.umd.edu

Abstract

We present a simple, one-pass word alignment algorithm for parallel text. Our algorithm utilizes synchronous parsing and takes advantage
of existing syntactic annotations. In our experiments the performance of this model is comparable to more complicated iterative methods.
We discuss the challenges and potential benefits of using this model to train syntactic parsers for new languages.

1 Introduction

Word alignment is an exercise commonly assigned to
students learning a foreign language. Given a pair of sen-
tences that are translations of each other, the students are
asked to draw lines between words that mean the same
thing.

In the context of multi-lingual natural language pro-
cessing, word alignment (more simply, alignment) is also
a necessary step for many applications. For instance, it is
required in the parameter estimation step for training statis-
tical translation models (Al-Onaizan et al., 1999; Brown et
al., 1990; Melamed, 2000). Alignments are also useful for
foreign language resource acquisition. Yarowsky and Ngai
(2001) use an alignment to project part-of-speech (POS)
tags from English to Chinese, and use the resulting noisy
corpus to train a reliable Chinese POS tagger. Their result
suggests that is worthwhile to consider more ambitious en-
deavors in resource acquisition.

Creating a syntactic treebank (e.g., the Penn Tree-
bank Project (Marcus et al., 1993)) is time-consuming and
expensive. As a consequence, state-of-the-art stochastic
parsers which rely on such treebanks exist only in lan-
guages such as English for which they are available. If
syntactic annotation could be projected from English to a
language for which no treebank has been developed, then
the treebank bottleneck may be overcome (Cabezas et al.,
2001).

In principle, the success of treebank acquisition in this
manner depends on a few key assumptions. The first as-
sumption is that syntactic relationships in one language can
be directly projected to another language using an accurate
alignment. This theory is explored in Hwa et al. (2002b). A
second assumption is that we have access to a reliable En-
glish parser and a word aligner. Although high-quality En-
glish parsers are available, high-quality aligners are more
difficult to come by. Most alignment research has out of
necessity concentrated on unsupervised methods. Even the
best results are much worse than alignments created by hu-
mans. Therefore, this paper focuses on producing align-
ments that are tailored to the aims of syntactic projection.
In particular, we propose a novel alignment model that,
given an English sentence, its dependency parse tree, and
its translation, simultaneously generates alignments and a
dependency tree for the translation.

34

Our alignment model aims to improve alignment accu-
racy while maintaining sensitivity to constraints imposed
by the syntactic transfer task. We hypothesize that the
incorporation of syntactic knowledge into the alignment
model will result in higher quality alignments. Moreover,
by generating alignments and parse trees simultaneously,
the alignment algorithm avoids irreconcilable errors in the
projected trees such as crossing dependencies. Thus, our
two objectives complement each other.

To verify these hypotheses, we have performed a suite
of experiments, evaluating our algorithm on the quality of
the resulting alignments and projected parse trees for En-
glish and Chinese sentence pairs. Our initial experiments
demonstrate that our approach produces alignments and de-
pendency trees whose quality is comparable to those pro-
duced by current state-of-the art systems.

We acknowledge that the strong assumptions we have
stated for the success of treebank acquisition do not always
hold true (Hwa et al., 2002a; Hwa et al., 2002b). Therefore,
it will be necessary to devise a training algorithm that learns
syntax even in the face of substantial noise introduced by
failures in these assumptions. Although this last point is
beyond the scope of this paper, we will allude to potential
syntactic transfer approaches that are possible with our sys-
tem, but infeasible under other approaches.

2 Background

Synchronous parsing appears to be the best model
for syntactic projection. Synchronous parsing models the
translation process as dual sentence generation in which a
word and its translation in the other sentence are generated
in lockstep. Translation pairs of both words and phrases are
generated in a manner consistent with the syntax of their
respective languages, but in a way that expresses the same
relationship to the rest of the sentence. Thus, alignment
and syntax are produced simultaneously and induce mutual
constraints on each other. This model is ideal for the pursuit
of our objectives, because it captures our complementary
goals in an elegant theoretical framework.

Synchronous parsing requires both parses to adhere to
the constraints of a given monolingual parsing model. If
we assume context-free grammars, then each parse must
be context-free. If we assume dependency grammars, then
each parse must observe the planarity and connectivity con-

straints typical of such grammars (e.g. Sleator and Temper-
ley (1993)).

In contrast, many alignment models (Melamed, 2000;
Brown et al., 1990) rely on a bag-of-words model. This
model presupposes no structural constraints on either input
sentence beyond its linear order. To see why this type of
model is problematic for syntactic transfer, consider what
happens when syntax subsequently interacts with its out-
put. Projecting dependencies across such an alignment may
result in a dependency tree that violates planarity and con-
nectivity constraints (Figure 1).

(a) m m
V1 V2 V3 V4
V1 V2 V3 V4
(b) / X \
w 1 W2 W3 W4 W5
Www2 W3 W4 W5
(©)

Figure 1: Violation of dependency grammar constraints
caused by projecting a dependency parse across a bag-of-
words alignment. Combining the syntax of (a) with the
alignment of (b) produces the syntax of (c). In this exam-
ple, the link (w1, w3) crosses the link (ws, w5) violating the
planarity constraint. The word w, is unconnected, violating
the connectivity constraint.

Once the fundamental assumptions of the syntactic
model have been breached, there is no clear way to recover.
For this reason, we would prefer not to use bag-of-words
alignment models, although in many respects they remain
state-of-the-art for alignment.

A canonical example of synchronous parsing is the
Stochastic Inversion Transduction Grammar (SITV) (Wu,
1995). The SITV model imposes the constraints of context-
free grammars on the synchronous parsing environment.
However, we regard context-free grammars as problem-
atic for our task, because recent statistical parsing mod-
els (Charniak, 2000; Collins, 1999; Ratnaparkhi, 1999)
owe much of their success to ideas inherent to dependency
parsing. We therefore adopt an algorithm described in Al-

35

shawi and Douglas (2000)." Their algorithm constructs
synchronous dependency parses in the context of a domain-
specific speech-to-speech translation system. In their sys-
tem, synchronous parsing only enforces a contiguity con-
straint on phrasal translations. The actual syntax of the
sentence is not assumed to be known. Nevertheless, their
model is a synchronous parser for dependency syntax, and
we adopt it for our purposes.

3 Our Modified Alignment Algorithm

We introduce parse trees as an optional input to the al-
gorithm of Alshawi and Douglas (2000). We require that
output dependency trees conform to dependency trees that
are provided as input. If no parse tree is provided, our al-
gorithm behaves identically to that of Alshawi and Douglas
(2000).

3.1 Definitions

Our input is a parallel corpus that has been segmented
into sentence pairs. We represent a sentence pair as the pair
of word sequences (V = vq..0yp, W w1...W,). The
algorithm iterates over the sentence pairs producing align-
ments.

We define a dependency parse as a rooted tree in which
all words of the sentence appear once, and each node in
the tree is such a word (Figure 2). An in-order traver-
sal of the tree produces the sentence. A word is said to
be modified by any words that appear as its children in
the tree; conversely, the parent of a word is known as its
headword. A word is said to dominate the span of all
words that are descended from it in the tree, and is like-
wise known as the headword of that span.” Subject to these
constraints, the dependency parse of V' is expressed as a
function py : {1...m} — {0...m} which defines the head-
word of each word in the dependency graph. The expres-
sion py (i) = 0 indicates that word v; is the root node of
the graph (the headword of the sentence). The dependency
parse of W, pyy : {1..n} — {0...n} is defined in the same
way.

An alignment is expressed as a function a : {1...m} —
{0...n} in which a(i) = j indicates that word v; of V is
aligned with word w; of W. The case in which a(z) = 0 de-
notes null alignment (i.e. the word v; does not correspond
to any word in W). Under the constraints of synchronous
parsing, we require that if a(i) # 0, then py (a(7))
a(py (i)). In other words, the headword of a word’s trans-
lation is the translation of the word’s headword (Figure 3).
We also require that the analogous condition hold for the
inverse alignment map a~! : {1..n} — {0...m}.

3.2 Algorithm Details
Our algorithm (Appendix) is a bottom-up dynamic pro-
gramming procedure. It is initialized by considering all

'An alternative to dependency grammar is the richer formal-
ism of Synchronized Tree-Adjoining Grammar (TAG) (Shieber
and Schabes, 1990). However, Synchronized TAG raises issues
of computational complexity and has not yet been exploited in a
stochastic setting.

Elsewhere, the terms connectivity and planarity are used to
define these constraints.

(@) ¢
V3
V1 / \ \% f
N
V2
(b)
Oy VN
V1 V2 V3 \% f

Figure 2: A dependency parse. In (a) the sentence is de-
picted in a tree form that makes the dominance and head-
word relationships clear (vs is the headword of the sen-
tence). In (b) the same tree is depicted in more familiar
sentence form, with the links drawn above the words.

/\/\

//X

WAl Ny

Figure 3: Synchronous dependency parses. Notice that all
dependency links are symmetric across the alignment. In
addition, the unaligned word wj is connected in the parse
of W.

possible alignments of one word to another word or to null.
Alshawi and Douglas (2000) considered alignments of two
words to one or no words, but we found in our evaluations
that restricting the initialization step to one word produced
better results. In fact, Melamed (2000) argues in favor of
exclusively one-to-one alignments. However, we may later
explore in more detail the effects of initializing from multi-
word alignments.

As in Alshawi and Douglas (2000) each possible one-

36

to-one alignment is scored using the ¢? metric (Gale and
Church., 1991), which is used to compute the correlation
between v; € V and w; € W over all sentence pairs
(V,W) in the corpus. Sentence co-occurrence counts are
not the only possible data set with which we can use this
metric. Therefore, we denote this type of initialization by
¢% to distinguish from a case we consider in Section 4.7, in
which we use ¢? initialized from counts of Giza++ align-
ment links. The latter case is denoted by ¢2.

To compute alignments of larger spans, the algorithm
combines adjacent sub-alignments. During this step, one
sub-alignment becomes a modifier phrase. Interpreting this
in terms of dependency parsing, the aligned headwords of
the modifier phrase become modifiers of the aligned head-
words of the other phrase. At each step, the score of the
alignment is computed. Following Alshawi and Douglas
(2000) we simply add the score of the sub-alignments. Thus
the overall score of any aligned subphrase can be computed
as follows.

Z ¢2(Ui7wj)

(4,5):a(i)=j

The output of the algorithm is simply the highest-
scoring alignment that covers the entire span of both V' and

w.

3.3 Treatment of Null Alignments

Null alignments present a few practical issues. For ex-
periments involving ¢%, we adopt the practice of counting
a null token in the shorter sentence of each pair.’> An alter-
native solution to this problem would involve initialization
from a word association model that explicitly handles nulls,
such as that of Melamed (2000).

An implication of the synchronous parsing constraint
given in Section 3.1 is that null aligned words must be leaf
words within their respective dependency graphs. In cer-
tain cases this may not lead to the best synchronized parse.
We remove this condition. Effectively, we consider each
sentence to consist of the same number of tokens, some
of which may be null tokens. (usually, this will introduce
null tokens into only the shorter sentence, but not neces-
sarily). The null tokens behave like words with regards
to the synchronous parsing constraint, but they do not im-
pact phrase contiguity.* In only the resulting surface de-
pendency graphs, we remove null tokens by contracting all
edges between the null token and its parent and naming the
resultant node with the word on the parent node. Recall
from graph theory that contraction is an operation whereby
an edge is removed and the nodes at its endpoints are con-
flated. > Thus, words that modify a null token are inter-
preted as modifiers of the the null token’s headword. This
is illustrated in Figure 4. One important implication of this
is that we can only allow a null token to be the headword

3Srinivas Bangalore, personal communication.

“a null token is considered to be contiguous with any other
subphrase — another way to view this is that a null token is an
unseen word that may appear at any location in the sentence in
order to satisfy contiguity constraints.

Ssee e.g., Gross and Yellen (1999)

of the sentence if it has a single modifier. Otherwise, the
result of the graph contraction would not be a rooted tree.
We found that this treatment of null alignments resulted in
a slight improvement in alignment results.

Figure 4: Effect of null words on synchronous parses. In
this case, word ws has been aligned to the null token vg.
However, vy can still dominate other words in the parse of
V. Once the structure has been completed, the edge be-
tween vy and vs (indicated by the dashed line) will con-
tract. This will cause the dependency between vy and vg
to become the inferred dependency (indicated by the dotted
line) between v, and v3.

3.4 Analysis

In the case that there are no parses available, the compu-
tational complexity of the algorithm is O(m>n?), but with
a parse of V' (and an efficient enumeration of the subphrase
combinations allowed by the parse) the complexity reduces
to O(m>n). If both parses are available the complexity
would be reduced to O(mn).

It is important to note that as it is presented, our algo-
rithm does not search the entire space of possible align-
ment/tree combinations. Melamed observes that two mod-
ifications are required to accomplish this.® The first mod-
ification entails the addition of four new loop parameters
to enumerate the possible headwords of the four monolin-
gual subspans. These additional parameters add a factor of
O(m?®n?). Second, Melamed points out that for a small
subset of legal structures, it must be possible to combine
subphrases that are not adjacent to one another. The most
efficient solution to this problem adds two more parame-
ters, for a total of O(m%nS). The best known optimization
reduces the total complexity to O(m®n®). This is far too
complex for a practical implementation, so we chose to use
the original O(m3n?) algorithm for our evaluations. Thus
we recognize that our algorithm does not search the entire
space of synchronous parses. It inherently incorporates a

°[. Dan Melamed, personal communication.

37

greedy heuristic, since for each subphrase, it considers only
the most likely headword.

4 Evaluation

We have performed a suite of experiments to evalu-
ate our alignment algorithm. The qualities of the result-
ing alignments and dependency parse trees are quantified
by comparisons with correct human-annotated parses. We
compare the alignment output of our algorithm with that
of the basic algorithm described in Alshawi and Douglas
(2000) and the well-known IBM statistical model described
in Brown et al. (1990) using the freely available implemen-
tation (Giza++) described in Al-Onaizan et al. (1999). We
also compare the output dependency trees against several
baselines and against projected dependency trees created in
the manner described in (Hwa et al., 2002a). We found that
our model, which combines cross-lingual statistics with
syntactic annotation, produces alignments and trees that are
are comparable to the best results of other methods.

4.1 Data Set

The language pair we have focused on for this study is
English-Chinese. The training corpus consists of around
56,000 sentence pairs from the Hong Kong News parallel
corpus. Because the training corpus is solely used for word
co-occurrence statistics, no annotation is performed on it.

The development set was constructed by obtaining man-
ual English translations for 47 Chinese sentences of 25
words or less, taken from sections 001-015 of the Chinese
Treebank (Xia et al., 2000). A separate test set, consist-
ing of 46 Chinese sentences of 25 words or less, was con-
structed in a similar fashion.” To obtain correct English
parses, we used a context-free parser (Collins, 1999) and
converted its output to dependency format. To obtain cor-
rect Chinese parses, Chinese Treebank trees were converted
to dependency format. Both sets of parses were hand-
corrected. The correct alignments for the development and
test set were created by two native Chinese speakers using
annotation software similar to that described in Melamed
(1998).

4.2 Metrics for evaluating alignments

As a measure of alignment accuracy, we report Align-
ment Precision (AP) and Alignment Recall (AR) figures.
These are computed by by comparing the alignment links
made by the system with the links in the correct alignment.
We denote the set of guessed alignment links by G, and
the set of correct alignment links by C,. Precision is given
by AP = |Crgﬁ“‘. Recall is given by AR = ‘Cfgﬁ”‘.
We also compute the F-score (AF'), which is given by
AF = %. Null alignments are ignored in all compu-
tations. Our evaluation metric is similar to that of Och and

Ney (2000).

"These sentences have already been manually translated
into English as part of the NIST MT evaluation preview (See
http://www.nist.gov/speech/tests/mt/). The sentences were taken
from sections 038, 039, 067, 122, 191, 207, 249.

Synchronous Parsing Method

| AP| AR] AF | CTP |

sim-Alshawi (¢%) 40.6 | 36.5 | 38.4 | 185
sim-Alshawi (¢%) + English parse 43.8 | 39.3 | 41.4 | 39.9
sim-Alshawi (¢%) + English parse + Chinese bigrams | 42.9 | 38.5 | 40.6 | 39.4
sim-Alshawi (¢%) + both bigrams 415 | 37.3 | 393 | 165
Giza++ initialization (¢2G) 512 | 459 | 484 | 11.6
Giza++ initialization (¢Z)+ English parse 49.6 | 44.6 | 47.0 | 44.7

| Baseline Method | AP | AR | AF [CTP |
Same Order Alignment 157 | 14.1 | 14.8 NA
Random Alignment (avg scores) | 7.8 7.0 7.4 NA
Forward-chain NA | NA | NA | 373
Backward-chain NA | NA | NA | 129
Giza++ 68.7 | 409 | 51.3 NA
Hwa et al. (2002a) NA | NA | NA | 41

Table 1: Alignment Results for All Methods.

AP = Alignment Precision. AR = Alignment Recall. AF = Alignment F-Score. CTP = Chinese Tree Precision.

All scores are reported as percentages of 100.
The best scores in each table appear in bold.

4.3 Metrics for evaluating projected parse trees

As a measure of induced dependency tree accuracy, we
report unlabeled Chinese Tree Precision (C'T'P). This is
computed by comparing the output dependency tree with
the correct dependency trees. We denote the set of guessed
dependency links by G, and the set of correct alignment
links by C),. A small number of words (mostly punctuation)
were not linked to any parent word in the correct parse;
links containing these words are not included in either C),

N
LC‘;’". For depen-

or G, Precision is given by CTP = G

P
dency trees, C’p| = |Gp , since each word contributes one
link relating it to its headword. Thus, recall is the same as

precision for our purposes.

4.4 Baseline Results

We first present the scores of some naive algorithms as
a baseline in order to provide a lower bound for our re-
sults. The results of the baseline experiments are included
with all other results in Table 1. Our first baseline (Same
Order Alignment) simply maps character v; in the English
sentence to character w; in the Chinese sentence, or w,, in
the case of ¢ > n. Our second baseline (Random Align-
ment), randomly aligns word v; to word w; subject to the
constraint that no words are multiply aligned. We report
the average scores over 100 runs of this baseline. The best
Random Alignment F-score was 10.0% and the worst was
5.3% with a standard deviation of 0.9%.

For parse trees, we use two simple baselines. In the
first (Forward-Chain), each word modifies the word imme-
diately following it, and the last word is the headword of the
sentence. For the second baseline (Backward-Chain), each
word modifies the word immediately preceding it, and the
first word is the headword of the sentence. No alignment
was performed for these baselines.

The remaining baselines relate to the Giza++ algorithm.
Giza++ produces the best word alignments. For reasons

38

described previously, Giza++ alignments do not combine
easily with syntax. However, Hwa et al. (2002a) contains
an investigation in which trees output from a projection
across Giza++ alignment are modified using several heuris-
tics, and subsequently improved using linguistic knowledge
of Chinese. We report the Chinese Tree Precision obtained
by this method.

4.5 Synchronous Parsing Results

Our first set of alignments combines the ¢? cross-
lingual co-occurrence metric described previously with ei-
ther English parse or no parse trees. In this set, ¢% with
no parse is nearly identical to the approach described in Al-
shawi and Douglas (2000) (excepting our treatment of null
alignments). Thus, it serves as a useful point of comparison
for runs that make use of other information. In Table 1 we
refer to it as sim-Alshawi.

What we find is that incorporating parse trees results in
a modest improvement over the baseline approach of sim-
Alshawi. Why aren’t the improvements more substantial?
One observation is that using parses in this manner results
in only passive interaction with the cross-lingual ¢ scores.
In other words, the parse filters out certain alignments, but
cannot in any other way counteract the biases inherent in
the word statistics. Nevertheless, it appears to be modest
progress.

4.6 Results of Using Bigrams to Approximate Parses

The results suggest that using parses to constrain the
alignment is helpful. It is possible that using both parses
would result in a more substantial improvement. However,
we have already stated that we are interested in the case of
asynchronous resources. Under this scenario, we only have
access to one parse. Is there some way that we can approxi-
mate syntactic constraints of a sentence without having ac-
cess to its parse?

The parsers of (Charniak, 2000; Collins, 1999; Ratna-
parkhi, 1999) make substantial use of bilexical dependen-
cies. Bilexical dependencies capture the idea that linked
words in a dependency parse have a statistical affinity for
each other: they often appear together in certain contexts.
We suspect that bigram statistics could be used as a proxy
for actual bilexical dependencies.

We constructed a simple test of this theory: for each
English sentence V' = v;...v,, in the development set with
parse py : {1..m} — {0..m}, we first construct the set
of all bigrams B = {(v;,v;) : 1 <14 < j < m}. We then
partitioned B into two sets: bigrams of linked words, i.e.
L = {(vi,vj) : (vi,vj) € Bypv(vi) = vj or py (vj) = v;}
and unlinked words U = B—L. We used the Bigram Statis-
tics Package (Pedersen, 2001), to collect bigram statistics
over the entire dev/train corpus and compute the average
statistical correlation of each set using a variety of metrics
(loglikelihood, dice, Xz, ¢2). The results indicated that bi-
grams in the linked set L were more correlated than those in
the unlinked set U under all metrics. We repeated this ex-
periment with the development sentences in Chinese, with
similar results. Although this is by no means a conclusive
experiment, we took the results as an indication that using
bigram statistics as an approximation of a parse might be
helpful where no parse was actually available.

To incorporate bigram statistics into our alignment
model, we modified the scoring function in the following
manner: each time a dependency link is introduced between
words and we do not have access to the source parse, we
add into the alignment score the bigram score of the two
words. The bigram score is based on the ¢ metric com-
puted for bigram correlation. We call this ¢%. The resulting
alignment score can now be given by the following formula.

Z ¢% (vi, wj)+ Z

(i,9):a(1)=j (4,5):9<d,pw (D) =3 Apw (§)=i

Our results indicate that using Chinese bigram statistics
in conjunction with English parse trees in this manner re-
sults in a small decrease in the score along all measures.
Nonetheless, there is an intuitively appealing interpretation
of using bigrams in this way. The first is that the modifi-
cation of the scoring function provides competitive interac-
tion between parse information and cross-lingual statistics.
The second is that if bigram statistics represent a weak ap-
proximation of syntax, then perhaps the iterative refinement
of this statistic (e.g. by taking counts only over words that
were linked in a previous iteration) would satisfy our ob-
jective of syntactic transfer.

4.7 Results of Using Better Word Statistics

Our results show that using parse information and
coarse cross-lingual word statistics provides a modest boost
over an approach using only the cross-lingual word statis-
tics. We also decided to investigate what happens when we
seed our algorithm with better cross-lingual statistics

To test this, we initialize our co-occurrence counts from
alignment links output by the Giza++ alignment of our cor-
pus. We still use ¢? to compute the correlation. We call this
¢%. Predictably, using the better word correlation statistics
improves the quality of the alignment output in all cases.

¢2B (wi’ wj)

39

In this scenario, adding parse information does not seem
to improve the alignment score. However, parse trees in-
duced in this manner achieve a higher precision than any of
the other methods. It outscores the baseline algorithms by
a significant amount, and produces results comparable to
the baseline of Hwa et al. (2002a). It is important to note,
however, that the baseline of Hwa et al. (2002a) is achieved
only after the application of numerous linguistic rules to
the output of the Giza++ alignment. Additionally, the trees
themselves may contain errors of the type described in Sec-
tion 2. In contrast, our tree precision results directly from
the application of our synchronous parsing algorithm, and
all of the output trees are valid dependency parses.

5 Future Work

We believe that a fundamental advantage of our baseline
model is its simplicity. Improving upon it will be consid-
erably easier than improving upon a complex model such
as the one described in Brown et al. (1990). Improve-
ments may proceed along several possible paths. One path
would involve reformulating the scoring functions in terms
of statistical models (e.g. generative models). A natural
complement to this path would be the introduction of it-
eration with the goal of improving the alignments and the
accompanying models. In this approach, we could attempt
to learn a coarse statistical model of the syntax of the low-
density language after each iteration of the alignment. This
information could in turn be used as evidence in the next
iteration of the alignment model, hopefully improving its
performance. Our results have already established a set of
statistics that could be used in the initial iteration of such
a task. The iterative approach resonates with an idea pro-
posed in Yarowsky and Ngai (2001), regarding the use of
learned part-of-speech taggers in subsequent alignment it-
erations.

An orthogonal approach would be the application of ad-
ditional linguistic information. Our results indicated that
syntactic knowledge can help improve alignment. Ad-
ditional linguistic knowledge obtained from named-entity
analyses, phrasal boundary detection, and part-of-speech
tags might also improve alignment.

Although our output dependency trees represent def-
inite progress, trees with such low precision cannot be
used directly to train statistical parsers that assume correct
training data (Charniak, 2000; Collins, 1999; Ratnaparkhi,
1999). There are two possible methods of improving upon
the precision of this training data. The first is the use of
noise-resistant training algorithms such as those described
in (Yarowsky and Ngai, 2001). The second is the possi-
bility of improving the precision yield by removing obvi-
ously bad training examples from the set. Unlike the base-
line model, our word alignment model provides an obvi-
ous means of doing this. One possibility is to use a score
gleaned from the alignment algorithm as a means of rank-
ing dependency links, and removing links whose score is
above some threshold. We hope that a dual approach of im-
proving the precision of the training examples, while simul-
taneously reducing the sensitivity of the training algorithm,
will result in the ability to train a reasonably accurate sta-
tistical parser for the new language. Our eventual objective

is to train a parser in this manner.

6 Related work

Al-Onaizan et al. (1999), Brown et al. (1990)
and Melamed (2000) focus on the description of statisti-
cal translation models based on the bag-of-words model.
Alignment plays a crucial part in the parameter estimation
methods of these models, but they remain problematic for
syntactic transfer for reasons described in Section 2. The
work of Hwa et al. (2002b) is an investigation into the com-
bination of syntax with the output of this type of model.
Och et al. (1999) presents a statistical translation model
that performs phrasal translation, but it relies on shallow
phrases that are discovered statistically, and makes no use
of syntax. Yamada and Knight (2001) create a full-fledged
syntax-based translation model. However, their model is
unidirectional; it only describes the syntax of one sentence,
and makes no provision for the syntax of the other. Wu
(1995) presents a complete theory of synchronous parsing
using a variant of context-free grammars, and exhibits sev-
eral positive results, though not for syntax transfer. Alshawi
and Douglas (2000) present the synchronous parsing algo-
rithm on which our work is based. Much like the work
on translation models, however, this work is interested in
alignment primarily as a mechanism for training a machine
translation system. Variations on the synchronous parsing
algorithm appear in Alshawi et al. (2000a) and Alshawi
et al. (2000b), but the algorithm of Alshawi and Douglas
(2000) appears to be the most complete.

7 Conclusion

We have described a new approach to alignment that
incorporates dependency parses into a synchronous pars-
ing model. Our results indicate that this approach results
in alignments whose quality is comparable to those pro-
duced by complicated iterative techniques. In addition, our
approach demonstrates substantial promise in the task of
learning syntactic models for resource-poor languages.

8 Acknowledgements

This work has been supported, in part, by ONR
MURI Contract FCPO.810548265, DARPA/ITO Cooper-
ative Agreement N660010028910, NSA Contract RD-02-
5700 and Mitre Contract 010418-7712. The authors would
like to thank I. Dan Melamed and Srinivas Bangalore for
helpful discussions; Franz Josef Och for help with Giza++;
and Lingling Zhang, Edward Hung, and Gina Levow for
creating the gold standard annotations for the development
and test data.

9 References

Yaser Al-Onaizan, Jan Curin, Michael Jahr, Kevin Knight,
John Lafferty, I. Dan Melamed, Franz Josef Och, David
Purdy, Noah A. Smith, and David Yarowsky. 1999. Sta-
tistical machine translation: Final report. In Summer
Workshop on Language Engineering. John Hopkins Uni-
versity Center for Language and Speech Processing.

40

Hiyan Alshawi and Shona Douglas. 2000. Learning de-
pendency transduction models from unannotated exam-
ples. Philosophical Transactions of the Royal Society,
358:1357-1372.

Hiyan Alshawi, Srinivas Bangalore, and Shona Douglas.
2000a. Learning dependency translation models as col-
lections of finite state head transducers. Computational
Linguistics, 26:1357-1372.

Hiyan Alshawi, Srinivasa Bangalore, and Shona Douglas.
2000b. Head transducer models for speech translation
and their automatic acquisition from bilingual data. Ma-
chine Translation, 15:105-124.

Peter F. Brown, John Cocke, Stephen Della Pietra, Vin-
cent J. Della Pietra, Fredrick Jelinek, John D. Lafferty,
Robert L. Mercer, and Paul S. Roossin. 1990. A sta-
tistical approach to machine translation. Computational
Linguistics, 16(2):79-85.

Clara Cabezas, Bonnie Dorr, and Philip Resnik. 2001.
Spanish language processing at university of maryland:
Building infrastructure for multilingual applications. In
Proceedings of the Second International Workshop on
Spanish Language Processing and Language Technolo-
gies (SLPLT-2).

Eugene Charniak. 2000. A maximum-entropy-inspired
parser. In Proceedings of the Ist Meeting of the North
American Chapter of the Association for Computational
Linguistics.

Michael Collins. 1999. Head-Driven Statistical Models for
Natural Language Parsing. Ph.D. thesis, University of
Pennsylvania.

William A. Gale and Kenneth W. Church. 1991. Identify-
ing word correspondences in parallel texts. In Proceed-
ings of the Fourth DARPA Speech and Natural Language
Processing Workshop, pages 152—-157.

Jonathan Gross and Jay Yellen, 1999. Graph Theory and
Its Applications, chapter 7.5: Transforming a Graph by
Edge Contraction, pages 263-266. Series on Discrete
Mathematics and Its Applications. CRC Press.

Rebecca Hwa, Philip Resnik, and Amy Weinberg. 2002a.
Breaking the resource bottleneck for multilingual pars-
ing. In Proceedings of the Workshop on Linguistic
Knowledge Acquisition and Representation: Bootstrap-
ping Annotated Language Data. To appear.

Rebecca Hwa, Philip Resnik, Amy Weinberg, and Okan
Kolak. 2002b. Evaluating translational correspondence
using annotation projection. In Proceedings of the 40th
Annual Meeting of the ACL. To appear.

Mitchell Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated corpus
of English: the Penn Treebank. Computational Linguis-
tics, 19(2):313-330.

I. Dan Melamed. 1998. Annotation style guide for the
blinker project. Technical Report IRCS 98-06, Univer-
sity of Pennsylvania.

I. Dan Melamed. 2000. Models of translational equiv-
alence among words. Computational Linguistics,
26(2):221-249, Jun.

Franz Josef Och and Hermann Ney. 2000. Improved statis-

tical alignment models. In Proceedings of the 38th An-
nual Meeting of the ACL, pages 440—447.

Franz Josef Och, Christoph Tillmann, and Hermann Ney.
1999. Improved alignment models for statistical ma-
chine translation. In Proceedings of the Joint Conference
of Empirical Methods in Natural Language Processing
and Very Large Corpora, pages 20-28, Jun.

Ted Pedersen. 2001. A decision tree of bigrams is an accu-
rate predictor of word sense. In Proceedings of the 2nd
Meeting of the North American Chapter of the Associa-
tion for Computational Linguistics, pages 79—-86, Jun.

Adwait Ratnaparkhi. 1999. Learning to parse natural lan-
guage with maximum entropy models. Machine Learn-
ing, 34(1-3):151-175.

Stuart Shieber and Yves Schabes. 1990. Synchronous tree-
adjoining grammars. In Proceedings of the 13th Inter-
national Conference on Computational Linguistics, vol-
ume 3, pages 1-6.

Daniel Sleator and Davy Temperley. 1993. Parsing english
with a link grammar. In Third International Workshop
on Parsing Technologies, Aug.

Dekai Wu. 1995. Stochastic inversion transduction gram-
mars, with application to segmentation, bracketing, and
alignment of parallel corpora. In Proceedings of the 14th
International Joint Conference on Artificial Intelligence,
pages 1328-1335, Aug.

Fei Xia, Martha Palmer, Nianwen Xue, Mary Ellen
Ocurowski, John Kovarik, Fu-Dong Chiou, Shizhe
Huang, Tony Kroch, and Mitch Marcus. 2000. Develop-
ing guidelines and ensuring consistency for chinese text
annotation. In Proceedings of the Second Language Re-
sources and Evaluation Conference, June.

Kenji Yamada and Kevin Knight. 2001. A syntax-based
statistical translation model. In Proceedings of the Con-
ference of the Association for Computational Linguistics.

David Yarowsky and Grace Ngai. 2001. Inducing multilin-
gual pos taggers and np bracketers via robust projection
across aligned corpora. In Proceedings of the 2nd Meet-
ing of the North American Chapter of the Association for
Computational Linguistics, Jun.

41

A Algorithm Pseudocode

The following code does not address what constitutes a legal combination of subspans for an alignment. Legal
subspans depend on constraints imposed by an input parse, if available. Otherwise, as in Alshawi and Douglas
(2000), all possible combinations of subspans are legal. Regardless of what constitutes a legal subspan, the
enumeration of spans must be done in a reasonable way. Small spans must be enumerated before larger spans
that are constructed from them.

The variables iy and jy denote the span v;,, 11...v5,, and py denotes a partition of the span such that i, <
pv < jv. The variables iy, jw, and pw are defined analogously on W.

Our data structure is a chart o, which contains cells indexed by iv, jv, 1w, and jw. Each cell contains
subfields phrase, modi fier Phrase, and score.

Finally, we assume the existence of functions assocScore and score. The assocScore function computes the
score of directly aligning to short spans of the sentence pair. In this paper, we use variations on the ¢? metric
(Gale and Church., 1991) for this. The score function computes the score of combining two sub-alignments,
assuming that the second sub-alignment becomes a modifier of the first. In this paper, we use one score function
that simply adds the score of sub-alignments, and one that adds bigram correlation to the score of the sub-
alignments. In principle, arbitrary scoring functions can be used.

initialize the chart
for all legal combinations of iy, jv,iw, and jy
aliv, jv,iw, jw) = assocScore(Viy 41...Vjy , Wiy 41--- Wiy,)
complete the chart
for all legal combinations of iy, jv, pv, tw, jw, and py
consider the case in which aligned subphrases are in the same order in both languages.
phrase = a(iv, pyv,iw, pw)
modi fier Phrase = a(py, jv,pw, jw)
score =score(phrase, modi fier Phrase)
if score > a(iv, jv,iw, jw).score then
aliy,jv,iw, jw) = new subAlignment(phrase, modi fier Phrase, score)
consider the case in which the dominance relationship between these two phrases is reversed.
swap(phrase, modi fier Phrase)
score =score(phrase, modi fier Phrase)
if score > a(iv,jv,iw, jw)-score then
a(iv, jv,iw, jw) = new subAlignment(phrase, modi fier Phrase, score)
consider the case in which aligned subphrases are in the reverse order in each language.
phrase = a(iv,pv,pw, jw)
modi fier Phrase = a(py, jv,iw, pw)
cost =cost(phrase, modi fier Phrase)
score =score(phrase, modi fier Phrase)
if score > a(iv,jv,iw, jw).score then
a(iv, jv,iw, jw) = new subAlignment(phrase, modi fier Phrase, score)
consider the case in which the dominance relationship between these two phrases is reversed.
swap(phrase, modi fier Phrase)
score =score(phrase, modi fier Phrase)
if score > a(iv, jv,iw, jw).score then

aliy,jv,iw, jw) = new subAlignment(phrase, modi fier Phrase, score)

return (0, m, 0, n)

42

Generating A Parsing Lexicon
from an LCS-Based Lexicon

Necip Fazil Ayan and Bonnie J. Dorr

Department of Computer Science
University of Maryland
College Park, 20742, USA
{nfa, bonnie } @umiacs.umd.edu

Abstract
This paper describes a technique for generating parsing lexicons for a principle-based parser (Minipar). Our approach maps
lexical entries in a large LCS-based repository of semantically classified verbs to their corresponding syntactic patterns.
A by-product of this mapping is a lexicon that is directly usable in the Minipar system. We evaluate the accuracy and
coverage of this lexicon using LDOCE syntactic codes as a gold standard. We show that this lexicon is comparable to the
hand-generated Minipar lexicon (i.e., similar recall and precision values). In a later experiment, we automate the process
of mapping between the LCS-based repository and syntactic patterns. The advantage of automating the process is that the
same technique can be applied directly to lexicons we have for other languages, for example, Arabic, Chinese, and Spanish.

1.

This paper describes a technique for generating
parsing lexicons for a principle-based parser (Mini-
par (Lin, 1993; Lin, 1998)) using a lexicon that is se-
mantically organized according to Lexical-Conceptual
Structure (LCS) (Dorr, 1993; Dorr, 2001)—an ex-
tended version of the verb classification system pro-
posed by (Levin, 1993).! We aim to determine how
much syntactic information we can obtain from this
resource, which extends Levin’s original classifica-
tion as follows: (1) it contains 50% more verbs and
twice as many verb entries (Dorr, 1997)—including
new classes to accommodate previously unhandled
verbs and phenomena (e.g., clausal complements); (2)
it incorporates theta-roles which, in turn, are associ-
ated with a thematic hierarchy for generation (Habash
and Dorr, 2001); and (3) it provides a higher degree
of granularity, i.e., verb classes are sub-divided ac-
cording to their aspectual characteristics (Olsen et al.,
1997).

More specifically, we provide a general technique
for projecting this broader-scale semantic (language-
independent) lexicon onto syntactic entries, with the
ultimate objective of testing the effects of such a lexi-
con on parser performance. Each verb in our semantic
lexicon is associated with a class, an LCS representa-
tion, and a thematic grid.?> These are mapped system-

Introduction

'We focus only on verb entries as they are cross-
linguistically the most highly correlated with lexical-
semantic divergences.

2Although Lexical Conceptual Structure (LCS)
is the primary semantic representation used in our

43

atically into syntactic representations. A by-product
of this mapping is a lexicon that is directly usable in
the Minipar system.

Several recent lexical-acquisition approaches have
produced new resources that are ultimately useful for
syntactic analysis. The approach that is most rele-
vant to ours is that of (Stevenson and Merlo, 2002b;
Stevenson and Merlo, 2002a), which involves the
derivation of verb classes from syntactic features in
corpora. Because their approach is unsupervised, it
provides the basis for automatic verb classification for
languages not yet seen. This work is instrumental
in providing the basis for wide-spread applicability
of our technique (mapping verb classes to a syntac-
tic parsing lexicon), as verb classifications become in-
creasingly available for new languages over the next
several years.

An earlier approach to lexical acquisition is that of
(Grishman et al., 1994), an effort resulting in a large
resource called Comlex—a repository containing 38K
English headwords associated with detailed syntac-
tic patterns. Other researchers (Briscoe and Carroll,
1997; Manning, 1993) have also produce subcatego-
rization patterns from corpora. In each of these cases,
data collection is achieved by means of statistical ex-

verb lexicon, it is not described in detail here (but
see (Dorr, 1993; Dorr, 2001). For the purpose of
this paper, we rely primarily on the thematic grid
representation, which is derived from the LCS. Still
we refer to the lexicon as “LCS-based” as we store
all of these components together in one large repository:
http://www.umiacs.umd.edu/"bonnie/LCS _Database_Documentation.html.

traction from corpora; there is no semantic basis and
neither is intended to be used for multiple languages.

The approaches of (Carroll and Grover, 1989) and
(Egedi and Martin, 1994) involve acquisition English
lexicons from entries in LDOCE and Oxford Ad-
vanced Learner’s Dictionary (OALD), respectively.
The work of (Brent, 1993) produces a lexicon from
a grammar—the reverse of what we aim to do. All of
these approaches are specific to English. By contrast,
our goal is to have a unified repository that is transfer-
able to other languages—and from which our parsing
(and ultimately generation) grammars may be derived.

For evaluation purposes, we developed a map-
ping from the codes of Longman’s Dictionary of
Contemporary English (LDOCE (Procter, 1978))—
the most comprehensive online dictionary for syn-
tactic categorization—to a set of syntactic patterns.
We use these patterns as our gold standard and show
that our derived lexicon is comparable to the hand-
generated Minipar lexicon (i.e., similar recall and pre-
cision values). In a later experiment, we automate the
process of mapping between the LCS-based repository
and syntactic patterns—with the goal of portability:
We currently have LCS lexicons for English, Arabic,
Spanish, and Chinese, so our automated approach al-
lows us to produce syntactic lexicons for parsing in
each of these languages.

Section 2. presents a brief description of each code
set we use in our experiments. In Section 3., we ex-
plain how we generated syntactic patterns from three
different lexicons. In Section 4., we discuss our exper-
iments and the results. Section 5. describes ongoing
work on automating the mapping between LCS-based
representations and syntactic patterns. Finally, we dis-
cuss our results and some possible future directions.

2. Code Descriptions

In many online dictionaries, verbs are classified ac-
cording to the arguments and modifiers that can follow
them. Most dictionaries use specific codes to iden-
tify transitivity, intransitivity, and ditransitivity. These
broad categories may be further refined, e.g., to dis-
tinguish verbs with NP arguments from those with
clausal arguments. The degree of refinement varies
widely.

In the following subsections, we will present three
different code sets. As shown in Figure 1, the first
of these (OALD) serves as a mediating representation
in the mapping between Minipar codes and syntac-
tic patterns. The LCS lexicon and LDOCE codes are
mapped directly into syntactic patterns, without an in-
tervening representation. The patterns resulting from
the LDOCE are taken as the gold standard, serving

44

Parsing Lexicons Gold Standard

Minipar LCS LDOCE

Codes Lexicon Codes

OALD

Codes

Syntactic Syntactic Syntactic

Patterns Patterns Patterns
(Minipar—based (LCS-based (LDOCE-based

Lexicon) Lexicon) Lexicon)

Compare each of these Against this

Figure 1: A Comparison between Minipar- and LCS-
based Lexicons using LDOCE as the Gold Standard

as the basis of comparison between the Minipar- and
LCS-based lexicons.

2.1. OALD Codes

This code set is used in Oxford Advanced
Learner’s Dictionary, a.k.a OALD (Mitten, 1992). The
verbs are categorized into 5 main groups: Intransi-
tive verbs, transitive verbs, ditransitive verbs, complex
transitive verbs, and linking verbs. Each code is of the
form Saj[.as] where S is the first letter of the verb cat-
egorization (S € {I,T,D,C, L} for the correspond-
ing groups), and a1, ag, . . . are the argument types. If a
code contains more than one argument, each argument
is listed serially. Possible argument types are n for
nouns, f for finite clauses (that clauses), g for “-ing”
clauses, t for infinitive clauses, w for finite clauses be-
ginning with “-wh”, 7 for bare infinitive clauses, a for
adjective phrases, p for prepositions and pr for prepo-
sitional phrases.

For example, T'n refers to the verbs followed by a
noun (’She read the book’), T'n.pr refers to the verbs
followed by a noun and a prepositional phrase ("He
opened the door with a latch’), and Dn.n refers to the
verbs followed by two nouns (’She taught the children
French’). The number of codes in OALD code set is
32 and the codes are listed in Table 1.

OALD codes are simplistic in that they do not in-
clude modifiers. In addition, they also do not explic-
itly specify which prepositions can be used in the PPs.

2.2. Minipar Codes

The Minipar coding scheme is an adaptation of the
OALD codes. Minipar extends OALD codes by pro-

Categorization

OALD Codes

Intransitive verbs

{L, Ip, Ipr, In/pr, It}

Transitive verbs

{Tn, Tn.pr, Tn.p, Tf, Tw, Tt, Tg, Tn.t, Tn.g, Tn.i}

Complex Transitive verbs

{Cn.a, Cn.n, Cn.n/a, Cn.t, Cn.g, Cn.i}

Ditransitive verbs

{Dn.n, Dn.pr, Dn.f, Dn.t, Dn.w, Dpr.f, Dpr.w, Dpr.t}

Linking verbs {La, Ln}

Table 1: OALD Code Set: The Basis of Minipar Codes

viding a facility for specifying prepositions, but only
8 verbs are encoded with these prepositional codes in
the official Minipar distribution. In these cases, the
codes containing pr are refined to be pr.prep, where
prep is the head of the PP argument.3 In addition,
Minipar codes are refined in the following ways:

1. Optional arguments are allowed, e.g., T'[n].pr de-
scribes verbs followed by an optional noun and a PP.
This is equivalent to the combination of the OALD
codes T'n.pr and Ipr.

. Two or more codes may be combined, e.g., Tfgt de-
scribes verbs followed by a clause that is finite, infini-
tive, or gerundive (“-ing”).

. Prepositions may be specified in prepositional
phrases. Some of the codes containing pr as an ar-
gument are converted into pr.prep in order to declare
that the prepositional phrase can begin with only the
specified preposition prep.

The set of Minipar codes contain 66 items. We
will not list them here since they are very similar to
the ones in Table 1, with the modifications described
above.

2.3. LDOCE Codes

LDOCE has a more detailed code set than that
of OALD (and hence Minipar). The codes include
both arguments and modifiers. Moreover, prepositions
are richly specified throughout the lexicon. The syn-
tax of the codes is either CN or CN-Prep, where C
corresponds to the verb sub-categorization (as in the
generic OALD codes) and N is a number, which cor-
responds to different sets of arguments that can follow
the verb. For example, T1-ON refers to verbs that are
followed by a noun and a PP with the head on. The
number of codes included in this set is 179. The mean-
ing of each is described in Table 2.

3. Our Approach

Our goal is evaluate the accuracy and coverage of
a parsing lexicon where each verb is classified accord-
ing to the arguments it takes. We use syntactic patterns

3This extension is used only for the preposition as for
the verbs absolve, accept, acclaim, brand, designate, dis-
guise, fancy, and reckon.

45

Number | Arguments
1 one or more nouns
2 bare infinitive clause
3 infinitive clause
4 -ing form
5 -that clause
6 clauses with a wh- word
7 adjective
8 past participle
9 descriptive word or phrase

Table 2: LDOCE Number Description

as the basis of the comparison between our parsing
lexicon and the original lexicon used in Minipar.

Syntactic patterns simply list the type of the argu-
ments one by one, including the subject. Formally, a
syntactic pattern is a1, ag, ... Where a; is an element
of NP, AP, PP, FIN, INF, BARE, ING, WH, PREP, cor-
responding to noun phrases, adjective phrases, prepo-
sitional phrases, clauses beginning with “that”, infini-
tive clauses, bare infinitive clauses, “-ing” clauses, ““-
wh” clauses and prepositions, respectively. Preposi-
tional phrases may be made more specific by includ-
ing the heads, which is done by PP.prep where prep
is the head of the prepositional phrase. The first item
in the syntactic pattern gives the type of the subject.

Our initial attempts at comparing the Minipar- and
LCS-based lexicons involved the use of the OALD
code set instead of syntactic patterns. This approach
has two problems, which are closely related. First, us-
ing the class number and thematic grids as the basis
of mapping from the LCS lexicon to OALD codes is
a difficult task because of the high degree of ambi-
guity. For example, it is hard to choose among four
OALD codes (Ln, La, Tn or Ia) for the thematic
grid _th_pred, regardless of the Levin class. In gen-
eral, the grid-to-OALD mapping is so ambiguous that
maintaining consistency over the whole LCS lexicon
is virtually impossible.

Secondly, even if we are able to find the correct
OALD codes, it is not worth the effort because all that
is needed for the parsing lexicon is the type and num-
ber of arguments that can follow the verb. For ex-
ample, Cn.n (as in “appoint him king”) and Dn.n
(as in “give him a book”) both correspond to two

NPs, but the second NP is a direct object in the for-
mer case and an indirect object in the latter. Since
the parser relies ultimately on syntactic patterns, not
codes, we can eliminate this redundancy by mapping
any verb in either of these two categories directly into
the [NP.NP.NP] pattern. Thus, using syntactic patterns
is sufficient for our purposes.

Our experiments revealed additional flexibility in
using syntactic patterns. Unlike the OALD codes
(which contain at most two arguments or modifiers),
the thematic grids consist of up to 4 modifiers. Map-
ping onto syntactic patterns instead of onto OALD
codes allows us to use all arguments in the the-
matic grids. For example, [NP.NP.PP.from.PP.to] is
an example of transitive verb with two prepositional
phrases, one beginning with from and the other begin-
ning with fo, as in “She drove the kids from home to
school.”

In the following subsections, we will examine the
mapping into these syntactic patterns from: (1) the
LCS lexicon; (2) the Minipar codes; and (3) the
LDOCE codes.

3.1. Mapping from the LCS Lexicon to Syntactic

Patterns

The LCS lexicon consists of verbs grouped into
classes based on an adapted version of verb classes
(Levin, 1993) along with the thematic grid represen-
tations (see (Dorr, 1993; Dorr, 2001)). We auto-
matically assigned syntactic patterns for each verb
in the LCS lexicon using its semantic class number
and thematic grid. The syntactic patterns we used in
our mapping specify prepositions for entries that re-
quire them. For example, the grid _ag_th_instr(with)
is mapped onto [NP.NP.PP.with] instead of a generic
pattern [NP.NP.PP].

More generally, thematic grids contain a list of ar-
guments and modifiers, and they can be obligatory
(indicated by an underscore before the role) or op-
tional(indicated by a comma before the role). The ar-
guments can be one of AG, EXP, TH, SRC, GOAL,
INFO, PERC, PRED, LOC, POSS, TIME, and PROP.
The logical modifiers can be one of MOD-POSS,
BEN, INSTR, PURP, MOD-LOC, MANNER, MOD-
PRED, MOD-PERC and MOD-PROP. If the argument
or the modifier is followed by parenthesis, the cor-
responding element is a prepositional phrase and its
head must be the one specified between the parenthe-
ses (if there is nothing between parentheses, PP can
begin with any preposition).

Our purpose is to find the set of syntactic patterns
for each verb in LCS lexicon using its Levin class and
thematic grid. Since each verb can be in many classes

46

and we aim at assigning syntactic patterns based on
the semantic classes and thematic grids, there are three
possible mapping methodologies:

1. Assign one or more patterns to each class.

2. Assign one or more patterns to each thematic grid.

3. Assign one or more patterns to each pair of class and

thematic grid.

The first methodology fails for some classes be-
cause the distribution of syntactic patterns over a spe-
cific class is not uniform. In other words, attempt-
ing to assign only a set of patterns to each class in-
troduces errors because some classes are associated
with more than one syntactic frame. For example,
class 51.1.d includes three thematic grids: (1) _th,src;
(2) _th,src(from); and (3) _th,src(),goal(). We can ei-
ther assign all patterns for all of these thematic grids
to this class or we can choose the most common one.
However, both of these approaches introduce errors:
The first will generate redundant patterns and the sec-
ond will assign incorrect patterns to some verbs. (This
occurs because, within a class, thematic grids may
vary with respect to their optional arguments or the
prepositional head associated with arguments or mod-
ifiers.)

The second methodology also fails to provide an
appropriate mapping. The problem is that some the-
matic grids correspond to different syntactic patterns
in different classes. For example, the thematic grid
_th_prop corresponds to 3 different syntactic patterns:
(1) [NPNP] in class 024 and 55.2.a; (2) [NPING]
in classes 066, 52.b, and 55.2.b; and (3) [NP.INF] in
class 005. Although the thematic grid is the same in
all of these classes, the syntactic patterns are different.

The final methodology circumvents the two issues
presented above (i.e., more than one grid per class and
more than one syntactic frame per thematic grid) as
follows: If a thematic grid contains an optional argu-
ment, we create two mappings for that grid, one in
which the optional argument is treated as if it were not
there and one in which the argument is obligatory. For
example, _ag_th,goal() is mapped onto two patterns
[NP.NP] and [NP.NP.PP]. If the number of optional ar-
guments is X, then the maximum number of syntactic
patterns for that grid is 2% (or perhaps smaller than
2X since some of the patterns may be identical).

Using this methodology, we found the correct map-
ping for each class and thematic grid pair by examin-
ing the verbs in that class and considering all possible
syntactic patterns for that pair. This is a many-to-many
mapping, i.e. one pattern can be used for different

OALD Code | Syntactic Patterns

1 [NP]

Tn [NP.NP]

T[n].pr [NP.NP] and [NP.NP.PP]
Cn.a [NP.NP.AP]

Cn.n [NP.NP.NP]

Cn.n/a [NP.NP.PP.as]

Cn.i [NP.NP.BARE]

Dn.n [NP.NP.NP]

Table 3: Mapping From OALD to Syntactic Patterns

LDOCE Code | Syntactic Patterns
I-ABOUT [NP.PP.about]

2 [NPBARE]
L9-WITH [NP.PP.with]

T1 [NP.NP]

TS [NP.FIN]

D1 [NP.NP.NP]

D3 [NP.NP.INF]

V4 [NP.NPING]

Table 4: Mapping From LDOCE to Syntactic Patterns

pairs and each pair may be associated with more than
one pattern. Each verb in each class is assigned the
corresponding syntactic patterns according to its the-
matic grid. Finally, for each verb, we combined all
patterns in all classes containing this particular verb in
order to generate the lexicon. We will refer to the re-
sulting lexicon as the LCS-based lexicon in Section 4..

3.2. Mapping from Minipar Codes To Syntactic
Patterns

Minipar codes are converted straightforwardly into
syntactic patterns using the code specification in (Mit-
ten, 1992). An excerpt of the mapping is given in Ta-
ble 3. This mapping is one-to-many as exemplified by
the code T'[n].pr. Moreover, the set of syntactic pat-
terns extracted from Minipar does not include some
patterns such as [NP.PP] (and related patterns) because
Minipar does not include modifiers in its code set.

As a result of this mapping, we produced a new
lexicon from Minipar entries, where each verb is listed
along with the set of syntactic patterns. We will refer
to this lexicon as the Minipar-based lexicon in Sec-
tion 4..

3.3. Mapping from LDOCE Codes to Syntactic
Patterns

Similar to the mapping from Minipar to the syn-
tactic patterns, we converted LDOCE codes to syn-
tactic patterns using the code specification in (Procter,
1978). An excerpt of the mapping is given in Table 4.

Each LDOCE code was mapped manually to one
or more patterns. LDOCE codes are more refined than
the generic OALD codes, but mapping each to syntac-

47

tic patterns provides an equivalent mediating represen-
tation for comparison. For example, LDOCE codes
D1-AT and T1-AT are mapped onto [NP.NP.PP.at] by
our mapping technique. Again, this is a many-to-many
mapping but only a small set of LDOCE codes map to
more than one syntactic pattern.

As a result of this mapping, we produced a new
lexicon from LDOCE entries, similar to Minipar lexi-
con. We will refer to this lexicon as the LDOCE-based
lexicon in Section 4..

4. Experiments and Results

To measure the effectiveness of our mapping from
LCS entries to syntactic patterns, we compared the
precision and recall our derived LCS-based syntactic
patterns with the precision and recall of Minipar-based
syntactic patterns, using LDOCE-based syntactic pat-
terns as our “gold standard”.

Each of the three lexicons contains verbs along
with their associated syntactic patterns. For exper-
imental purposes, we convert these into pairs. For-
mally, if a verb v is listed with the patterns p1, po, . . .,
we create pairs (v,p1), (v,p2) and so on. In addi-
tion, we have made the following adjustments to the
lexicons, where L is the lexicon under consideration
(Minipar or LCS):

1. Given that the number of verbs in each of the two
lexicons is different and that neither one completely
covers the other, we take only those verbs that occur
in both L and LDOCE, for each L, while measuring
precision and recall.

In the LDOCE- and Minipar-based lexicons, the num-
ber of arguments is never greater than 2. Thus, for a
fair comparison, we converted the LCS-based lexicon
into the same format. For this purpose, we simply
omit the arguments after the second one if the pattern
contains more than two arguments/modifiers.

3. The prepositions are not specified in Minipar-based
lexicon. Thus, we ignore the heads of the preposi-
tions in LCS-based lexicon, i.e., if the pattern includes
[PP.prep] we take it as a [PP].

Precision and recall are based on the following in-
puts:

A = Number of pairs in L occurring in LDOCE
B = Number of pairs in L NOT occurring in LDOCE
C = Number of pairs in LDOCE NOT occurring in L

That is, given a syntactic pattern encoded lexicon L,
we compute:

.. A .
(1) The precision of L =]
(2) The recall of L = -4~

A+C

Verbs in LDOCE Lexicon 5648
Verbs in LCS Lexicon 4267
Common verbs in LCS and LDOCE | 3757
Pairs in LCS Lexicon 9274
Pairs in LDOCE Lexicon 9200
Pairs in LCS and LDOCE 5654
Verbs fetched completely 1780
Precision 61%
Recall 61%

Table 5: Experiment on LCS-based Lexicon

All Verbs in Common verbs

Minipar Lexicon | with LCS Lexicon
Verbs in LDOCE Lex- 5648 5648
icon
Verbs in Minipar Lex- 8159 4001
icon
Common verbs in 5425 3721
Minipar and LDOCE
Pairs in Minipar Lexi- 10006 7567
con
Pairs in LDOCE Lexi- 11786 9141
con
Pairs in Minipar and 8014 6124
LDOCE
Verbs fetched com- 3002 1875
pletely
Precision 80% 81%
Recall 68% 67%

Table 6: Experiments on Minipar-based Lexicon

We compare two results: one where L is the
Minipar-based lexicon and one where L is the LCS-
based lexicon. Table 5 gives the number of verbs used
in the LCS-based lexicon and the LDOCE-based lexi-
con, showing the precision and recall. The row show-
ing the number of verbs fetched completely gives the
number of verbs in the LCS lexicon which contains
all the patterns in the LDOCE entry for the same verb.
Both the precision and the recall for LCS-based lexi-
con with the manually-crafted mapping is 61%.

We did the same experiment for the Minipar-based
lexicon in two different ways, first with all the verbs
in the Minipar lexicon and then with only the verbs
occurring in both the LCS and Minipar lexicons. The
second approach is useful for a direct comparison be-
tween the Minipar- and LCS-based lexicons. As be-
fore, we used the LDOCE-based lexicon as our gold
standard. The results are shown in Table 6. The defi-
nitions of entries are the same as in Table 5.

The number of Minipar verbs in Minipar occurring
in the LCS lexicon is different from the total number
of LCS verbs because some LCS verbs (266 of them)
do not appear in Minipar lexicon. The results indicate
that the Minipar-based lexicon yields much better pre-
cision, with an improvement of nearly 25% over the
LCS-based lexicon. The recall is low because Minipar

48

Verbs in LDOCE Lexicon 5648
Verbs in Intersection Lexicon 3623
Common verbs in Int. and LDOCE | 3368
Pairs in Intersection Lexicon 4564
Pairs in LDOCE Lexicon 8366
Pairs in Int. and LDOCE 4156
Verbs fetched completely 1265
Precision 91%
Recall 50%

Table 7: Experiment on Intersection Lexicon

does not take modifiers into account most of the time.
This results in missing nearly all patterns with PPs,
such as [NP.PP] and [NP.NP.PP]. However, the recall
achieved is 6% more than the recall for the LCS-based
lexicon.

Finally, we conducted an experiment to see how
the intersection of the Minipar and LCS lexicons com-
pares to the LDOCE-based lexicon. For this experi-
ment, we included only the verbs and patterns occur-
ring in both lexicons. The results are shown in Table 7
in a format similar to previous tables.

The number of common verbs differs from the pre-
vious ones because we omit the verbs which do not
have any patterns across the two lexicons. The results
are not surprising: High precision is achieved because
only those patterns that occur in both lexicons are in-
cluded in the intersection lexicon; thus, the total num-
ber of pairs is reduced significantly. For the same rea-
son, the recall is significantly reduced.

The highest precision is achieved by the intersec-
tion of two lexicons, but at the expense of recall. We
found that the precision was higher for Minipar than
for the LCS lexicon, but when we examined this in
more detail, we found that this was almost entirely due
to “double counting” of entries with optional modi-
fiers in the LCS-based lexicon. For example, the sin-
gle LCS-based grid _ag_th,instr(with) corresponds to
two syntactic patterns, [NP.NP] and [NP.NP.PP], while
LDOCE views these as the single pattern [NP.NP].
Specifically, 53% of the non-matching LCS-based pat-
terns are [NPNP.PP]—and 93% of these co-occur
with [NP.NP]. Similarly, 13% of the non-matching
LCS-based patterns are pattern [NP.PP]—and 80% of
these co-occur with [NP].

This is a significant finding, as it reveals that our
precision is spuriously low in our comparison with
the “gold standard.” In effect, we should be count-
ing the LCS-based pattern [NP.NP.PP]/[NP.NP] to be
a match against the LDOCE-based pattern [NP.NP]—
which is a fairer comparison since neither LDOCE
nor Minipar takes modifiers into account. (We hence-
forth refer to LCS-based the co-occurring patterns

Minipar Minipar LCS Intersection
Lexicon Lexicon Lexicon of
(All verbs in (Common verbs Minipar and LCS
Minipar Lexicon) | with LCS Lexicon) Lexicons
Precision 80% 81% 61% 91%
Enhanced Precision 81% 82% 80% 91%
Recall 68% 67% 61% 50%

Table 8: Precision and Recall Summary: Minipar- and LCS-based Lexicons

[NP.NP.PP]/[NP.NP] and [NP.PP]/[NP] as overlapping
pairs.) To observe the degree of the impact of optional
modifiers, we computed another precision value for
the LCS-based lexicon by counting overlapping pat-
terns once instead of twice. With this methodology,
we achieved 80% (enhanced) precision. This preci-
sion value is nearly same as the value achieved with
the current Minipar lexicon. Table 8 summarizes all
results in terms of precision and recall.

The enhanced precision is an important and ac-
curate indicator of the effectiveness of our approach,
given that overlapping patterns arise because of (op-
tional) modifiers. When we ignore those modifiers
during our mapping process, we achieve nearly the
same precision and recall with the current Minipar lex-
icon, which also ignores the modifiers in its code set.
Moreover, overlapping patterns in our LCS-based lex-
icon do not affect the performance of the parser, other
than to induce a more sophisticated handling of modi-
fiers (which presumably would increase the precision
numbers, if we had access to a “gold standard” that
includes modifiers). For example, Minipar attaches
modifiers at the clausal level instead of at the verbal
level even in cases where the modifier is obviously
verbal—as it would be in the LCS-based version of
the parse in the sentence She rolled the dough [PP into
cookie shapes].

5. Ongoing Work: Automatic Generation of
Syntactic Patterns

The lexicon derived from the hand-crafted map-
ping between the LCS lexicon and the syntactic pat-
terns is comparable to the current Minipar lexicon.
However, the mapping required a great deal of hu-
man effort, since each semantic verb class must be
examined by hand in order to identify appropriate
syntactic patterns. The process is error-prone, labo-
rious, and time-intensive (approximately 3-4 person-
months). Moreover, it requires that the mapping be
done again by a human every time the LCS lexicon is
updated.

In a recent experiment, we developed an auto-
mated mapping (in 2 person-weeks) that takes into
account both semantic roles and some additional fea-

tures stored in the LCS database, without reference to
the class number. The mapping is based primarily on
the thematic role, however in some situations the the-
matic roles themselves are not sufficient to determine
the type of the argument. In such cases, the correct
form is assigned using featural information associated
with that specific verb in the LCS database.

Table 10 summarizes the automated mapping rules.
The thematic role “prop” is an example of a case
where featural information is necessary (e.g., (cform
inf)), as there are five different patterns to choose from
for this thematic role. Similarly, whether a “pred”
role is an NP or AP is determined by featural infor-
mation. For example, this role becomes an AP for the
verb behave in class 29.6.a while it is mapped onto
an NP for the verb carry in class 54.2. In the cases
where the syntactic pattern is ambiguous and there is
no specification for the verbs, default values are used
for the mapping: BARE for “prop”, AP for “pred” and
NP for “perc”.

Syntactic patterns for each thematic grid are com-
puted by combining the results of the mapping from
each thematic role in the grid to a syntactic pattern,
one after another. If the grid includes optional roles,
every possibility is explored and the syntactic pat-
terns for each of them is included in the whole list
of patterns for that grid. For example, the syntactic
patterns for _ag_th,instr(with) include the patterns for
both _ag_th and _ag_th_instr(with), which are [NP.NP]
and [NP.NP.PP.with].

Note that this approach eliminates the need for us-
ing the same syntactic patterns for all verbs in a spe-
cific class: Verbs in the same class can be assigned
different syntactic patterns with the help of additional
features in the database. Thus, we need not rely on the
semantic class number at all during this mapping. We
can easily update the resulting lexicons when there is
any change on the semantic classes or thematic grids
of some verbs.

This experiment resulted in a parsing lexicon that
has virtually the same precision/recall as that of the
manually generated LCS-based lexicon above. (See
Table 9.) As in the case of the manually generated
mappings, the enhanced precision is 80%, which is

49

Verbs in LDOCE Lexicon

5648

Verbs in LCS Lexicon

4267

Common verbs in LCS and LDOCE

3757

Pairs in LCS Lexicon

9253

Pairs in LDOCE Lexicon

9200

Pairs in LCS and LDOCE

5634

Verbs fetched completely

1781

Precision

61%

Enhanced Precision

80%

Recall

61%

Table 9: Precision and Recall of Automatic Generation of Syntactic Patterns

Thematic Role Syntactic Patterns

particle PREP

prop(...), mod-prop(...), info(...) | FIN or INF or ING or PP

all other role(...) PP

th, exp, info FIN or INF or ING or NP

prop NP or ING or INF or FIN or BARE
pred AP or NP

perc [NP.ING] or [NP.BARE]

all other roles NP

Table 10: Syntactic Patterns Corresponding to Thematic Roles

only 1-2% lower than that of the current Minipar-
based lexicon.

Our approach demonstrates that examination of
thematic-role and featural information in the LCS-
based lexicon is sufficient for executing this mapping
automatically. Automating our approach gives us the
flexibility of re-running the program if the structure of
the database changes (e.g., an LCS representation is
modified or class membership changes) and of port-
ing to a new language with minimal effort.

6. Discussion

In all experiments reported above, both the LCS-
and Minipar-based lexicons yield low recall values.
Upon further investigation, we found that LDOCE is
too specific in assigning codes to verbs. Most of the
patterns associated with the verbs are rare—cases not
considered in the LCS- and Minipar-based lexicons.
Because of that, we believe that the recall values will
improve if we take only a subset of LDOCE-based
lexicon, e.g., those associated with the most frequent
verb-pattern pairs in a large corpus. This is a future
research direction considered in the next section.

The knowledgeable reader may question the map-
ping of a Levin-style lexicon into syntactic codes,
given that Levin’s original proposal is to investigate
verb meaning through examination of syntactic pat-
terns, or alternations, in the first place. As alluded
to in Section 1., there are several ways in which this
database has become more than just a “semantified”
version of a syntactic framework; we elaborate on this
further here.

50

Levin’s original framework omitted a large num-
ber of verbs—and verb senses for existing Levin
verbs—which we added to the database by semi-
automatic techniques. Her original framework con-
tained 3024 verbs in 192 classes numbering between
9.1 and 57—a total of 4186 verb entries. These were
grouped together primarily by means of syntactic al-
ternations. Our augmented database contains 4432
verbs in 492 classes with more specific numbering
(e.g., “51.3.2.a.ii”) including additional class numbers
for new classes that Levin did not include in her work
(between 000 and 026)—a total of 9844 verb entries.
These were categorized according to semantic infor-
mation (using WordNet synsets coupled with syntactic
filtering) (Dorr, 1997)—not syntactic alternations.

An example of an entry that we added to the
database is the verb oblige. We have assigned a
semantic representation and thematic grid to this
verb, creating a new class 002—which we call Co-
erce Verbs—corresponding to verbs whose underly-
ing meaning corresponds to “force to act”. Because
Levin’s repository omits verbs taking clausal comple-
ments, several other verbs with a similar meaning fell
into this class (e.g., coerce, compel, persuade) includ-
ing some that were already included in the original
system, but not in this class (e.g., ask). Thus, the LCS
Database contains 50% more verbs and twice as many
verb entries since the original framework of Levin.
The result is that we can now parse constructions such
as She compelled him to eat and She asked him to
eat, which would not have been analyzable had we
compiled our parsing lexicon on the basis of Levin’s

classes alone.

Levin’s original proposal also does not contain se-
mantic representations or thematic grids. When we
built the LCS database, we examined each verb class
carefully by hand to determine the underlying compo-
nents of meaning unifying the members of that class.
For example, the LCS representation that we gener-
ated for verbs in the put class includes components of
meaning corresponding to “spatial placement in some
manner,” thus covering dangle, hang, suspend, etc.

From these hand-generated LCS representations,
we derived our thematic grids—the same ones that are
mapped onto our syntactic patterns. For example, po-
sition 1 (the highest leftmost argument in the LCS)
is always mapped into the agent role of the thematic
grid. The grids are organized into a thematic hierar-
chy that provides the basis for determining argument
assignments, thus enhancing the generation process in
ways that could not have been done previously with
Levin’s classes alone—e.g., producing constructions
like John sent a book to Paul instead of constructions
like The book sent John to Paul. Although the value
of the thematic hierarchy seems most relevant to gen-
eration, the overall semantic/thematic hierarchical or-
ganization enables the automatic construction of lexi-
cons that are equally suitable for both parsing and gen-
eration, thus reducing our overall lexical acquisition
effort for both processes.

Beyond the above considerations, the granularity
of the original Levin framework also was not adequate
for our interlingual MT and lexical acquisition efforts.
Our augmented form of this repository has brought
about a more refined classification in which we are
able to accommodate aspectual distinctions. We en-
code knowledge about aspectual features (e.g., telic-
ity) in our LCS representations, thus sub-dividing the
classes into more specific sub-classes. The tests used
for this sub-division are purely semantic in nature, not
syntactic. An example is the Dowty-style test “He was
X-ing entails He has X-ed” (Dowty, 1979), where X is
atelic (as in run) only if this entailment is considered
valid by a human—and telic otherwise (as in win).

The inclusion of this type of knowledge allows
us to refine Levin’s classification significantly. An
example is Class 35.6—Ferret Verbs: In Levin’s orig-
inal framework, this class conflated verbs occurring
in different aspectual categories. Using the semantic
tests above, we found that, in fact, these verbs should
be divided as follows (Olsen et al., 1997):

Ferret Verbs: nose ferret tease (telic); seek (atelic)

The implication of this division for parsing is that
the verbal arguments are constrained in a way that

51

was not available to us in the original Levin-style
classification—thus easing the job of the parser in
choosing attachment points:
Telic:
xHe ferreted the truth from him.
He ferreted the truth out of him
Atelic:
He sought the truth from him.
«xHe sought the truth out of him

Finally, Levin makes no claims as to the applica-
bility of the English classes to other languages. Ori-
enting our LCS database more toward semantic (as-
pectual) features rather than syntactic alternations has
brought us closer to an interlingual representation that
has now been demonstrably ported (quickly) to mul-
tiple languages including Arabic, Chinese, and Span-
ish. For example, telicity has been shown to be a cru-
cial deciding feature in translating between divergence
languages (Olsen et al., 1998), as in the translation of
English run across as Spanish cruzar corriendo.

To summarize, our work is intended to: (1) Inves-
tigate the realization of a parsing lexicon from an LCS
database that has developed from extensive seman-
tic enhancements to an existing framework of verb
classes and (2) Automate this technique so that it is di-
rectly applicable to LCS databases in other languages.

7. Future Work and Conclusions

Our ongoing work involves the following:

1. Using a subset of LDOCE-based lexicon by taking
only the most frequent verb-pattern pairs in a big cor-
pus: We expect that this approach will produce more
realistic recall values.

. Creating parsing lexicons for different languages:
Once we have an automated mapping from the seman-
tic lexicon to the set of syntactic patterns, we can use
this method to create parsing lexicons from semantic
lexicons that we already have available in other lan-
guages (Chinese, Spanish and Arabic).

3. Integration of these parsing lexicons in ongoing ma-
chine translation work (Habash and Dorr, 2001): We
will feed the created lexicons into a parser and ex-
amine how successful the lexicons are. The same

lexicons will also be used in our current clustering

project.

Some of the ideas mentioned above are explored in
detail in (Ayan and Dorr, 2002).

We conclude that it is possible to produce a pars-
ing lexicon by projecting from LCS-based lexical
entries—achieving precision and recall on a par with

a syntactic lexicon (Minipar) encoded by hand specif-
ically for English. The consequence of this result is
that, as semantic lexicons become increasingly avail-
able for multiple languages (ours are now available in
English, Chinese, and Arabic), we are able to produce
parsing lexicons automatically for each language.

Acknowledgments

This work has been supported, in part, by ONR MURI
Contract FCPO.810548265 and Mitre Contract 010418-
7712.

8. References

Necip Fazil Ayan and Bonnie J. Dorr. 2002. Creating
Parsing Lexicons From Semantic Lexicons Automati-
cally and Its Applications. Technical report, Univer-
sity of Maryland, College Park, MD. Technical Report:
LAMP-TR-084, CS-TR-4352, UMIACS-TR-2002-32.

Michael Brent. 1993. From Grammar to Lexicon: Un-
supervised Learning of Lexical Syntax. Computational
Linguistics, 19(2):243-262.

Ted Briscoe and John Carroll. 1997. Automatic extraction
of subcategorization from corpora. In Proceedings of the
5th Conference on Applied Natural Language Process-
ing (ANLP-97), Washington, DC.

J. Carroll and C. Grover. 1989. The Derivation of a Large
Computational Lexicon for English from LDOCE. In
B. Boguraev and Ted Briscoe, editors, Computational
lexicography for natural language processing, pages
117-134. Longman, London.

Bonnie J. Dorr. 1993. Machine Translation: A View from
the Lexicon. The MIT Press, Cambridge, MA.

Bonnie J. Dorr. 1997. Large-Scale Dictionary Construc-
tion for Foreign Language Tutoring and Interlingual Ma-
chine Translation. Machine Translation, 12(4):271-322.

Bonnie J. Dorr. 2001. LCS Verb Database.
Technical Report Online Software Database,
University of Maryland, College Park,
MD. http://www.umiacs.umd.edu/"bonnie/-

LCS_Database _Documentation.html.

David Dowty. 1979. Word Meaning in Montague Gram-
mar. Reidel, Dordrecht.

Dania Egedi and Patrick Martin. 1994. A Freely Available
Syntactic Lexicon for English. In Proceedings of the
International Workshop on Sharable Natural Language
Resources, Nara, Japan.

Ralph Grishman, Catherine Macleod, and Adam Meyers.
1994. Comlex Syntax: Building a Computational Lexi-
con. In Proceedings of the COLING, Kyoto.

Nizar Habash and Bonnie Dorr. 2001. Large-Scale Lan-
guage Independent Generation Using Thematic Hierar-
chies. In Proceedings of MT Summit VIII, Santiago de
Compostella, Spain.

Beth Levin. 1993. English Verb Classes and Alternations:
A Preliminary Investigation. University of Chicago
Press, Chicago, IL.

52

Dekang Lin. 1993. Principle-Based Parsing without Over-
generation. In Proceedings of ACL-93, pages 112-120,
Columbus, Ohio.

Dekang Lin. 1998. Dependency-Based Evaluation of
MINIPAR. In Proceedings of the Workshop on the Eval-
uation of Parsing Systems, First International Confer-
ence on Language Resources and Evaluation, Granada,
Spain, May.

Christopher D. Manning. 1993. Automatic Acquisition of
a Large Subcategorization Dictionary from Corpora. In
Proceedings of the 31st Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 235-242,
Columbus, Ohio.

R. Mitten. 1992. Computer-Usable Version of Oxford Ad-
vanced Learner’s Dictionary of Current English. Oxford
Text Archive.

Mari Broman Olsen, Bonnie J. Dorr, and Scott C. Thomas.
1997. Toward Compact Monotonically Compositional
Interlingua Using Lexical Aspect. In Proceedings of the
Workshop on Interlinguas in MT, MT Summit, New Mex-
ico State University Technical Report MCCS-97-314,
pages 33-44, San Diego, CA, October. Also available
as UMIACS-TR-97-86, LAMP-TR-012, CS-TR-3858,
University of Maryland.

Mari Broman Olsen, Bonnie J. Dorr, and Scott C. Thomas.
1998. Enhancing Automatic Acquisition of Thematic
Structure in a Large-Scale Lexicon for Mandarin Chi-
nese. In Proceedings of the Third Conference of the
Association for Machine Translation in the Americas,
AMTA-98, in Lecture Notes in Artificial Intelligence,
1529, pages 41-50, Langhorne, PA, October 28-31.

P. Procter. 1978. Longman Dictionary of Contemporary
English. Longman, London.

Suzanne Stevenson and Paola Merlo. 2002a. A Multi-
lingual Paradigm for Automatic Verb Classification. In
Proceedings of Association of Computational Linguis-
tics, Philadelphia, PA.

Suzanne Stevenson and Paola Merlo. 2002b. Automatic
verb classification using distributions of grammatical
features. In Proceedings of the 9th Conference of the Eu-
ropean Chapter of ACL, pages 45-52, Bergen, Norway.

Building Thematic Lexical Resources
by Bootstrapping and Machine Learning

Alberto Lavelli*, Bernardo Magnini*, Fabrizio Sebastiani'

*ITC-irst
Via Sommarive, 18 — Localita Povo
38050 Trento, Italy
{lavelli,magnini } @itc.it

stituto di Elaborazione dell’Informazione
Consiglio Nazionale delle Ricerche
56124 Pisa, Italy
fabrizio @iei.pi.cnr.it

Abstract

We discuss work in progress in the semi-automatic generation of thematic lexicons by means of term categorization, a novel task
employing techniques from information retrieval (IR) and machine learning (ML). Specifically, we view the generation of such lexicons
as an iterative process of learning previously unknown associations between terms and themes (i.e. disciplines, or fields of activity).
The process is iterative, in that it generates, for each ¢; in a set C = {c1, ..., cn } of themes, a sequence Li C Ly C ... C LE of
lexicons, bootstrapping from an initial lexicon L{, and a set of text corpora © = {6y, ..., #,_1} given as input. The method is inspired
by text categorization, the discipline concerned with labelling natural language texts with labels from a predefined set of themes, or
categories. However, while text categorization deals with documents represented as vectors in a space of terms, we formulate the task
of term categorization as one in which terms are (dually) represented as vectors in a space of documents, and in which terms (instead of
documents) are labelled with themes. As a learning device, we adopt boosting, since (a) it has demonstrated state-of-the-art effectiveness
in a variety of text categorization applications, and (b) it naturally allows for a form of “data cleaning”, thereby making the process of
generating a thematic lexicon an iteration of generate-and-test steps.

1. Introduction of thematic lexical resources is thus of the utmost impor-

The generation of thematic lexicons (i.e. lexicons con- tance.
sisting of specialized terms, all pertaining to a given theme Unfortunately, the generation of thematic lexicons is
or discipline) is a task of increased applicative interest, expensive, since it requires the intervention of specialized
since such lexicons are of the utmost importance in a va- manpower, i.e. lexicographers and domain experts work-
riety of tasks pertaining to natural language processing and ing together. Besides being expensive, such a manual ap-
information access. proach does not allow for fast response to rapidly emerging
One of these tasks is to support text search and other in- needs. In an era of frantic technical progress new disci-
formation retrieval applications in the context of thematic, plines emerge quickly, while others disappear as quickly;
“vertical” portals (aka vortals)'. Vortals are a recent phe- and in an era of evolving consumer needs, the same goes

nomenon in the World Wide Web, and have grown out of ~ for new market niches. There is thus a need of cheaper
the users’ needs for directories, services and information ~ and faster methods for answering application needs than
resources that are both rich in information and specific to ~ manual lexicon generation. Also, as noted in (Riloff and
their interests. This has led to Web sites that specialize in ~ Shepherd, 1999), the manual approach is prone to errors of

aggregating market-specific, “vertical” content and infor- omission, in that a lexicographer may easily overlook in-
mation. Actually, the evolution from the generic portals of ~ frequent, non-obvious terms that are nonetheless important
the previous generation (such as Yahoo!) to today’s verti- for many tasks.

cal portals is just natural, and is no different from the evo- Many applications also require that the lexicons be not

lution that the publishing industry has witnessed decades oy thematic, but also tailored to the specific data tackled
ago with the creation of specialized magazines, targeting i the application. For instance, in query expansion (auto-
specific categories of readers with specific needs. To read matic (Peat and Willett, 1991) or interactive (Sebastiani,

about the newest developments in ski construction technol- 1999)) for information retrieval systems addressing the-
ogy, skiers read specialty magazines about skiing, and not matic document collections, terms synonymous or quasi-
generic newspapers, and skiing magazines is also where ad- synonymous to the query terms are added to the query in
vertisers striving to target skiers place their ads in order to order to retrieve more documents. In this case, the added
be the most effective. Vertical portals are the future of com- (erms should occur in the document collection, otherwise
merce and information seeking on the Internet, and support- they are useless, and the relevant terms which occur in the

ing sophisticated information access capabilities by means gocument collection should potentially be added. That is,
for this application the ideal thematic lexicon should con-
'Seee.g. http://www.verticalportals.com/ tain all and only the technical terms present in the document

53

collection under consideration, and should thus be gener-
ated directly from this latter.

1.1.

In this paper we propose a methodology for the semi-
automatic generation of thematic lexicons from a corpus
of texts. This methodology relies on ferm categorization,
a novel task that employs a combination of techniques
from information retrieval (IR) and machine learning (ML).
Specifically, we view the generation of such lexicons as an
iterative process of learning previously unknown associa-
tions between terms and themes (i.e. disciplines, or fields
of activity)’>. The process is iterative, in that it gener-
ates, for each ¢; in a set C = {cy,..., ¢y} of predefined
themes, a sequence Lf) C Lﬁ C ... C L; of lexicons,
bootstrapping from a lexicon L{ given as input. Associa-
tions between terms and themes are learnt from a sequence
© = {6, ...,0,_1} of sets of documents (hereafter called
corpora); this allows to enlarge the lexicon as new corpora
from which to learn become available. At iteration ¥, the
process builds the lexicons Ly 1 = {Lj,y,..., Ly} for
all the themes C' = {cy, ..., ¢, } in parallel, from the same
corpus 6. The only requirement on 6, is that at least some
of the terms in each of the lexicons in L, = {L, ..., L}
should occur in it (if none among the terms in a lexicon L;
occurs in), then no new term is added to L% in iteration
Y)-

The method we propose is inspired by text categoriza-
tion, the activity of automatically building, by means of
machine learning techniques, automatic text classifiers, i.e.
programs capable of labelling natural language texts with
(zero, one, or several) thematic categories from a prede-
fined set C = {c1,...,cm} (Sebastiani, 2002). The con-
struction of an automatic text classifier requires the avail-
ability of a corpus ¢ = {(d1,C4),...,(dn,Cp)} of pre-
classified documents, where a pair (d;, C;) indicates that
document d; belongs to all and only the categories in
C; € C. A general inductive process (called the learner)
automatically builds a classifier for the set C' by learn-
ing the characteristics of C' from a training set Tr
{{d1,Ch),...,{dg,C4)} C 1 of documents. Once a classi-
fier has been built, its effectiveness (i.e. its capability to take
the right categorization decisions) may be tested by apply-
ing it to the test set Te = {(dg41,Cg41), ..., (dn,Cp)} =
1»—T'r and checking the degree of correspondence between
the decisions of the automatic classifier and those encoded
in the corpus.

While the purpose of text categorization is that of classi-
fying documents represented as vectors in a space of terms,
the purpose of term categorization, as we formulate it, is
(dually) that of classifying terms represented as vectors in
a space of documents. In this task terms are thus items
that may belong, and must thus be assigned, to (zero, one,

Our proposal

2We want to point out that our use of the word “term” is some-
how different from the one often used in natural language pro-
cessing and terminology extraction (Kageura and Umino, 1996),
where it often denotes a sequence of lexical units expressing a
concept of the domain of interest. Here we use this word in a neu-
tral sense, i.e. without making any commitment as to its consisting
of a single word or a sequence of words.

54

or several) themes belonging to a predefined set. In other
words, starting from a set F; of preclassified terms, a new
set of terms F; 41 is classified, and the terms in F; 41 Which
are deemed to belong to ¢; are added to L to yield L; ;.
The set I}, is composed of lexicon L, acting as the set of
“positive examples”, plus a set of terms known not to be-
long to ¢;, acting as the set of “negative examples”.

For input to the learning device and to the term classi-
fiers that this will eventually build, we use “bag of docu-
ments” representations for terms (Salton and McGill, 1983,
pages 78-81), dual to the “bag of terms” representations
commonly used in text categorization.

As the learning device we adopt
ADABOOST.MHXZ® (Sebastiani et al., 2000), a more
efficient variant of the ADABOOST.MH?® algorithm pro-
posed in (Schapire and Singer, 2000). Both algorithms are
an implementation of boosting, a method for supervised
learning which has successfully been applied to many
different domains and which has proven one of the best
performers in text categorization applications so far.
Boosting is based on the idea of relying on the collective
judgment of a committee of classifiers that are trained
sequentially; in training the k-th classifier special emphasis
is placed on the correct categorization of the training
examples which have proven harder for (i.e. have been
misclassified more frequently by) the previously trained
classifiers.

We have chosen a boosting approach not only because
of its state-of-the-art effectiveness, but also because it natu-
rally allows for a form of “data cleaning”, which is useful in
case a lexicographer wants to check the results and edit the
newly generated lexicon. That is, in our term categorization
context it allows the lexicographer to easily inspect the clas-
sified terms for possible misclassifications, since at each it-
eration y the algorithm, apart from generating the new lex-
icon L}, ranks the terms in L} in terms of their “hard-
ness”, i.e. how successful have been the generated classi-
fiers at correctly recognizing their label. Since the highest
ranked terms are the ones with the highest probability of
having been misclassified in the previous iteration (Abney
et al., 1999), the lexicographer can examine this list start-
ing from the top and stopping where desired, removing the
misclassified examples. The process of generating a the-
matic lexicon then becomes an iteration of generate-and-
test steps.

This paper is organized as follows. In Section 2. we
describe how we represent terms by means of a “bag of
documents” representation.. For reasons of space we do
not describe ADABOOST.MHX %, the boosting algorithm
we employ for term classification; see the extended paper
for details (Lavelli et al., 2002). Section 3.1. discusses how
to combine the indexing tools introduced in Section 2. with
the boosting algorithm, and describes the role of the lex-
icographer in the iterative generate-and-test cycle. Sec-
tion 3.2. describes the results of our preliminary experi-
ments. In Section 4. we review related work on the auto-
mated generation of lexical resources, and spell out the dif-
ferences between our and existing approaches. Section 5.
concludes, pointing to avenues for improvement.

2. Representing terms in a space of
documents
2.1.

In text categorization applications, the process of build-
ing internal representations of texts is called text indexing.
In text indexing, a document d; is usually represented as a

Text indexing

vector of term weights d; = (wij,...,wrj), where r is the
cardinality of the dictionary and 0 < wy; < 1 represents,
loosely speaking, the contribution of ¢, to the specification
of the semantics of d;. Usually, the dictionary is equated
with the set of ferms that occur at least once in at least «
documents of T'r (with « a predefined threshold, typically
ranging between 1 and 5).

Different approaches to text indexing may result from
different choices (i) as to what a term is and (ii) as to how
term weights should be computed. A frequent choice for (i)
is to use single words (minus stop words, which are usually
removed prior to indexing) or their stems, although some
researchers additionally consider noun phrases (Lewis,
1992) or “bigrams” (Caropreso et al., 2001). Different
“weighting” functions may be used for tackling issue (ii),
either of a probabilistic or of a statistical nature; a frequent
choice is the normalized tfidf function (see e.g. (Salton
and Buckley, 1988)), which provides the inspiration for our
“term indexing” methodology spelled out in Section 2.2..

2.2. Abstract indexing and term indexing

Text indexing may be viewed as a particular instance
of abstract indexing, a task in which abstract objects are
represented by means of abstract features, and whose un-
derlying metaphor is, by and large, that the semantics of an
object corresponds to the bag of features that “occur” in it?.
In order to illustrate abstract indexing, let us define a foken
7T to be a specific occurrence of a given feature f(7) in a
given object o(7), let T be the set of all tokens occurring in
any of a set of objects O, and let F' be the set of features
of which the tokens in 7" are instances. Let us define the
feature frequency f f(fx, 0;) of a feature f; in an object o;
as

ff(fey05) = {m €T f(T) = fu A o(T) = 0} (1)

We next define the inverted object frequency iof(f;) of a
feature f as

iof(fi) =
= log

()
0]
Hoj € O|3reT: f(1)=fr N o(T) =0}
and the weight w(fx, 0;) of feature fj in object o; as

w(fr,05) =
ff(fr,05) - iof (fx)

L (FF(Fsr05) - i0f (£.))2

3“Bag” is used here in its set-theoretic meaning, as a synonym
of multiset, i.e. a set in which the same element may occur several
times. In text indexing, adopting a “bag of words” model means
assuming that the number of times that a given word occurs in
the same document is semantically significant. “Set of words”
models, in which this number is assumed not significant, are thus
particular instances of bag of words models.

3

Wk 4

55

We may consider the w(fi, 0;) function of Equation (3) as
an abstract indexing function; that is, different instances of
this function are obtained by specifying different choices
for the set of objects O and set of features F'.

The well-known text indexing function ¢fidf, men-
tioned in Section 2.1., is obtained by equating O with the
training set of documents and F' with the dictionary; 7', the
set of occurrences of elements of F' in the elements of O,
thus becomes the set of term occurrences.

Dually, a term indexing function may be obtained by
switching the roles of F' and O, i.e. equating F' with the
training set of documents and O with the dictionary; 7, the
set of occurrences of elements of I in the elements of O, is
thus again the set of term occurrences (Schiauble and Knaus,
1992; Sheridan et al., 1997).

It is interesting to discuss the kind of intuitions that
Equations (1), (2) and (3) embody in the dual cases of text
indexing and term indexing:

e Equation (1) suggests that when a feature occurs mul-
tiple times in an object, the feature characterizes the
object to a higher degree. In text indexing, this indi-
cates that the more often a term occurs in a document,
the more it is representative of its content. In term in-
dexing, this indicates that the more often a term occurs
in a document, the more the document is representa-
tive of the content of the term.

Equation (2) suggests that the fewer the objects a fea-
ture occurs in, the more representative it is of the con-
tent of the objects in which it occurs. In text indexing,
this means that terms that occur in too many docu-
ments are not very useful for identifying the content
of documents. In term indexing, this means that the
more terms a document contains (i.e. the longer it is),
the less useful it is for characterizing the semantics of
a term it contains.

The intuition (“length normalization™) that supports
Equation (3) is that weights computed by means of
ff(fx,05) - iof (fi) need to be normalized in order
to prevent “longer objects” (i.e. ones in which many
features occur) to emerge (e.g. to be scored higher in
document-document similarity computations) just be-
cause of their length and not because of their content.
In text indexing, this means that longer documents
need to be deemphasized. In term indexing, this means
instead that terms that occur in many documents need
to be deemphasized*.

It is also interesting to note that any program or data struc-
ture that implements ¢ fidf for text indexing may be used
straightaway, with no modification, for term indexing: one
needs only to feed the program with the terms in place of
the documents and viceversa.

“Incidentally, it is interesting to note that in switching from
text indexing to term indexing, Equations (2) and (3) switch their
roles: the intuition that terms occurring in many documents should
be deemphasized is implemented in Equation (2) in text index-
ing and Equation (3) in term indexing, while the intuition that
longer documents need to be deemphasized is implemented in
Equation (3) in text indexing and Equation (2) in term indexing.

3. Generating thematic lexicons by
bootstrapping and learning

3.1.

We are now ready to describe the overall process that
we will follow for the generation of thematic lexicons. The
process is iterative: we here describe the y-th iteration. We
start from a set of thematic lexicons L, = {L,,...,L}'},
one for each theme in C' = {cy,..., ¢y}, and from a cor-
pus ¢,. We index the terms that occur in 6, by means of
the term indexing technique described in Section 2.2.; this
yields, for each term tj, a representation consisting of a
vector of weighted documents, the length of the vector be-
ing r = (6,

By using L, = {L,,..., L]} as a training set, we then
generate mn classifiers @, = {®;, ..., ®7"} by applying the
ADABOOST.MH®® algorithm. While generating the clas-
sifiers, ADABOOST.MHXZE also produces, for each theme
¢;, a ranking of the terms in LZ in terms of how hard it
was for the generated classifiers to classify them correctly,
which basically corresponds to their probability of being
misclassified examples. The lexicographer can then, if de-
sired, inspect L, and remove the misclassified examples,
if any (possibly rerunning, especially if these latter were a
substantial number, ADABOOST.MHX® on the “cleaned”
version of L,). At this point, the terms occurring in 6,
that ADABOOST.MHX® has classified under ¢; are added
(possibly, after being checked by the lexicographer) to L?,
yielding L; 41 Iteration y + 1 can then take place, and the
process is repeated again.

Note that an alternative approach is to involve the lex-
icographer only after the last iteration, and not after each
iteration. For instance, Riloff and Shepherd (Riloff and
Shepherd, 1999) perform several iterations, at each of
which they add to the training set (without human inter-
vention) the new items that have been attributed to the cate-
gory with the highest confidence. After the last iteration,
a lexicographer inspects the list of added terms and de-
cides which one to remove, if any. This latter approach
has the advantage of requiring the intervention of the lexi-
cographer only once, but has the disadvantage that spurious
terms added to lexicon at early iterations can cause, if not
promptly removed, new spurious ones to be added in the
next iterations, thereby generating a domino effect.

Operational methodology

3.2. Experimental methodology

The process we have described in Section 3.1. is the one
that we would apply in an operational setting. In an experi-
mental setting, instead, we are also interested in evaluating
the effectiveness of our approach on a benchmark. The dif-
ference with the process outlined in Section 3.1. is that at
the beginning of the process the lexicon L, is split into a
training set and a test set; the classifiers are learnt from the
training set, and are then tested on the test set by check-
ing how good they are at extracting the terms in the test set
from the corpus 6,. Of course, in order to guarantee a fair
evaluation, the terms that never occur in ¢, are removed
from the test set, since there is no way that the algorithm
(or any other algorithm that extracts terms from a corpus)
could possibly guess them.

56

Category expert judgments
classifier | YES || TP, FP;
judgments | NO || F'N; TN;

Table 1: The contingency table for category c;. Here, F'F;
(false positives wrt c;) is the number of test terms incor-
rectly classified under c¢;; T'N; (true negatives wrt c;), T P;
(true positives wrt c;) and F'N; (false negatives wrt c;) are
defined accordingly.

We will comply with standard text categorization prac-
tice in evaluating term categorization effectiveness by a
combination of precision (), the percentage of positive
categorization decisions that turn out to be correct, and re-
call (p), the percentage of positive, correct categorization
decisions that are actually taken. Since most classifiers can
be tuned to emphasize one at the expense of the other, only
combinations of the two are usually considered significant.
Following common practice, as a measure combining the
two we will adopt their harmonic mean, i.e. F; = %.
Effectiveness will be computed with reference to the con-
tingency table illustrated in Table 1. When effectiveness is
computed for several categories, the results for individual
categories must be averaged in some way; we will do this
both by microaveraging (“categories count proportionally
to the number of their positive training examples”), i.e.

ﬂ_u — TP _ Zi:l TP7
TP+FP (TP + FP)
. TP S TP

TP+FN S." (TP, + FN;)

and by macroaveraging (“all categories count the same”),
ie.

Icl .
=171

m

E:lepi

m

M M _

p
Here, “u” and “M” indicate microaveraging and macroav-
eraging, respectively, while the other symbols are as de-
fined in Table 1. Microaveraging rewards classifiers that be-
have well on frequent categories (i.e. categories with many
positive test examples), while classifiers that perform well
also on infrequent categories are emphasized by macroav-
eraging. Whether one or the other should be adopted obvi-
ously depends on the application.

3.3. Our experimental setting

We now describe the resources we have used in our ex-
periments.

3.3.1. The corpora

As the corpora © = {01, ..., 0, }, we have used various
subsets of the Reuters Corpus Volume | (RCVI), a cor-
pus of documents recently made available by Reuters® for
text categorization experimentation and consisting of about
810,000 news stories. Note that, although the texts of RCVI

Shttp://www.reuters.com/

are labelled by thematic categories, we have not made use
of such labels (not it would have made much sense to use
them, given that these categories are different from the ones
we are working with); the reasons we have chosen this cor-
pus instead of other corpora of unlabelled texts are inessen-
tial.

3.3.2. The lexicons

As the thematic lexicons we have used subsets of an
extension of WordNet, that we now describe.

WordNet (Fellbaum, 1998) is a large, widely available,
non-thematic, monolingual, machine-readable dictionary in
which sets of synonymous words are grouped into synonym
sets (or synsets) organized into a directed acyclic graph. In
this work, we will always refer to WordNet version 1.6.

In WordNet only a few synsets are labelled with the-
matic categories, mainly contained in the glosses. This
limitation is overcome in WordNetDomains, an extension
of WordNet described in (Magnini and Cavaglia, 2000)
in which each synset has been labelled with one or more
from a set of 164 thematic categories, called domains®. The
164 domains of WordNetDomains are a subset of the cat-
egories belonging to the classification scheme of Dewey
Decimal Classification (DDC (Mai Chan et al., 1996)); ex-
ample domains are ZOOLOGY, SPORT, and BASKETBALL.

These 164 domains have been chosen from the much
larger set of DDC categories since they are the most pop-
ular labels used in dictionaries for sense discrimination
purposes. Domains have long been used in lexicography
(where they are sometimes called subject field codes (Proc-
ter, 1978)) to mark technical usages of words. Although
they convey useful information for sense discrimination,
they typically tag only a small portion of a dictionary.
WordNetDomains extends instead the coverage of domain
labels to an entire, existing lexical database, i.e. WordNet.

A domain may include synsets of different syntactic
categories: for instance, the MEDICINE domain groups
together senses from Nouns, such as doctor#1 (the
first among several senses of the word “doctor”) and
hospital#1, and from Verbs, such as operate#7. A
domain may include senses from different WordNet sub-
hierarchies. For example, SPORT contains senses such
as athlete#1, which descends from life_form#1;
game_equipment#1, from physical_object#1;
sport#1, from act#2; and playing_field#1, from
location#1. Note that domains may group senses of
the same word into thematic clusters, with the side effect of
reducing word polysemy in WordNet.

The annotation methodology used in (Magnini and
Cavaglia, 2000) for creating WordNetDomains was
mainly manual, and based on lexico-semantic criteria
which take advantage from the already existing concep-
tual relations in WordNet. First, a small number of
high level synsets were manually annotated with their cor-
rect domains. Then, an automatic procedure exploiting
some of the WordNet relations (i.e. hyponymy, troponymy,

SFrom the point of view of our term categorization task, the
fact that more than one domain may be attached to the same synset
means that ours is a multi-label categorization task (Sebastiani,
2002, Section 2.2).

57

meronymy, antonymy and pertain-to) was used in order
to extend these assignments to all the synsets reachable
through inheritance. For example, this procedure automat-
ically marked the synset {beak, bill, neb, nib}
with the code ZOOLOGY, starting from the fact that the
synset {bird} was itself tagged with ZOOLOGY, and
following a “part-of” relation (one of the meronymic re-
lations present in WordNet). In some cases the inher-
itance procedure had to be manually blocked, inserting
an “exception” in order to prevent a wrong propagation.
For instance, if blocking had not been used, the term
barber_chair#1l, being a “part-of” barbershop#1,
which is annotated with COMMERCE, would have inherited
COMMERCE, which is unsuitable.

For the purpose of the experiments reported in this pa-
per, we have used a simplified variant of WordNetDo-
mains, called WordNetDomains(42). This was obtained
from WordNetDomains by considering only 42 highly rel-
evant labels, and tagging by a given domain c; also the
synsets that, in WordNetDomains, were tagged by the do-
mains immediately related to ¢; in a hierarchical sense (that
is, the parent domain of ¢; and all the children domains
of ¢;). For instance, the domain SPORT is retained into
WordNetDomains(42), and labels both the synsets that
it originally labelled in WordNetDomains, plus the ones
that in WordNetDomains were labelled under its children
categories (e.g. VOLLEY, BASKETBALL, ...) or under its
parent category (FREE-TIME). Since FREE-TIME has an-
other child (PLAY) which is also retained in WordNetDo-
mains(42), the synsets originally labelled by FREE-TIME
will now be labelled also by PLAY, and will thus have mul-
tiple labels. However, that a synset may have multiple la-
bels is true in general, i.e. these labels need not have any
particular relation in the hierarchy.

This restriction to the 42 most significant categories al-
lows to obtain a good compromise between the conflicting
needs of avoiding data sparseness and preventing the loss of
relevant semantic information. These 42 categories belong
to 5 groups, where the categories in a given group are all the
children of the same WordNetDomains category, which is
however not retained into WordNetDomains(42); for ex-
ample, one group is formed by SPORT and PLAY, which
are both children of FREE-TIME (not included into Word-
NetDomains(42)).

3.3.3. The experiment

We have run several experiments for different choices
of the subset of RCVI chosen as corpus of text 6, and for
different choices of the subsets of WordNetDomains(42)
chosen as training set T'r, and test set T'e,. We first de-
scribe how we have run a generic experiment, and then
go on to describe the sequence of different experiments we
have run. For the moment being we have run experiments
consisting of one iteration only of the bootstrapping pro-
cess. In future experiments we also plan to allow for mul-
tiple iterations, in which the system learns new terms also
from previously learnt ones.

In our experiments we considered only nouns, thereby
discarding words tagged by other syntactic categories. We
plan to also consider words other than nouns in future ex-

periments.

For each experiment, we discarded all documents that
did not contain any term from the training lexicon T'r,,
since they do not contribute in representing the meaning
of training documents, and thus could not possibly be of
any help in building the classifiers. Next, we discarded
all “empty” training terms, i.e. training terms that were not
contained in any document of ¢, since they could not pos-
sibly contribute to learning the classifiers. Also empty test
terms were discarded, since no algorithm that extracts terms
from corpora could possibly extract them. Quite obviously,
we also do not use the terms that occur in 6, but belong
neither to the training set T'r,, nor to the test set T'e,,.

We then lemmatized all remaining documents and anno-
tated the lemmas with part-of-speech tags, both by means
of the TREETAGGER package (Schmid, 1994); we also
used the WordNet morphological analyzer in order to re-
solve ambiguities and lemmatization mistakes. After tag-
ging, we applied a filter in order to identify the words actu-
ally contained in WordNet, including multiwords, and then
we discarded all terms but nouns. The final set of terms
that resulted from this process was randomly divided into a
training set T'r, (consisting of two thirds of the entire set)
and a test set T'e,, (one third). As negative training exam-
ples of category ¢; we chose all the training terms that are
not positive examples of ¢;.

Note that in this entire process we have not considered
the grouping of terms into synsets; that is, the lexical units
of interest in our application are the terms, and not the
synsets. The reason is that RCVI is not a sense-tagged cor-
pus, and for any term occurrence 7 it is not clear to which
synset 7 refers to.

3.3.4. The results

Our experimental results on this task are still very pre-
liminary, and are reported in Table 2.

Instead of tackling the entire RCVI corpus head on, for
the moment being we have run only small experiments on
limited subsets of it (up to 8% of its total size), with the
purpose of getting a feel for which are the dimensions of
the problem that need investigation; for the same reason,
for the moment being we have used only a small number
of boosting iterations (500). In Table 2, the first three lines
concern experiments on the news stories produced on a sin-
gle day (08.11.1996); the next three lines use the news sto-
ries produced in a single week (08.11.1996 to 14.11.1996),
and the last six lines use the news stories produced in an en-
tire month (01.11.1996 to 30.11.1996). Only training and
test terms occurring in at least * documents were consid-
ered; the experiments reported in the same block of lines
differ for the choice of the x parameter.

There are two main conclusions we can draw from these
still preliminary experiments. The first conclusion is that
F values are still low, at least if compared to the F} val-
ues that have been obtained in fext categorization research
on the same corpus (Ault and Yang, 2001); a lot of work is
still needed in tuning this approach in order to obtain sig-
nificant categorization performance. The low values of F}
are mostly the result of low recall values, while precision
tends to be much higher, often well above the 70% mark.

58

Note that the low absolute performance might also be ex-
plained, at least partially, with the imperfect quality of the
WordNetDomains(42) resource, which was generated by
a combination of automatic and manual procedures and did
no undergo extensive checking afterwards.

The second conclusion is that results show a constant
and definite improvement when higher values of = are used,
despite the fact that higher levels of = mean a higher num-
ber of labels per term, i.e. more polysemy. This is not
surprising, since when a term occurs e.g. in one document
only, this means that only one entry in the vector that rep-
resents the term is non-null (i.e. significant). This is in
sharp contrast with text categorization, in which the number
of non-null entries in the vector representing a document
equals the number of distinct terms contained in the doc-
ument, and is usually at least in the hundreds. This alone
might suffice to justify the difference in performance be-
tween term categorization and text categorization.

However, one reason the actual F; scores are low is that
this is a hard task, and the evaluation standards we have
adopted are considerably tough. This is discussed in the
next paragraph.

No baseline? Note that we present no baseline, either
published or new, against which to compare our results, for
the simple fact that term categorization as we conceive it
here is a novel task, and there are as yet no previous results
or known approaches to the problem to compare with.
Only (Riloff and Shepherd, 1999; Roark and Charniak,
1998) have approached the problem of extending an ex-
isting thematic lexicon with new terms drawn from a text
corpus. However, there are key differences between their
evaluation methodology and ours, which makes compar-
isons difficult and unreliable. First, their “training” terms
have not been chosen randomly our of a thematic dictio-
nary, but have been carefully selected through a manual
process by the authors themselves. For instance, (Riloff
and Shepherd, 1999) choose words that are “frequent in
the domain” and that are “(relatively) unambiguous”. Of
course, their approach makes the task easier, since it allows
the “best” terms to be selected for training. Second, (Riloff
and Shepherd, 1999; Roark and Charniak, 1998) extract
the terms from texts that are known to be about the theme,
which makes the task easier than ours; conversely, by us-
ing generic texts, we avoid the costly process of labelling
the documents by thematic categories, and we are able
to generate thematic lexicons for multiple themes at once
from the same unlabelled text corpus. Third, their evalu-
ation methodology is manual, i.e. subjective, in the sense
that the authors themselves manually checked the results
of their experiments, judging, for each returned term, how
reasonable the inclusion of the term in the lexicon is’. This
sharply contrasts with our evaluation methodology, which
is completely automatic (since we measure the proficiency

"For instance, (Riloff and Shepherd, 1999) judged a word clas-
sified into a category correct also if they judged that “the word
refers to a part of a member of the category”, thereby judging
the words cartridge and clips to belong to the domain
WEAPONS. This looks to us a loose notion of category mamber-
ship, and anyway points to the pitfalls of “subjective” evaluation
methodologies.

of # of training | # of test # of minimum Precision Recall F1 Precision Recall F
docs terms terms labels # of docs micro micro micro macro macro macro
perterm | per term

2,689 4,424 2,212 1.96 1 0.542029 | 0.043408 | 0.080378 | 0.584540 | 0.038108 | 0.071551
2,689 1,685 842 2.36 5 0.512903 | 0.079580 | 0.137782 | 0.487520 | 0.078677 | 0.135489
2,689 1,060 530 2.55 10 0.517544 | 0.086131 | 0.147685 | 0.560876 | 0.084176 | 0.146383
16,003 7,975 3,987 1.76 1 0.720165 | 0.049631 | 0.092863 | 0.701141 | 0.038971 | 0.073837
16,003 4,132 2,066 2.02 5 0.733491 | 0.075121 | 0.136284 | 0.738505 | 0.065472 | 0.120281
16,003 2,970 1,485 2.15 10 0.740260 | 0.091405 | 0.162718 | 0.758044 | 0.078162 | 0.141712
67,953 11,313 5,477 1.66 1 0.704251 | 0.043090 | 0.081211 | 0.692819 | 0.034241 | 0.065256
67,953 6,829 3,414 1.83 5 0.666667 | 0.040816 | 0.076923 | 0.728300 | 0.050903 | 0.095155
67,953 5,335 2,668 1.92 10 0.712406 | 0.076830 | 0.138701 | 0.706678 | 0.056913 | 0.105342
67,953 4,521 2,261 1.99 15 0.742574 | 0.086445 | 0.154863 | 0.731530 | 0.064038 | 0.117766
67,953 3,317 1,659 2.10 30 0.745455 | 0.098439 | 0.173913 | 0.785371 | 0.075573 | 0.137878
67,953 2,330 1,166 2.25 60 0.760417 | 0.117789 | 0.203982 | 0.755136 | 0.086809 | 0.155718

Table 2: Preliminary results obtained on the automated lexicon generation task (see Section 3.3. for details).

of our system at discovering terms about the theme, by the
capability of the system to replicate the lexicon genera-
tion work of a lexicographer), can be replicated by other
researchers, and is unaffected by possible experimenter’s
bias. Fourth, checking one’s results for “reasonableness”,
as (Riloff and Shepherd, 1999; Roark and Charniak, 1998)
do, means that one can only (“subjectively”’) measure pre-
cision (i.e. whether the terms spotted by the algorithm do
in fact belong to the theme), but not recall (i.e. whether
the terms belonging to the theme have actually been spot-
ted by the algorithm). Again, this is in sharp contrast with
our methodology, which (“objectively”’) measures preci-
sion, recall, and a combination of them. Also, note that in
terms of precision, i.e. the measure that (Riloff and Shep-
herd, 1999; Roark and Charniak, 1998) subjectively com-
pute, our algorithm fares pretty well, mostly scoring higher
than 70% even in these very preliminary experiments.

4. Related work

4.1. Automated generation of lexical resources

The automated generation of lexicons from text corpora
has a long history, dating back at the very least to the sem-
inal works of Lesk, Salton and Sparck Jones (Lesk, 1969;
Salton, 1971; Sparck Jones, 1971), and has been the subject
of active research throughout the last 30 years, both within
the information retrieval community (Crouch and Yang,
1992; Jing and Croft, 1994; Qiu and Frei, 1993; Ruge,
1992; Schiitze and Pedersen, 1997) and the NLP commu-
nity (Grefenstette, 1994; Hirschman et al., 1988; Riloff
and Shepherd, 1999; Roark and Charniak, 1998; Tokunaga
et al.,, 1995). Most of the lexicons built by these works
come in the form of cluster-based thesauri, i.e. networks
of groups of synonymous or quasi-synonymous words, in
which edges connecting the nodes represent semantic con-
tiguity. Most of these approaches follow the basic pattern
of (i) measuring the degree of pairwise similarity between
the words extracted from a corpus of texts, and (ii) clus-
tering these words based on the computed similarity val-
ues. When the lexical resources being built are of a the-
matic nature, the thematic nature of a word is usually es-
tablished by checking whether its frequency within the-

59

matic documents is higher than its frequency in generic
documents (Chen et al., 1996; Riloff and Shepherd, 1999;
Schatz et al., 1996; Sebastiani, 1999) (this property is often
called salience (Yarowsky, 1992)).

In the approach described above, the key decision
is how to tackle step (i), and there are two main ap-
proaches to this. In the first approach the similarity between
two words is usually computed in terms of their degree
of co-occurrence and co-absence within the same docu-
ment (Crouch, 1990; Crouch and Yang, 1992; Qiu and Frei,
1993; Schiuble and Knaus, 1992; Sheridan and Ballerini,
1996; Sheridan et al., 1997); variants of this approach are
obtained by restricting the context of co-occurrence from
the document to the paragraph, or to the sentence (Schiitze,
1992; Schiitze and Pedersen, 1997), or to smaller linguis-
tic units (Riloff and Shepherd, 1999; Roark and Char-
niak, 1998). In the second approach this similarity is com-
puted from head-modifier structures, by relying on the as-
sumption that frequent modifiers of the same word are se-
mantically similar (Grefenstette, 1992; Ruge, 1992; Strza-
lkowski, 1995). The latter approach can also deal with indi-
rect co-occurrence®, but the former is conceptually simpler,
since it does not even need any parsing step.

This literature (apart from (Riloff and Shepherd, 1999;
Roark and Charniak, 1998), which are discussed below) has
thus taken an unsupervised learning approach, which can be
summarized in the recipe “from a set of documents about
theme ¢ and a set of generic documents (i.e. mostly not
about t), extract the words that mostly characterize ¢”. Our
work is different, in that its underlying supervised learn-
ing approach requires a starting kernel of terms about ¢, but
does not require that the corpus of documents from which

8We say that words w; and weo co-occur directly when they
both occur in the same document (or other linguistic context),
while we say that they co-occur indirectly when, for some other
word w3, wy and wz co-occur directly and w2 and w3 co-occur di-
rectly. Perfect synonymy is not revealed by direct co-occurrence,
since users tend to consistently use either one or the other syn-
onym but not both, while it is obviously revealed by indirect co-
occurrence. However, this latter also tends to reveal many more
“spurious” associations than direct co-occurrence.

the terms are extracted be labelled. This makes our super-
vised technique particularly suitable for extending a previ-
ously existing thematic lexical resource, while the previ-
ously known unsupervised techniques tend to be more use-
ful for generating one from scratch. This suggests an in-
teresting methodology of (i) generating a thematic lexical
resource by some unsupervised technique, and then (ii) ex-
tending it by our supervised technique. An intermediate ap-
proach between these two is the one adopted in (Riloff and
Shepherd, 1999; Roark and Charniak, 1998), which also re-
quires a starting kernel of terms about ¢, but also requires a
set of documents about theme ¢ from which the new terms
are extracted.

As anyone involved in applications of supervised ma-
chine learning knows, labelled resources are often a bottle-
neck for learning algorithms, since labelling items by hand
is expensive. Concerning this, note that our technique is ad-
vantageous, since it requires an initial set of labelled terms
only in the first bootstrapping iteration. Once a lexical re-
source has been extended with new terms, extending it fur-
ther only requires a new unlabelled corpus of documents,
but no other labelled resource. This is different from the
other techniques described earlier, which require, for ex-
tending a lexical resource that has just been built by means
of them, a new labelled corpus of documents.

A work which is closer in spirit to ours than the above-
mentioned ones is (Tokunaga et al., 1997), since it deals
with using previously classified terms as training examples
in order to classify new terms. This work exploits a naive
Bayesian model for classification in conjunction with an-
other learning method, chosen among nearest neighbour,
“category-based” (by which the authors basically mean a
Rocchio method — see e.g. (Sebastiani, 2002, Section 6.7))
and “cluster-based” (which does not use category labels of
training examples). However, these latter learning meth-
ods and (especially) the nature of their integration with the
naive Bayesian model are not specified in mathematical de-
tail, which does not allow us to make a precise compari-
son between the model of (Tokunaga et al., 1997) and ours.
Anyway, our model is more elegant, in that it just assumes
a single learning method (for which we have chosen boost-
ing, although we might have chosen any other supervised
learning method), and in that it replaces the ad-hoc notion
of “co-occurrence” with a theoretically sounder “dual” the-
ory of text indexing, which allows one, among other things,
to bring to bear any kind of intuitions on term weighting,
or any kind of text indexing theory, that are known from
information retrieval.

4.2. Boosting

Boosting has been applied to several learning tasks
related to text analysis, including POS-tagging and PP-
attachment (Abney et al., 1999), clause splitting (Carreras
and Marquez, 2001b), word segmentation (Shinnou, 2001),
word sense disambiguation (Escudero et al., 2000), text
categorization (Schapire and Singer, 2000; Schapire et al.,
1998; Sebastiani et al., 2000; Taira and Haruno, 2001),
e-mail filtering (Carreras and Marquez, 2001a), document
routing (Iyer et al., 2000; Kim et al., 2000), and term ex-
traction (Vivaldi et al., 2001). Among these works, the one

60

somehow closest in spirit to ours is (Vivaldi et al., 2001),
since it is concerned with extracting medical terms from a
corpus of texts. A key difference with our work is that the
features by which candidate terms are represented in (Vi-
valdi et al., 2001) are not simply the documents they occur
in, but the results of term extraction algorithms; therefore,
our approach is simpler and more general, since it does not
require the existence of separate term extraction algorithms.

5. Conclusion

We have reported work in progress on the semi-
automatic generation of thematic lexical resources by the
combination of (i) a dual interpretation of IR-style text in-
dexing theory and (ii) a boosting-based machine learning
approach. Our method does not require pre-existing seman-
tic knowledge, and is particularly suited to the situation in
which one or more preexisting thematic lexicons need to
be extended and no corpora of texts classified according to
the themes are available. We have run only initial experi-
ments, which suggest that the approach is viable, although
large margins of improvement exist. In order to improve the
overall performance we are planning several modifications
to our currently adopted strategy.

The first modification consists in performing feature se-
lection, as commonly used in text categorization (Sebas-
tiani, 2002, Section 5.4). This will consist in individually
scoring (by means of the information gain function) all doc-
uments in terms of how indicative they are of the occur-
rence or non-occurrence of the categories we are interested
in, and to choose only the best-scoring ones out of a poten-
tially huge corpus of available documents.

The second avenue we intend to follow consists in try-
ing alternative notions of what a document is, by consid-
ering as “documents” paragraphs, or sentences, or even
smaller, syntactically characterized units (as in (Riloff and
Shepherd, 1999; Roark and Charniak, 1998)), rather than
full-blown Reuters news stories.

A third modification consists in selecting, as the neg-
ative examples of a category c;, all the training examples
that are not positive examples of c¢; and are at the same
time positive examples of (at least one of) the siblings of
¢;. This method, known as the query-zoning method or as
the method of quasi-positive examples, is known to yield
superior performance with respect to the method we cur-
rently use (Dumais and Chen, 2000; Ng et al., 1997).

The last avenue for improvement is the optimization of
the parameters of the boosting process. The obvious param-
eter that needs to be optimized is the number of boosting it-
erations, which we have kept to a minimum in the reported
experiments. A less obvious parameter is the form of the
initial distribution on the training examples (that we have
not described here for space limitations); by changing it
with respect to the default value (the uniform distribution)
we will be able to achieve a better compromise between
precision and recall (Schapire et al., 1998), which for the
moment being have widely different values.

Acknowledgments

We thank Henri Avancini for help with the cod-
ing task and Pio Nardiello for assistance with the

ADABOOST.MHXE code. Above all, we thank Roberto
Zanoli for help with the coding task and for running the
experiments.

6. References

Steven Abney, Robert E. Schapire, and Yoram Singer.
1999. Boosting applied to tagging and PP attachment.
In Proceedings of EMNLP-99, 4th Conference on Em-
pirical Methods in Natural Language Processing, pages
38-45, College Park, MD.

Thomas Ault and Yiming Yang. 2001. kNN, Rocchio and
metrics for information filtering at TREC-10. In Pro-
ceedings of TREC-10, 10th Text Retrieval Conference,
Gaithersburg, US.

Maria Fernanda Caropreso, Stan Matwin, and Fabrizio Se-
bastiani. 2001. A learner-independent evaluation of the
usefulness of statistical phrases for automated text cate-
gorization. In Amita G. Chin, editor, Text Databases and
Document Management: Theory and Practice, pages
78-102. Idea Group Publishing, Hershey, US.

Xavier Carreras and Lluis Méarquez. 2001a. Boosting trees
for anti-spam email filtering. In Proceedings of RANLP-
01, 4th International Conference on Recent Advances in
Natural Language Processing, Tzigov Chark, BG.

Xavier Carreras and Lluis Marquez. 2001b. Boosting trees
for clause splitting. In Proceedings of CONLL-01, 5th
Conference on Computational Natural Language Learn-
ing, Toulouse, FR.

Hsinchun Chen, Chris Schuffels, and Rich Orwing. 1996.
Internet categorization and search: A machine learning
approach. Journal of Visual Communication and Im-
age Representation, Special Issue on Digital Libraries,
7(1):88-102.

Carolyn J. Crouch and Bokyung Yang. 1992. Experiments
in automated statistical thesaurus construction. In Pro-
ceedings of SIGIR-92, 15th ACM International Confer-
ence on Research and Development in Information Re-
trieval, pages 77-87, Kobenhavn, DK.

Carolyn J. Crouch. 1990. An approach to the automatic
construction of global thesauri. Information Processing
and Management, 26(5):629-640.

Susan T. Dumais and Hao Chen. 2000. Hierarchical clas-
sification of Web content. In Proceedings of SIGIR-00,
23rd ACM International Conference on Research and
Development in Information Retrieval, pages 256-263,
Athens, GR. ACM Press, New York, US.

Gerard Escudero, Lluis Marquez, and German Rigau.
2000. Boosting applied to word sense disambiguation.
In Proceedings of ECML-00, 11th European Conference
on Machine Learning, pages 129-141, Barcelona, ES.

Christiane Fellbaum, editor. 1998. WordNet: An Electronic
Lexical Database. The MIT Press, Cambridge, US.

Gregory Grefenstette. 1992. Use of syntactic context to
produce term association lists for retrieval. In Proceed-
ings of SIGIR-92, 15th ACM International Conference
on Research and Development in Information Retrieval,
pages 89-98, Kobenhavn, DK.

Gregory Grefenstette. 1994. Explorations in automatic
thesaurus discovery. Kluwer Academic Publishers, Dor-
drecht, NL.

61

Lynette Hirschman, Ralph Grishman, and Naomi Sager.
1988. Grammatically-based automatic word class for-
mation. Information Processing and Management,
11(1/2):39-57.

Raj D. Iyer, David D. Lewis, Robert E. Schapire, Yoram
Singer, and Amit Singhal. 2000. Boosting for document
routing. In Proceedings of CIKM-00, 9th ACM Interna-
tional Conference on Information and Knowledge Man-
agement, pages 70-77, McLean, US.

Yufeng Jing and W. Bruce Croft. 1994. An associa-
tion thesaurus for information retrieval. In Proceedings
of RIAO-94, 4th International Conference “Recherche
d’Information Assistee par Ordinateur”, pages 146—160,
New York, US.

Kyo Kageura and Bin Umino. 1996. Methods of automatic
term recognition: a review. Terminology, 3(2):259-289.

Yu-Hwan Kim, Shang-Yoon Hahn, and Byoung-Tak
Zhang. 2000. Text filtering by boosting naive Bayes
classifiers. In Proceedings of SIGIR-00, 23rd ACM In-
ternational Conference on Research and Development in
Information Retrieval, pages 168-75, Athens, GR.

Alberto Lavelli, Bernardo Magnini, and Fabrizio Sebas-
tiani. 2002. Building thematic lexical resources by term
categorization. Technical report, Istituto di Elaborazione
dell’Informazione, Consiglio Nazionale delle Ricerche,
Pisa, IT. Forthcoming.

Michael E. Lesk. 1969. Word-word association in doc-
ument retrieval systems. American Documentation,
20(1):27-38.

David D. Lewis. 1992. An evaluation of phrasal and clus-
tered representations on a text categorization task. In
Proceedings of SIGIR-92, 15th ACM International Con-
ference on Research and Development in Information
Retrieval, pages 37-50, Kobenhavn, DK.

Bernardo Magnini and Gabriela Cavaglia. 2000. Integrat-
ing subject field codes into WordNet. In Proceedings of
LREC-2000, 2nd International Conference on Language
Resources and Evaluation, pages 1413-1418, Athens,
GR.

Lois Mai Chan, John P. Comaromi, Joan S. Mitchell, and
Mohinder Satija. 1996. Dewey Decimal Classification:
a practical guide. OCLC Forest Press, Albany, US, 2nd
edition.

Hwee T. Ng, Wei B. Goh, and Kok L. Low. 1997. Feature
selection, perceptron learning, and a usability case study
for text categorization. In Proceedings of SIGIR-97, 20th
ACM International Conference on Research and Devel-
opment in Information Retrieval, pages 67-73, Philadel-
phia, US. ACM Press, New York, US.

Helen J. Peat and Peter Willett. 1991. The limitations of
term co-occurrence data for query expansion in docu-
ment retrieval systems. Journal of the American Society
for Information Science, 42(5):378-383.

Paul Procter, editor. 1978. The Longman Dictionary of
Contemporary English. Longman, Harlow, UK.

Yonggang Qiu and Hans-Peter Frei. 1993. Concept-based
query expansion. In Proceedings of SIGIR-93, 16th
ACM International Conference on Research and Devel-

opment in Information Retrieval, pages 160—169, Pitts-
burgh, US.

Ellen Riloff and Jessica Shepherd. 1999. A corpus-based
bootstrapping algorithm for semi-automated semantic
lexicon construction. Journal of Natural Language En-
gineering, 5(2):147-156.

Brian Roark and Eugene Charniak. 1998. Noun phrase co-
occurrence statistics for semi-automatic semantic lexi-
con construction. In Proceedings of ACL-98, 36th An-
nual Meeting of the Association for Computational Lin-
guistics, pages 1110-1116, Montreal, CA.

Gerda Ruge. 1992. Experiments on linguistically-based
terms associations. Information Processing and Man-
agement, 28(3):317-332.

Gerard Salton and Christopher Buckley. 1988. Term-
weighting approaches in automatic text retrieval. Infor-
mation Processing and Management, 24(5):513-523.

Gerard Salton and Michael J. McGill. 1983. Introduc-
tion to modern information retrieval. McGraw Hill, New
York, US.

Gerard Salton. 1971. Experiments in automatic thesaurus
construction for information retrieval. In Proceedings of
the IFIP Congress, volume TA-2, pages 43—49, Ljubl-
jana, YU.

Robert E. Schapire and Yoram Singer. 2000. BOOSTEX-
TER: a boosting-based system for text categorization.
Machine Learning, 39(2/3):135-168.

Robert E. Schapire, Yoram Singer, and Amit Singhal.
1998. Boosting and Rocchio applied to text filtering. In
Proceedings of SIGIR-98, 21st ACM International Con-
ference on Research and Development in Information
Retrieval, pages 215-223, Melbourne, AU.

Bruce R. Schatz, Eric H. Johnson, Pauline A. Cochrane,
and Hsinchun Chen. 1996. Interactive term suggestion
for users of digital libraries: Using subject thesauri and
co-occurrence lists for information retrieval. In Proceed-
ings of DL-96, lst ACM Digital Library Conference,
pages 126—133, Bethesda, US.

Peter Schéuble and Daniel Knaus. 1992. The various roles
of information structures. In Proceedings of the 16th An-
nual Conference of the Gesellschaft fiir Klassifikation,
pages 282-290, Dortmund, DE.

Helmut Schmid. 1994. Probabilistic part-of-speech tag-
ging using decision trees. In Proceedings of the Inter-
national Conference on New Methods in Language Pro-
cessing, pages 44-49, Manchester, UK.

Hinrich Schiitze and Jan O. Pedersen. 1997. A
cooccurrence-based thesaurus and two applications to in-
formation retrieval. Information Processing and Man-
agement, 33(3):307-318.

Hinrich Schiitze. 1992. Dimensions of meaning. In Pro-
ceedings of Supercomputing’92, pages 787-796, Min-
neapolis, US.

Fabrizio Sebastiani, Alessandro Sperduti, and Nicola Val-
dambrini. 2000. An improved boosting algorithm and its
application to automated text categorization. In Proceed-
ings of CIKM-00, 9th ACM International Conference on
Information and Knowledge Management, pages 78-85,
McLean, US.

62

Fabrizio Sebastiani. 1999. Automated generation of
category-specific thesauri for interactive query expan-
sion. In Proceedings of IDC-99, 9th International
Database Conference on Heterogeneous and Internet
Databases, pages 429—432, Hong Kong, CN.

Fabrizio Sebastiani. 2002. Machine learning in automated
text categorization. ACM Computing Surveys, 34(1):1-
47.

Paraic Sheridan and Jean-Paul Ballerini. 1996. Experi-
ments in multilingual information retrieval using the SPI-
DER system. In Proceedings of SIGIR-96, 19th ACM In-
ternational Conference on Research and Development in
Information Retrieval, pages 58-65, Ziirich, CH.

Paraic Sheridan, Martin Braschler, and Peter Schiuble.
1997. Cross-language information retrieval in a multi-
lingual legal domain. In Proceedings of ECDL-97, Ist
European Conference on Research and Advanced Tech-
nology for Digital Libraries, pages 253-268, Pisa, IT.

Hiroyuki Shinnou. 2001. Detection of errors in training
data by using a decision list and AdaBoost. In Proceed-
ings of the IJCAI-01 Workshop on Text Learning: Beyond
Supervision, Seattle, US.

Karen Sparck Jones. 1971. Automatic keyword classifi-
cation for information retrieval. Butterworths, London,
UK.

Tomek Strzalkowski. 1995. Natural language informa-
tion retrieval. Information Processing and Management,
31(3):397-417.

Hirotoshi Taira and Masahiko Haruno. 2001. Text cate-
gorization using transductive boosting. In Proceedings
of ECML-01, 12th European Conference on Machine
Learning, pages 454465, Freiburg, DE.

Takenobu Tokunaga, Makoto Iwayama, and Hozumi
Tanaka. 1995. Automatic thesaurus construction based
on grammatical relations. In Proceedings of IJCAI-95,
14th International Joint Conference on Artificial Intelli-
gence, pages 1308—1313, Montreal, CA.

Takenobu Tokunaga, Atsushi Fujii, Makoto Iwayama,
Naoyuki Sakurai, and Hozumi Tanaka. 1997. Extending
a thesaurus by classifying words. In Proceedings of the
ACL-EACL Workshop on Automatic Information Extrac-
tion and Building of Lexical Semantic Resources, pages
16-21, Madrid, ES.

Jordi Vivaldi, Lluis Marquez, and Horacio Rodriguez.
2001. Improving term extraction by system combination
using boosting. In Proceedings of ECML-01, 12th Euro-
pean Conference on Machine Learning, pages 515-526,
Freiburg, DE.

David Yarowsky. 1992. Word-sense disambiguation using
statistical models of Roget’s categories trained on large
corpora. In Proceedings of COLING-92, 14th Interna-
tional Conference on Computational Linguistics, pages
454-460, Nantes, FR.

Learning Grammars for Noun Phrase Extraction by Partition Search

Anja Belz

ITRI
University of Brighton
Lewes Road
Brighton BN2 4GJ, UK
Anja.Belz@itri.brighton.ac.uk

Abstract
This paper describes an application of Grammar Learning by Partition Search to noun phrase extraction, an essential task in information
extraction and many other NLP applications. Grammar Learning by Partition Search is a general method for automatically constructing
grammars for a range of parsing tasks; it constructs an optimised probabilistic context-free grammar by searching a space of nonterminal
set partitions, looking for a partition that maximises parsing performance and minimises grammar size. The idea is that the considerable
time and cost involved in building new grammars can be avoided if instead existing grammars can be automatically adapted to new
parsing tasks and new domains. This paper presents results for applying Partition Search to the tasks of (i) identifying flat NP chunks,
and (ii) identifying all NPs in a text. For NP chunking, Partition Search improves a general baseline result by 12.7%, and a method-
specific baseline by 2.2%. For NP identification, Partition Search improves the general baseline by 21.45%, and the method-specific
one by 3.48%. Even though the grammars are nonlexicalised, results for NP identification closely match the best existing results for

lexicalised approaches.

1.

Grammar Learning by Partition Search is a computa-
tional learning method that constructs probabilistic gram-
mars optimised for a given parsing task. Its main practical
application is the adaptation of grammars to new tasks, in
particular the adaptation of conventional, “deep” grammars
to the shallow parsing tasks involved in many NLP applica-
tions. The parsing tasks investigated in this paper are NP
identification and NP chunking both of which involve the
detection of NP boundaries, a task which is fundamental
to information extraction and retrieval, text summarisation,
document classification, and other applications.

The ability to automatically adapt an existing grammar
to a new parsing task saves time and expense. Furthermore,
adapting deep grammars to shallow parsing tasks has a spe-
cific advantage. Existing approaches to NP extraction are
mostly completely flat. They do not carry out any struc-
tural analysis above the level of the chunks and phrases
they are meant to detect. Using Partition Search to adapt
deep grammars for shallow parsing permits those parts of
deeper structural analysis to be retained that are useful for
the detection of more shallow components.

The remainder of this paper is organised in two main
sections. Section 2. describes Grammar Learning by Parti-
tion Search. Section 3. reports experiments and results for
NP identification and NP chunking.

Introduction

2. Learning PCFGs by Partition Search

Partition Search Grammar Learning starts from the idea
that new context-free grammars can be created from old
simply by modifying the nonterminal sets, merging and
splitting subsets of nonterminals. For example, for certain
parsing tasks it is useful to split a single verb phrase cat-
egory into verb phrases that are headed by a modal verb
and those that are not, whereas for other parsing tasks, the

63

added grammar complexity is avoidable. In another con-
text, it may not be necessary to distinguish noun phrases in
subject position from first objects and second objects, mak-
ing it possible to merge the three categories into one.

The usefulness of such split and merge operations can
be objectively measured by their effect on a grammar’s size
(number of rules and nonterminals) and performance (pars-
ing accuracy on a given task). Grammar Learning by Par-
tition Search automatically tries out different combinations
of merge and split operations and therefore can automati-
cally optimise a grammar’s size and performance.

2.1. Preliminary definitions

Definition 1 Set Partition

A partition of a nonempty set A is a subset IT of 24
such that () is not an element of II and each element of
A is in one and only one set in I1.

The partition of A where all elements are singleton sets
is called the trivial partition of A.

Definition 2 Probabilistic Context-Free Grammar

A Probabilistic Context-Free Grammar (PCFG) is a 4-
tuple (W, N, N¥ R), where W is a set of terminal
symbols, N is a set of nonterminal symbols, N*
{(s1,p(s1)),.-.(s1,p(s1))}, {s1,...s1} C Nisaset
of start symbols with associated probabilities summing
to one, and R = {(r1,p(r1)),... ("m,p(rm))} is a
set of rules with associated probabilities. Each rule r;
is of the form n — «, where n is a nonterminal, and
a is a string of terminals and nonterminals. For each
nonterminal n, the values of all p(n — ;) sum to one,

or: Ziz(nﬁai’p(nﬁai)eRp(n — ;) =1.

2.2. Generalising and Specialising PCFGs through
Nonterminal Set Operations

2.2.1. Nonterminal merging
Consider two PCFGs G and G':

G: (W7N’NS7R)7

W = {NNS, DET, NN, VBD, JJ}
N = {s, NP-SUBJ, VP, NP-OBJ}
NS = {(s, 1)}

R= { (s -> NP-SUBJ VP, 1),

(
(NP-SUBJ -> NNS, 0.5),
(NP-SUBJ —-> DET NN, 0.5),

(vP —> VBD NP-O0BJ, 1),
(NP-OBJ —-> NNS, 0.75),

(NP-OBJ —> DET JJ NNS, 0.25) }

G'=(W,N',N° R'),

W = {NNS, DET, NN, VBD, JJ}
N = {s, np, vP}
N = {(s, 1)}
R = { (s ->Np vp, 1),
(NP -> NNS, 0.625),
(NP -> DET NN, 0.25),
(vP —> VBD NP, 1),
(NP -> DET JJ NNsS, 0.125) }

Intuitively, to derive G’ from G, the two nonterminals
NP-SUBJ and NP-OBJ are merged into a single new nonter-
minal NP. This merge results in two rules from R becom-
ing identical in R’: both NP-SUBJ -> NNS and NP-OBJ
—-> NNS become NP —-> NNS. One way of determining the
probability of the new rule NP —> NNS is to sum the prob-
abilities of the old rules and renormalise by the number of
nonterminals that are being merged'. In the above example
therefore p(Np -> NNS) = (0.5 + 0.75)/2 = 0.625%.

An alternative would be to reestimate the new gram-
mar on some corpus, but this is not appropriate in the cur-
rent context: merge operations are used in a search pro-
cess (see below), and it would be expensive to reestimate
each new candidate grammar derived by a merge. It is bet-
ter to use any available training data to estimate the orig-
inal grammar’s probabilities, then the probabilities of all
derived grammars can simply be calculated as described
above without expensive corpus reestimation.

The new grammar G’ derived from an old grammar G
by merging nonterminals in G is a generalisation of G: the
language of G’, or L(G"), is a superset of the language of
G, or L(G). E.g., det jj nns vbd det jj nns isin
L(G’) but not in L(G). The set of parses assigned to a
sentence s by G’ differs from the set of parses assigned to s
by G. The probabilities of parses for s can change, and so
can the probability ranking of the parses, i.e. the most likely
parse for s under G may be different from the most likely
parse for s under G’. Finally, G’ has the same number of
rules as G or fewer.

'Reestimating the probabilities on the training corpus would
of course produce identical results.

*Renormalisation is necessary because the probabilities of all
rules expanding the same nonterminal sum to one, therefore the
probabilities of all rules expanding a new nonterminal resulting
from merging n old nonterminals will sum to n.

64

2.2.2. Nonterminal splitting

Deriving a new PCFG from an old one by splitting
nonterminals in the old PCFG is not quite the exact reverse
of deriving a new PCFG by merging nonterminals. The
difference lies in determining probabilities for new rules.
Consider the following grammars G and G:

G = (W,N,N% R),

W = {NNS, DET, NN, VBD, JJ}
N = {s, np, vP}
N*= {(s, 1)}
R= { (s —> np vp, 1),
(NP -> NNS, 0.625),
(NP -> DET NN, 0.25),
(vp —> VBD NP, 1),
(NP -> DET JJ NNS, 0.125) }

G' = (W,N',N° R'),

W = {NNs, DET, NN, VBD, JJ}
N'= {s, NP-SUBJ, VP, NP-OBJ}
NS = {(s, 1)}

R = { (s -> NP-SUBJ VP, ?),

S —-> NP-OBJ VP, 7),
NP-SUBJ -> NNS, 7),
NP-SUBJ -> DET NN, 7),
NP-SUBJ —-> DET JJ NNS, ?7)}

NP-SUBJ, 7),
VP -> VBD NP-OBJ, ?),
NP-OBJ —-> NNS, 7),
NP-OBJ -> DET NN, 7),
NP-OBJ —-> DET JJ NNS, 7)}

To derive G’ from G, the single nonterminal NP is split
into two nonterminals NP-SUBJ and NP—-OBJ. This split re-
sults in several new rules. For example, for the old rule
NP -> NNS, there now are two new rules NP-SUBJ —->
NNs and NP-OBJ —> NNS. One possibility for determining
the new rule probabilities is to redistribute the old prob-
ability mass evenly among them, i.e. p(NP —> NNS)
p(NP-SUBJ -> NNS) = p(NP-SUBJ -> NNS). However,
then there would be no benefit at all from performing such
a split: the resulting grammar would be larger, the most
likely parses remain unchanged, and for each parse p under
G that contains a nonterminal participating in a split opera-
tion, there would be at least two equally likely parses under
G'.

The new probabilities cannot be calculated directly
from G. The redistribution of the probability mass has to
be motivated from a knowledge source outside of G. One
way to proceed is to estimate the new rule probabilities
on the original corpus — provided that it contains the
information on the basis of which a split operation was
performed in extractable form. For the current example, a
corpus in which objects and subjects are annotated could
be used to estimate the probabilities of the rules in G’, and
might yield the following result (which reflects the fact that
in English, the NP in a sentence NP VP is usually a subject,
whereas the NP in a VP consisting of a verb followed by an
NP is an object):

G = (I/Vv]\/v/,]\/vS,R/)7

W = {NNS, DET, NN, VBD, JJ}
N'= {s, NP-SUBJ, VP, NP-OBJ }
N¥ = {(s, D)}

R = { (s -> NP-SUBJ VP, 1),

(

(s —> NP-OBJ VP, 0),
(NP-SUBJ -> NNS, 0.5),
(NP-SUBJ —-> DET NN, 0.5),
(NP-SUBJ —-> DET JJ NNS, 0) }
(NP-SUBJ, 0),

(NP-OBJ, 1),

(NNS, 0.75),

(DET NN, 0),

DET JJ NNs, 0.25) }

With rules of zero probability removed, G’ is identical
to the original grammar G in the example in the previous
section.

2.3. Partition Search

A PCFG together with nonterminal merge and split op-
erations defines a space of derived grammars which can be
searched for a new PCFG that optimises some given objec-
tive function. The disadvantage of this search space is that
it is infinite, and each split operation requires the reestima-
tion of rule probabilities from a training corpus, making it
computationally much more expensive than a merge opera-
tion.

However, there is a simple way to make the search space
finite, and at the same time to make split operations redun-
dant. The resulting method, Grammar Learning by Parti-
tion Search, is summarised in this section (Partition Search
is described in more detail, including formal definitions and
algorithmic details, in Belz (2002)).

2.3.1. PCFG Partitioning

An arbitrary number of merges can be represented by a
partition of the set of nonterminals. For the example pre-
sented in Section 2.2.1. above, the partition of the nonter-
minal set IV in G that corresponds to the nonterminal set
N’"in G"is { {s}, {wp-sBJ, ~Np-0OBJ}, {vP} }. The
original grammar G together with a partition of its nonter-
minal set fully specifies the new grammar G': the new rules
and probabilities, and the entire new grammar G’ can be de-
rived from the partition together with the original grammar
G. The process of obtaining a new grammar G’, given a
base grammar G and a partition of the nonterminal set [V
of G will be called PCFG Partitioning?.

2.3.2. Search space

The search space for Grammar Learning by Partition
Search can be made finite and searchable entirely by merge
operations (grammar partitions).

Making the search space finite: The number of merge
operations that can be applied to a nonterminal set is finite,

3The concept of context-free grammar partitioning in this pa-
per is not directly related to that in (Korenjak, 1969; Weng and
Stolcke, 1995), and later publications by Weng et al. In these
previous approaches, a non-probabilistic CFG’s set of rules is par-
titioned into subsets of rules. The partition is drawn along a spe-
cific nonterminal N'T', which serves as an interface through which
the subsets of rules (hence, subgrammars) can communicate after
partition (one grammar calling the other).

65

because after some finite number of merges there remains
only one nonterminal. On the other hand, the number of
split operations that can sensibly be applied to a nontermi-
nal NT has an upper bound in the number of different termi-
nals strings dominated by NT in a corpus of evidence (e.g.
the corpus the PCFG was trained on). For example, when
splitting the nonterminal NP into subjects and objects, there
would be no point in creating more new nonterminals than
the number of different subjects and objects found in the
corpus.

Given these (generous) bounds, there is a finite num-
ber of distinct grammars derivable from the original gram-
mar by different combinations of merge and split opera-
tions. This forms the basic space of candidate solutions for
Grammar Learning by Partition Search.

Making the search space searchable by grammar
partitioning only: Imposing an upper limit on the number
and kind of split operations permitted not only makes the
search space finite but also makes it possible to directly de-
rive this maximally split nonterminal set (Max Set). Once
the Max Set has been defined, the single grammar corre-
sponding to it — the maximally split Grammar (Max Gram-
mar) — can be derived and retrained on the training corpus.

The set of points in the search space corresponds to the
set of partitions of the Max Set. Search for an optimal
grammar can thus be carried out directly in the partition
space of the Max Grammar.

Structuring the search space: The finite search space
can be given hierarchical structure as shown in Figure 1
for an example of a very simple base nonterminal set {NP,
vp, PP}, and a corpus which contains three different NPs,
three different vps and two different pps.

At the top of the graph is the Max Set. The sets at the
next level down (level 7) are created by merging pairs of
nonterminals in the Max Set, and so on for subsequent lev-
els. At the bottom is the maximally merged nonterminal set
(Min Set) consisting of a single nonterminal NT. The sets
at the level immediately above it can be created by splitting
NT in different ways. The sets at level 2 are created from
those at level 1 by splitting one of their elements. The orig-
inal nonterminal set ends up somewhere in between the top
and bottom (at level 3 in this example).

While this search space definition results in a finite
search space and obviates the need for the expensive split
operation, the space will still be vast for all but trivial cor-
pora. In Section 3.3. below, alternative ways for defining
the Max Set are described that result in much smaller search
spaces.

2.3.3. Search task and evaluation function
The input to the Partition Search procedure consists of

a base grammar Gy, a base training corpus C, and a task-
specific training corpus D7. Gg and C are used to create
the Max Grammar G. The search task can then be defined
as follows:

Given the maximally split PCFG G = (W, N, N° R),

a data set of sentences D, and a set of target parses D7

for D, find a partition Il i of N that derives a grammar

G’ = (W,IIx, N5’ R'), such that | R'| is minimised,

and f(G',D, D7) is maximised, where f scores the

performance of G’ on D as compared to D7

{NP-1,NP-2,NP-3,VP-1,VP-2,VP-3,PP-1 PP-2} 8

{NP-12,NP-3,VP-1,VP-2,VP-3, PP—l,'EP;'Z }

/7¢§\,.,,.,,,

{NT }

(NP, VP—PP }

(I‘\I‘P—l‘,NP—2,NP—3,VP—l,VP—Z,VP—3EP—]2} 7

6

5

4

{NP, VP, plf;ﬂ__v., ,
{ NP-VP, PP} 2

Figure 1: Simple example of a partition search space.

The size of the nonterminal set and hence of the gram-
mar decreases from the top to the bottom of the search
space. Therefore, if the partition space is searched top-
down, grammar size is minimised automatically and does
not need to be assessed explicitly.

In the current implementation, the evaluation function
f simply calculates the F-Score achieved by a candidate
grammar on D as compared to DT, The F-Score is ob-
tained by combining the standard PARSEVAL evaluation
metrics Precision and Recall* as follows: 2 x Precision x
Recall/(Precision + Recall).

An existing parser’ was used to obtain Viterbi parses. If
the parser failed to find a complete parse for a sentence, a
simple grammar extension method was used to obtain par-
tial parses instead (based on Schmid and Schulte im Walde
(2000, p. 728)).

2.3.4. Search algorithm

Since each point in the search space can be accessed di-
rectly by applying the corresponding nonterminal set parti-
tion to the Max Grammar, the search space can be searched
in any direction by any search method using partitions to
represent candidate grammars.

In the current implementation, a variant of beam search
is used to search the partition space top down. A list of the
n current best candidate partitions is maintained (initialised
to the Max Set). For each of the n current best partitions a
random subset of size b of its children in the hierarchy is
generated and evaluated. From the union of current best
partitions and the newly generated candidate partitions, the
n best elements are selected and form the new current best
set. This process is iterated until either no new partitions
can be generated that are better than their parents, or the

*T used the evalb program by Sekine and Collins
(http://cs.nyu.edu/cs/projects/proteus/evalb/)
to obtain Precision and Recall figures.

SLoPar (Schmid, 2000) in its non-head-lexicalised mode.
Available from http://www.ims.uni-stuttgart.de/
projekte/gramotron/SOFTWARE/LoPar—-en.html.

66

lowest level of the partition tree is reached. In each iteration
the size of the nonterminal set (partition) decreases by one.

The size of the search space grows exponentially with
the size 7 of the Max Set. However, the complexity of the
Partition Search algorithm is only O(nbi), because only up

to n x b partitions are evaluated in each of up to 4 iterations®.

3. Learning NP Extraction Grammars

3.1. Data and Parsing Tasks

Sections 15-18 of WSJC were used for deriving the base
grammar and as the base training corpus, and different ran-
domly selected subsets of Section 1 from the same corpus
were used as task-specific training corpora during search.
Section 20 was used for final performance tests.

Results are reported in this paper for the following two
parsing tasks. In NP identification the task is to identify
in the input sentence all noun phrases’, nested and other-
wise, that are given in the corresponding WSJC parse. NP
chunking was first defined by (Abney, 1991), and involves
the identification of flat noun phrase chunks. Target parses
were derived from WSJC parses by an existing conversion
procedure®.

The Brill Tagger was used for POS tagging testing data,
and achieved an average accuracy of 97.5% (as evaluated
by evalb).

3.2. Base grammar

A simple treebank grammar® was derived from Sec-

tions 15-18 of the WSJ corpus by the following procedure:

1. Iteratively edit the corpus by deleting (i) brackets and labels
that correspond to empty category expansions; (ii) brackets

% As before, n is the number of current best candidate solutions,
b is the width of the beam, and ¢ is the size of the Max Set.

"Corresponding to the WSIC categories NP, NX, WHNP and
NAC.

8Devised by Erik Tjong Kim Sang for the TMR project Learn-
ing Computational Grammars.

The term was coined by Charniak (1996).

and labels containing a single constituent that is not labelled
with a POS-tag; (iii) cross-indexation tags; (iv) brackets that
become empty through a deletion.

2. Convert each remaining bracketting in the corpus into the
corresponding production rule.

3. Collect sets of terminals W, nonterminals N and start sym-
bols N from the corpus. Probabilities p for rules n — «
are calculated from the rule frequencies C' by Maximum
Likelihood Estimation: p(n — a) = 20—

Zi C(n—at)’
This procedure creates the base grammar BARE which
has 10, 118 rules and 147 nonterminals.

3.3. Restricting the search space further

The simple method described in Section 2.3.2. for defin-
ing the maximally split nonterminal set (Max Set) tends to
result in vast search spaces. Using parent node (PN) infor-
mation to create the Max Set is much more restrictive and
linguistically motivated. The Max Grammar PN used in the
experiments reported below can be seen as making use of
Local Structural Context (Belz, 2001): the independence
assumptions inherent in PCFGs are weakened by making
the rules’ expansion probabilities dependent on part of their
immediate structural context (here, its parent node). To ob-
tain the grammar PN, the base grammar’s nonterminal set is
maximally split on the basis of the parent node under which
rules are found in the base training corpus'®. Several previ-
ous investigations have demonstrated improvement in pars-
ing results due to the inclusion of parent node information
(Charniak and Carroll, 1994; Johnson, 1998; Verdi-Mas et
al., 2000).

Another possibility is to use the base grammar BARE
itself as the Max Grammar. This is a very restrictive search
space definition and amounts to an attempt to optimise the
base grammar in terms of its size and its performance on
a given task without adding any information. Results are
given below for both BARE and PN as Max Grammars.

In the current implementation of the algorithm, the
search space is reduced further by avoiding duplicate par-
titions, and by only allowing merges of nonterminals that
have the same phrase prefix NP—-*, VP-* etc.

The Max Grammars end up having sets of nonterminals
that differ from the bracket labels used in the WSJC: while
the phrase categories (e.g. NP) are the same, the tags (e.g.
*-35, *-3)on the phrase category labels may differ. In the
evaluation, all labels starting with the same phrase category
prefix are considered equivalent.

3.4. NP chunking results

Baseline Results. Base grammar BARE (see Sec-
tion 3.2. achieves an F-Score of 88.25 on the NP chunking
task. This baseline result compares as follows with existing
results:

| || NP chunking |

Chunk Tag Baseline 79.99

Grammar BARE 88.25

Current Best: nonlexicalised 90.12
lexicalised 93.25 (93.86)

10The parent node of a phrase is the category of the phrase that
immediately contains it.

67

The chunk tag baseline F-Score is the standard base-
line for the NP chunking task and is obtained by tagging
each POS tag in a sentence with the label of the phrase that
it most frequently appears in, and converting these phrase
tags into labelled brackettings (Nerbonne et al., 2001, p.
102). The best nonlexicalised result was achieved with
the decision-tree learner C5.0 (Tjong Kim Sang et al.,
2000), and the current overall best result for NP chunk-
ing is for memory-based learning and a lexicalised chunker
(Tjong Kim Sang et al., 2000)'.

Table 1 shows results for Partition Search applied to
the NP chunking task. The first column shows the Max
Grammar used in a given batch of experiments. The sec-
ond column indicates the type of result, where the Max
Grammar result is the F-Score, grammar size and number
of nonterminals of the Max Grammar itself, and the remain-
ing results are the average and single best results achieved
by Partition Search. The third and fourth columns show
the number of iterations and evaluations carried out before
search stopped. Columns 5-8 show details of the final so-
lution grammars: column 5 shows the evaluation score on
the training data, column 6 the overall F-Score on the test-
ing data, column 7 the size, and the last column gives the
number of nonterminals.

The best result (boldface) was an F-Score of 90.24%
(compared to the base result of 88.25%), and 95 nontermi-
nals (147 in the base grammar), while the number of rules
increased from 10,118 to 11,972. This result improves the
general baseline by 12.7% and the performance by gram-
mar BARE by 2.2%. It also outperforms the best existing
result of 90.12% for nonlexicalised NP chunking by a small
margin.

3.5. NP identification results

Baseline Results. Base grammar BARE achieves an F-
Score of 79.29 on the NP identification task. This baseline
result compares as follows with existing results:

| | NP identification |

Chunk Tag Baseline 67.56
Grammar BARE 79.29
Current Best: nonlexicalised 80.15

lexicalised 83.79

All results in this table (except for that for grammar
BARE) are reported in Nerbonne et al. (2001, p. 103). The
task definition used there was slightly different in that it
omitted two minor NP categories (WSJC brackets labelled
NAC and Nx). The slightly different task definition has only
a very small effect on F-Scores, so the above results are
comparable. The chunk tag baseline F-Score was again ob-
tained by tagging each POS tag in a sentence with the label
of the phrase that it most frequently appears in. The best
lexicalised result was achieved with a cascade of memory-
based learners. The same paper also included two results
for nonlexicalised NP identification.

Table 2 (same format as Table 1) contains results for
Partition Search and the NP identification task. The small-
est nonterminal set had 63 nonterminals (147 in the base

""Nerbonne et al. (2001) report a slightly better result of 93.86
achieved by combining seven different learning systems.

Max Grammar Iter. Eval. | F-Score F-Score Size | Nonterms
(subset) || (WSICS 1) (rules)
BARE Max Grammar result: 88.25 10,118 147
Average: 116.8 2,749.6 89.64 88.57 7,849.6 32.2
Best (size): 119 2,806 89.79 88.51 7,541 30
Best (F-score): 114 2,674 87.93 88.70 7,777 35
PN Max Grammar result: 89.86 16,480 970
Average: 526 | 13,007.75 94.85 89.83 | 14,538.25 446
Best (size and F-score): 877 21,822 93.85 90.24 11,972 95

Table 1: Partition tree search results for NP chunking task, WSJC Section 1 (averaged over 5 runs, variable parameters:

x=50,b=>5,n=2>5).

Max Grammar Iter. Eval. | F-Score F-Score Size | Nonterms
(subset) || (WsICcS 1) (rules)
BARE Max Grammar result: 79.29 10,118 147
Average 1114 2,629 87.831 79.10 8,655 37.6
Best (size): 113 2,679 86.144 78.9 8,374 36
Best (F-score): 114 2,694 90.246 79.51 8,541 41
PN Max Grammar result: 82.01 16,480 970
Average: 852.6 | 21,051 | 91.2098 81.41308 | 13,202.8 119.4
Best (size): 909 | 22,474 91.881 80.9830 12,513 63
Best (F-score): 658 | 16,286 89.572 82.0503 15,305 314

Table 2: Partition tree search results for NP identification task, WSJC Section 1 (averaged over 5 runs, variable parameters:

x =50,b=>5,n=2>5).

grammar). The best result (boldface) was an F-Score of
82.05% (base result was 79.29%), while the number of
rules increased from 10,118 to 15,305. This improves the
general baseline by 21.45% and grammar BARE by 3.48%.
It also outperforms the other two results for nonlexicalised
NP chunking by a significant margin, and even comes close
to the best lexicalised result (83.79%).

3.6. General comments

Partition Search is able to reduce grammar size by
merging groups of nonterminals (hence groups of rules)
that do not need to be distinguished for a given task. It
is able to improve parsing performance firstly by grammar
generalisation (partitioned grammars parse a superset of the
sentences parsed by the base grammar), and secondly by
reranking parse probabilities (the most likely parse for a
sentence under a partitioned grammar can differ from its
most likely parse under the base grammar).

The margins of improvement over baseline results were
bigger for the NP identification task than for NP chunking.
The results reported here for NP chunking are no match for
the best lexicalised results, whereas the results for NP ident-
fication come close to the best lexicalised results. This in-
dicates that the two characteristics that most distinguish the
grammars used here from other approaches — some non-
shallow structural analysis and parent node information —
are more helpful for NP identification.

Preliminary tests revealed that results were surprisingly
constant over different combinations of variable parameter
values, although training subset size of less then 50 meant
unpredictable results for the complete WSiC Section 1. For
a random subset of size 50 and above, there is an almost

complete correspondence between subset F-Score and Sec-
tion 1 F-Score, i.e. higher subset F-Score almost always
means higher Section 1 F-Score.

The results presented in the previous section also show
what happens if Partition Search is used as a grammar com-
pression method (when existing grammars are used as Max
Grammars). In Table 1, for example, when applied to the
base grammar BARE (four top rows), it maximally reduces
the number of nonterminals from 147 to 30 and the num-
ber of rules from 10, 118 to 7,541, while improving the
overall F-Score. The size reductions on the PN grammar
are even bigger: 970 nonterminals down to 95, and 16, 480
rules down to 11,972, again with a slight improvement in
the F-Score (even though on average, the F-Score remained
about the same). Unlike other grammar compression meth-
ods (Charniak, 1996; Krotov et al., 2000), Partition Search
achieves lossless compression, in the sense that the com-
pressed grammars are guaranteed to be able to parse all of
the sentences parsed by the original grammar.

Compared to other approaches using parent node infor-
mation (Charniak and Carroll, 1994; Johnson, 1998; Verdu-
Mas et al., 2000), the approach presented here has the ad-
vantage of being able to select a subset of all parent node
information on the basis of its usefulness for a given pars-
ing task. This saves on grammar complexity, hence parsing
cost.

3.7. Nonterminal distinctions preserved/eliminated

The base grammar BARE has 26 different phrase cate-
gory prefixes (S, NP, etc.). The additional tags encoding
grammatical function and parent node information results
in much larger numbers of nonterminals. One of the aims

68

of partition search is to reduce this number, preserving only
useful distinctions. This section looks at nonterminal dis-
tinctions that were preserved and eliminated for each task
and grammar.

3.7.1. Base grammar BARE (functional tags only)

Twelve of the 26 phrase categories are not annotated
with functional tags in the WSJC. The remaining 14 phrase
categories have between 2 and 28 grammatical function
subcategories 2.

In the BARE grammar, more nonterminals were merged
on average in the NP chunking task (32.2 remaining) than in
the NP identification task (37.6 remaining). This is as might
be expected since the NP identification task looks the more
complex.

Results for NP chunking show a very strong tendency to
merge the subcategories of all phrase categories except for
two: NP and PP. With only the rare exception, the distinc-
tion between different grammatical functions is eliminated
for the other 12 out of 14 phrase categories. By contrast,
for NP, between 2 and 5 different categories remain (aver-
age 2.8), and for PP, between 2 and 4 remain (average 3.6).
This implies that for NP chunking only the different gram-
matical functions of NPs and PPs are useful.

Results for NP identification show a tendency to
perserve distinctions among the subcategories of SBAR, NP
and PP and to a lesser extent among those of ADVP and
ADIP. Other distinctions tend to be eliminated. All subcat-
egories of SBARQ, NX, NAC, INTJ and FRAG are always
merged, UCP and SINV nearly always.

3.7.2. Grammar PN (parent node tags)

The PN grammar has 970 phrase subcategories for the
26 basic phrase categories of which only those with the
largest numbers of subcategories are examined here: NP
(173), PP (173), ADVP (118), s (76), and VP (62).

Surprisingly, far fewer nonterminals were merged on
average in the NP chunking task (446 remaining) than in
the NP identification task (only 119.4 remaining).

In both tasks, although more so in the NP chunking task,
the strongest tendency was that far more NP subcategories
were preserved than any other.

In the NP identification task, the different NAC and
NX subcategories were always merged into a single one,
whereas in the NP chunking task, at least 4 different NAC
and 3 different NX subcategories remained.

In both tasks equally, ADVP and PP distinctions were
mostly eliminated. The same goes for VP distinctions al-
though VPs with parent node S, SBAR and VP had a higher
tendency to remain unmerged.

These results indicate that by far the most important par-
ent node information for both NP identification and chunk-
ing are the parent nodes of the NPs themselves. More de-
tailed analysis of merge sets would be needed to see what
exactly this means.

2ADJP: 6, ADVP: 18, FRAG: 2, INTJ: 2, NAC: 4, NP: 23, NX:
2, PP: 28, S: 14, SBAR: 20, SBARQ: 3, SINV: 2, UCP: 8, VP: 3.

69

4. Conclusions and Further Research

Grammar Learning by Partition Search was shown to
be an efficient method for constructing PCFGs optimised
for a given parsing task. In the nonlexicalised applications
reported in this paper, the performance of the base gram-
mar was improved by up to 3.48%. This corresponds to an
improvement of up to 21.45% over the standard baseline.
The result for NP chunking is slightly better than the best
existing result for nonlexicalised NP chunking, whereas the
result for NP identification closely matches the best existing
result for lexicalised NP identification.

Partition Search can also be used to simply reduce
grammar size, if an existing grammar is used as the Max
Grammar. In the experiments reported in this paper, Parti-
tion Search reduced the size of nonterminal sets by up to
93.5%, and the size of rule sets by up to 27.4%. Compared
to other grammar compression techniques, it has the advan-
tage of being lossless.

Further research will look at additionally incorporating
lexicalisation, other search methods, and other variable pa-
rameter combinations.

5. Acknowledgements

The research reported in this paper was in part funded
under the European Union’s TMR programme (Grant No.
ERBFMRXCT980237).

6. References

Steven Abney. 1991. Parsing by chunks. In R. Berwick,
S. Abney, and C. Tenny, editors, Principle-Based
Parsing, pages 257-278. Kluwer Academic Publishers,
Boston.

A. Belz. 2001. Optimising corpus-derived probabilistic
grammars. In Proceedings of Corpus Linguistics 2001,
pages 46-57.

A. Belz. 2002. Grammar learning by partition search. In
Proceedings of LREC Workshop on Event Modelling for
Multilingual Document Linking.

Eugene Charniak and Glenn Carroll. 1994. Context-
sensitive statistics for improved grammatical language
models. Technical Report CS-94-07, Department of
Computer Science, Brown University.

Eugene Charniak. 1996. Tree-bank grammars. Techni-
cal Report CS-96-02, Department of Computer Science,
Brown University.

Mark Johnson. 1998. PCFG models of linguistic tree
representations. Computational Linguistics, 24(4):613—
632.

A.J. Korenjak. 1969. A practical method for constructing
LR(k) processors. Communications of the ACM, 12(11).

A. Krotov, M. Hepple, R. Gaizauskas, and Y. Wilks. 2000.
Evaluating two methods for treebank grammar com-
paction. Natural Language Engineering, 5(4):377-394.

J. Nerbonne, A. Belz, N. Cancedda, Hervé Déjean, J. Ham-
merton, R. Koeling, S. Konstantopoulos, M. Osborne,
F. Thollard, and E. Tjong Kim Sang. 2001. Learn-
ing computational grammars. In Proceedings of CoNLL
2001, pages 97-104.

H. Schmid and S. Schulte Im Walde. 2000. Robust German
noun chunking with a probabilistic context-free gram-
mar. In Proceedings of COLING 2000, pages 726-732.

H. Schmid. 2000. LoPar: Design and implementation.
Bericht des Sonderforschungsbereiches ‘‘Sprachtheo-
retische Grundlagen fiir die Computerlinguistik” 149,
Institute for Computational Linguistics, University of
Stuttgart.

E. Tjong Kim Sang, W. Daelemans, H. Déjean, R. Koeling,
Y. Krymolowski, V. Punyakanok, and D. Roth. 2000.
Applying system combination to base noun phrase iden-
tification. In Proceedings of COLING 2000, pages 857—
863.

Jose Luis Verdd-Mas, Jorge Calera-Rubio, and Rafael C.
Carrasco. 2000. A comparison of PCFG models. In
Proceedings of CoNLL-2000 and LLL-2000, pages 123—
125.

F. L. Weng and A. Stolcke. 1995. Partitioning grammars
and composing parsers. In Proceedings of the 4th Inter-
national Workshop on Parsing Technologies.

70

An integration of Vector-Based Semantic Analysis and Simple Recurrent
Networks for the automatic acquisition of lexical representations from
unlabeled corpora

Fermin Moscoso del Prado Martin*, Magnus Sahlgren’

*Interfaculty Research Unit for Language and Speech (IWTS)
University of Nijmegen & Max Planck Institute for Psycholinguistics
P.O. Box 310, NL-6500 AH Nijmegen, The Netherlands
fermin.moscoso-del-prado@mpi.nl

tSwedish Institute for Computer Science (SICS)
Box 1263, SE-164 29 Kista, Sweden
mange @sics.se

Abstract

This study presents an integration of Simple Recurrent Networks to extract grammatical knowledge and Vector-Based Semantic Analysis
to acquire semantic information from large corpora. Starting from a large, untagged sample of English text, we use Simple Recurrent
Networks to extract morpho-syntactic vectors in an unsupervised way. These vectors are then used in place of random vectors to perform
Vector-Space Semantic Analysis. In this way, we obtain rich lexical representations in the form of high-dimensional vectors that integrate
morpho-syntactic and semantic information about words. Apart from incorporating data from the different levels, we argue how these
vectors can be used to account for the particularities of each different word token of a given word type. The amount of lexical knowledge
acquired by the technique is evaluated both by statistical analyses comparing the information contained in the vectors with existing ‘hand-
crafted’ lexical resources such as CELEX and WordNet, and by performance in language proficiency tests. We conclude by outlining the
cognitive implications of this model and its potential use in the bootstrapping of lexical resources

1. Introduction 1.1. Simple Recurrent Networks

Simple Recurrent Networks (SRN; Elman, 1990) are a
Collecting word-use statistics from large text corpora class of Artificial Neural Networks consisting of the three

has proven to be a viable method for automatically ac- traditional ‘input’, ‘hidden’ and ‘output’ layers of units, to
quiring knowledge about the structural properties of lan- which one additional layer of ‘context’ units is added. The
guage. The perhaps most well-known example is the work basic architecture of an SRN is shown in Figure 1. The
of George Zipf, who, in his famous Zipf’s laws (Zipf, outputs of the ‘context’ units are connected to the inputs of
1949), demonstrated that there exist fundamental statistical the ‘hidden’ layer as if they formed and additional ‘input’
regularities in language. Although the useability of statis- layer. However instead of receiving their activation from
tics for extracting structural information has been widely ~ ©Outside, the activations of the “context” layer at time step n
recognized, there has been, and still is, much scepticismre- @€ & copy of the activations of the ‘hidden’ layer at time
garding the possibility of extracting semantic information step n — 1. This is achieved by adding simple, one-to-one
from word-use statistics. We believe that part of the reason ~ coPy-back” connections from the *hidden” layer into the
for this scepticism is the conception of meaning as some- ‘context’ layer. In contrast to all the other connections in

thing external to language — as something out there in the the network, these are special in that they are not trained
world, or as something in here in the mind of a language (their weights are fixed at 1), and in that they perform a raw
user. However, if we instead adopt what we may call a COPy operation from a hidden unit into a context unit, that
“Wittgensteinian” perspective, in which we do not demand is to say, they employ the identity function as the activation
any rigid definitions of word meanings, but rather charac- function. Networks of this kind combine the advantages of
terize them in terms of their use and their “family resem- recurrent networks, their capability of maintaining a history
blance” (Wittgenstein, 1953), we may argue that word-use ©f pastevents, with the simplicity of multilayer perceptrons
statistics provide us with exactly the right kind of data to @5 they can be trained by the backpropagation algorithm.

facilitate semantic knowledge acquisition. The idea, first Elman (1993) trained an SRN on predicting the next
explicitly stated in Harris (1968), is that the meaning of a word in a sequence of words, using sentences generated
word is related to its distributional pattern in language. This by an artificial grammar, with a very limited vocabulary

means that if two words frequently occur in similar context, (24 words). He showed that a network of this class, when
we may assume that they have similar meanings. This as- trained on a word prediction task and given the right train-
sumption is known as “the Distributional Hypothesis,” and ing strategy (see (Rohde and Plaut, 2001) for further discus-
it is the ultimate rationale for statistical approaches to se- sion of this issue), acquired various grammatical properties
mantic knowledge acquisition, such as Simple Recurrent such as verbal inflection , plural inflection of nouns, argu-
Networks or Vector-Based Semantic Analysis. mental structure of verbs or grammatical category. More-

71

| input layer

Figure 1: Modular architecture of a Simple Recurrent Net-
work. The boxes correspond to layers of units. The solid ar-
rows represent sets of trainable ‘all-to-all’ connections be-
tween the units in two layers. The dashed arrow stands a
for fixed ‘one-to-one’ not trainable connection between two
layers. These connections have the function of copying the
activation of the hidden units into the context units at every
time step.

over, the activations of the hidden units of the network
provided detailed, token-specific characterizations of the
morpho-syntactic properties of a word. Moscoso del Prado
and Baayen (2001) showed how this method can be ex-
tended to deal with the large vocabulary sizes of realis-
tic corpora. They trained a network akin to those of (Ro-
hde and Plaut, 1999; Elman, 1993) on a word prediction
task, using moderately large corpora of written English
and Dutch (approximately 700,000 tokens of English and
4,500,000 of Dutch). The hidden units again provided rich
representations of the morpho-syntactic properties of the
words, containing information ranging from grammatical
category, to subtle inflectional details such as verbal inflec-
tion or adjective gender. Moreover, the network had also
captured some semantic properties of words, namely se-
mantic properties that can be inferred from syntactic prop-
erties such as argumental structure.

1.2. Vector-Based Semantic Analysis

While SRN’s appear to be more sensitive towards syn-
tactic features, vector-space models have been used for
over a decade to acquire and represent semantic informa-
tion about words, documents and other linguistic units.
This is done by collecting co-occurrence information in a
words-by-contexts matrix £’ where each row F,, represents
a unique word and each column F represents a context,
which can either be a multi-word segment such as a docu-
ment or another word. Latent Semantic Analysis/Indexing
(LSA/LSI; Deerwester et al., 1990; Landauer and Dumais,
1997) uses document-based co-occurrence statistics, while
Hyperspace Analogue to Language (HAL; Lund et al.,
1995) and Schutze (1992) use word-based statistics. The
cells of the matrix indicate the (weighted and/or normal-
ized) frequency of ocurrence in, or co-occurrence with, the
co-occurrence context (i.e. documents or words). Vector-
space models generally also use some form of dimension
reduction to reduce the computational strains of dealing
with the rather ungainly co-occurrence matrix. LSA uses
Singular Value Decomposition (SVD) and HAL uses a
“column variance method,” which consists in discarding

72

the columns with lowest variance. This reduces the di-
mensionality of the co-occurrence matrix to a fraction of
its original size. linguistic units are thus represented in the
final reduced matrix by semantic vectors of n dimensional-
ity. LSA is reported to be optimal at n = 300 (Landauer
and Dumais, 1997), HAL at n = 200 (Lund et al., 1995),
while Schutze (1992) use n = 20. A different approach
to create the vector-space is Random Indexing (Kanerva et
al., 2000; Karlgren and Sahlgren, 2001), which avoids the
inefficient and inflexible dimensionality reduction phase by
using high-dimensional sparse, random index vectors to ac-
cumulate a words-by-contexts matrix in which words are
represented by high-dimensional (i.e. n is in the order of
thousands) context vectors.

Vector-space methodology has been empirically vali-
dated in a number of experiments as a viable technique for
the automatic extraction of semantic information from raw,
unstructured text data. For example, Landauer and Du-
mais (1997) report a result on a standardized vocabulary
test (TOEFL; Test of English as a Foreign Language) that
is comparable to the average performance of foreign (non-
English speaking) applicants to U.S. colleges (64.4% vs.
64.5% correct answers to the TOEFL). Sahlgren (2001),
showed that similar performance (64.5% — 67%) may be
obtained by using distributed representations in the Ran-
dom Indexing technique that eliminates the need for the
computationally expensive SVD, and he also demonstrated
that the performance may be further enhanced (72% cor-
rect answers) by taking advantage of explicit linguistic in-
formation (morphology). Further empirical evidence can
be found in, for example, (Lund and Burgess, 1996), who
used semantic vectors to model reaction times from lexical
priming studies, and from (Landauer and Dumais, 1997),
who used LSA for evaluating the quality of content of stu-
dent essays on given topics. Thus, it appears to be beyond
doubt that the vector-space methodology really is able to
form high-quality semantic representations by using such a
simple souce of information as plain co-occurrence statis-
tics. In the remainder of this paper, we will use the label
Vector-Based Semantic Analysis to denote the practice of
using co-occurrence information to construct vectors rep-
resenting linguistic units in a high-dimensional semantic
space.

2. Goal of the paper

In this study, we integrate two techniques to automat-
ically obtain distributed lexical representations from cor-
pora encoding morpho-syntactic and semantic information
simultaneously. A hybrid technique such as the one that
we describe here has several advantages. First, it requires
a minimum of preexisting lexical resources, as it depends
only on raw corpora. There is no need for taggers or parsers
which, for many languages, may be unavailable.

Second, in contrast to other approaches that exploit
word co-occurrences, our method keeps computational
costs under control, as we avoid having to deal with huge
co-occurrence matrices and we do not need to apply dimen-
sional reduction techniques such as Singular Value Decom-
position or Principal Component Analysis. The use of such
dimensional reduction techniques imposes important limi-

tations on the extension of existing resources, as the addi-
tion of a new item would requires that a new reduced sim-
ilarity space is calculated. In contrast, both SRN and the
VBSA technique allow for the direct inclusion of new data.
Another important advantage of our approach is that lexical
representations become dynamic in nature: each token of a
given type will have a slightly different representation.

We produce explicit measures of reliability that are di-
rectly associated to each distance calculated by our method.
This is particularly useful for extending existing lexical re-
sources such as computational thesauri.

In what follows, we introduce the corpus employed in
the experiment, together with the SRN and VBSA tech-
niques that we used. We then evaluate the grammatical
knowledge encoded in the distributed representations ob-
tained by the model. We subsequently evaluate the seman-
tic knowledge contained in the system by means of scores
on language proficiency tests (TOEFL), comparison with
synonyms in WordNet, and a comparison of the properties
of morphological variants. We conclude by discussing the
possible application of this technique to bootstrap lexical
resources from untagged corpora and the cognitive impli-
cations of these results.

3. The Experiment
3.1.

For the training of the SRN network, we used the texts
corresponding to the first 20% of the British National Cor-
pus; by first we mean that we selected the files following
the order of directories, and we included the first two direc-
tories in the corpus. This corresponds to roughly 20 mil-
lion tokens. To allow for comparison with the results from
(Sahlgren, 2001), which were based on a 10 million word
corpus, only the first half of this subset was used in the ap-
plication of the VSBA technique.

Only a naive preprocessing stage was performed on the
original SGML files. This included removing all SGML la-
bels from the corpus, converting all words to lower case,
substituting all numerical tokens for a [num]| token and
separating hyphenated compound words into three differ-
ent tokens (first word + [hyphen| + second word). All
tokens containing non alphabetic characters different from
the common punctuation marks were removed from the
corpus. Finally, to reduce the vocabulary size, all tokens
that were below a frequency threshold of two, were substi-
tuted by an [unknown] token.

Corpus

3.2. Design and training of the SRN

The Simple Recurrent Network followed the basic de-
sign shown in Figure 1. We used a network with 300 units
in the input and output layers, and 150 units in the hidden
and context layers. To allow for representation of a very
large number of tokens, we used the semi-localist approach
described in (Moscoso del Prado and Baayen, 2001) with
a code of three random active units per word. On the one
hand, this approach is close to a traditional style one-bit-
per-word localistic representation in that the vectors of two
different words will be nearly orthogonal. The small devia-
tion from full orthogonality between representations has an

73

effect similar to the introduction of a small amount of ran-
dom noise, which actually speeds up the learning process.
On other the hand, using semi-distributed input/output rep-
resentations allows us to represent a huge number of types
(a maximum of (*3°) = 4,455,100 types), while keeping
the size of the network moderately small.

The sentences of the corpus were grouped into ‘exam-
ples’ of five consecutive sentences. At each time step,
a word was presented to the input layer and the network
would be trained to predict the following word in the output
units. The corpus sentences were presented word by word
in the order in which they appear. After every five sentences
(a full ‘example’), the activation of the context units was
reset to 0.5. Imposing limitations on the network’s mem-
ory on the initial stages of training is a pre-requisite for the
networks to learn long distance syntactic relations (Elman,
1993; cf., Rohde and Plaut, 2001; Rohde and Plaut, 1999).
We implemented this ‘starting small’ strategy by introduc-
ing a small amount of random noise (0.15) in the output
of the hidden units, and by gradually reducing to zero dur-
ing training. At the same time that the random noise in the
context units was being reduced, we also gradually reduced
the learning rate, starting with a learning rate of 0.1 and
finished training with a learning rate of 0.4. Throughout
training, we used a momentum of 0.9.

Although the experiments in (Elman, 1993) used the
traditional backpropagation algorithm, using the mean
square error as the error measure to minimize, following
(Rohde and Plaut, 1999) we substituted the training al-
gorithm for a modified momentum descent using cross-
entropy as our error measure,

)] ey

t; 1—-t¢;
; [tz log (Oi) + (1 —t;)log (1 s
Modified momentum descent enables stable learning with
very aggressive learning rates as the ones we use. The net-
work was trained on the whole corpus of 20 million for one
epoch using the Light Efficient Network Simulator (LENS;
Rohde, 1999).

3.3. Application of VBSA technique

Once the SRN had been trained, we proceeded to apply
the Vector Based Semantic Analysis technique. Sahlgren
(2001) used what he called ‘random labels’. These were
sparse 1800 element vectors, in which, for a given word
type, only a small set of randomly chosen elements would
be active (£1.0), while the rest would be inactive. Once
these initial labels had been created, the corpus was pro-
cessed in the following way. For each token in the corpus,
the labels of the s immediately preceding or following to-
kens were added to the vector of the word (all vectors were
initialized to a set of 0’s). The addition would be weighted
giving more importance to the closer word in the window.
Words outside a frequency range of (3 — 14,000) are not
included in these sums. This range excludes both the very
frequent types, typically function words, and the least fre-
quent types, about which there is not enough information
to provide reliable counts. Optimal results are obtained
with a window size (s = 3), that is, by taking into account
the three preceeding and following words to a given token.

In order to reduce sparsity, Sahlgren used a lemmatizer to
unify tokens representing inflectional variants of the same
root. Sahlgren had also observed that the inclusion of ex-
plicit syntactic information extracted by a parser did not
improve the results, but led to lower performance. We be-
lieve that this can be partly due to the static character of
the syntactic information that was used. We therefore use
a dynamic coding of syntactic information, which is more
sensitive to the subtle changes in grammatical properties of
each different instance of a word.

In our study, we substituted the knowledge-free random
labels of (Sahlgren, 2001) by the dynamic context-sensitive
representations of the individual tokens as coded in the pat-
terns of activations of our SRN. Thus each type is repre-
sented by a slightly different vector for each different gram-
matical context in which it appears. To obtain these repre-
sentation, we presented the text to the SRN and used the
activation of the hidden units to provide the dynamic labels
for VBSA

We then used a symmetric window of three words to
the left and right of every word. We fed the text again
through the neural network in test mode (no weight up-
dating), and we summed the activation of the hidden units
of the network for each of the words in the context win-
dow that fall within a frequency range of 8 and 30, 000 in
the original corpus (the one that was used for the training
of the neural network). In this way we excluded low fre-
quency words about which the network might be extremely
uncertain, and extremely high frequency function words.
We used as weighting schema w = 2'=%, were w is the
weight for a certain position in the window, and d is the
distance in tokens from that position to the center of the
window. For instance, the label of the word following the
target would be added with a weight w = 2'~! = 1 and
the label of the word occupying the leftmost position in the
window would have a weight w = 2!73 = 0.25. When
a word in the window was out of the frequency range, its
weight was set to 0.0. Punctuation marks were not included
in window positions.

4. Results

4.1. Overview of semantics by nearest neighbors

We begin our analysis by inspecting the five nearest
neighbors for a given word. Some examples can be found
in Table 4.1. To calculate the distances between words, we
use normalized cosines (Schone and Jurafsky, 2001). Tra-
ditionally, high dimensional lexical vectors have been com-
pared using metrics such as the cosine of the angle between
the vectors or the classical Euclidean distance metric or the
city-block distance metric. However, using a fixed metric
on the components of the vectors induces undesirable ef-
fects pertaining to the centrality of representations. More
frequent words tend to appear in a much wider range of
contexts. When the vectors are calculated as an average
of all the tokens of a given type, the vectors or more fre-
quent words will tend to occupy more central positions in
the representational space. They will tend to be nearer to
all other words, thus introducing an amount of relativity in
the distance values. In fact, we believe that this relativ-
ity actually reflects people’s understanding of word mean-

74

ing. For example, if we considered the most similar words
to a frequent word such as “bird”, we would find words
as “pigeon” to be very related in meaning. A word such
as “penguin” would be considered a more distantly related
word. However, if we examined the nearest neighbors of
“penguin”, we would probably find “bird” among them, al-
though the standard distance measure would still be high.
A way to overcome this problem is to place word distances
inside a normal distribution, taking into account the distri-
bution of distances of both words. Consider the classical
cosine distance between two vectors v and w:

vV-w

dcos (V7 W) =1~ (2)

[Vl {wl]
For each vector x € {v,w} we calculate the mean (1)
and standard deviation (o) of its cosine distance to 500
randomly chosen vectors of other words. This provides us
with an estimate of the mean and standard deviation of the
distances between x and all other words. We can now de-
fine the normalized cosine distance between two vectors v

and w as:
> . 3

To speed up this process, the cosine distance means and
standard deviation for all words were pre-calculated in ad-
vance and stored as part of the representation. The use of
normalized cosine distance has the effect of allowing for
direct comparisons of the distances between words. In our
previous example the distance between “bird” and “pen-
guin”, according to a non-normalized metric would suffer
from the eccentricity of “penguin”; with the normalization,
as the value of the distance would be normalized with re-
spect to “penguin” (the maximum), it would render a value
similar to the distance between “bird” and “pigeon”.

max

dcos) - Mx
duorm(v.w) = _max <<VW>M

Ox

4.2. Grammatical knowledge

Moscoso del Prado and Baayen (2001) showed that the
hidden unit representations of SRN’s similar to the one
we used here contain information about morpho-syntactic
characteristics of the words. In the present technique this
information is implicitly available in the input labels for the
VBSA technique. The VBSA component however, does
not guarantee the preservation of such syntactic informa-
tion. We therefore need to ascertain whether the grammat-
ical knowledge contained in the SRN vectors is preserved
after the application of VBSA.

Note that in Table 4.1., the nearest neighbors of a given
word tend to have similar grammatical attributes. For ex-
ample, plural nouns have other plural nouns as nearest
neighbors, e.g., “foreigners” - “others”, “outsiders”, etc.,
and verbs tend to have other verbs as nearest neighbors,
e.g., “render” - “expose”, “reveal”, etc. Although the near-
est neighbors in Table 4.1. clearly suggest that morpho-
syntactic information is coded in the representations, we
need to ascertain how much morpho-syntactic information
is present and, more importantly, how easily it might be
made more explicit. We do this using the techniques pro-
posed in (Moscoso del Prado and Baayen, 2001), that is
we employ a machine learning technique using our vectors

Word

] Nearest neighbors

hall

half
foreigners
legislation
positive
slightly
subjects
taxes
render

re-
omitted
Bach

centre, theatre, chapel, landscape*, library
period, quarter, phase, basis, breeze*

others, people, doctors, outsiders, unnecessary*
orders, contracts, plans, losses, governments
splendid, vital, poetic, similar*, bad

somewhat, distinctly, little, fake*, supposedly
issues, films, tasks, substances, materials
debts, rents, imports, investors, money

expose, reveal, extend, ignoring*, develop
anti-, non-, pro-, ex-, pseudo-

ignored, despised, irrelevant, exploited*, theirs*
Newton, Webb, Fleming, Emma, Dante

Table 1: Sample of 5 nearest neighbors to some words according to normalized cosine distance. Semantically unrelated

words are marked by an asterisk

as input and symbolic grammatical information extracted
from the CELEX database (Baayen et al., 1995) as out-
put. A machine learning system is trained to predict the
labels from the vectors. The rationale behind this method is
very straightforward: If there is a distributed coding of the
morpho-syntactic features hidden inside our representation,
a standard machine learning technique should be able to de-
tect it.

We begin by assessing whether the grammatical cate-
gory of a word can be extracted from its vector representa-
tion. We randomly selected 500 words that were classified
by CELEX as being unambiguously nouns or verbs, that is,
they did not have any other possible label. The nouns were
sampled evenly between singular an plural nouns, and the
verbs were sampled evenly between infinitive, third person
singular and gerund forms. Using TIMBL (Daelemans et
al., 2000), we trained a memory based learning system on
predicting whether a vector corresponded to a noun or a
verb. We performed ten-fold cross-validation on the 500
vectors. The systems were trained using 7 nearest neigh-
bors according to a city-block distance metric, the contri-
bution of each component of the vectors weighted by Infor-
mation Gain Feature Weighting (Quinlan, 1993). To pro-
vide a baseline against which to compare the results, we
use a second set of files consisting of the same vectors
but with random assignment of grammatical category la-
bels to words. The average performance of the system of
the Noun-Verb distinction was 68% (randomized averaged
56%). We compared the performance of the system with
that of the randomized labels system using a paired two-
tailed t-test on the result of each of the runs in the cross-
validation, which revealed that the performance of the sys-
tem was significantly higher than that of the randomized
one (t = 5.63, df =9, p=0.0003).

We also tested for more subtle inflectional distinctions.
We randomly selected 300 words that were unambiguously
nouns according to CELEX, sampling evenly from singular
and plural nouns. We repeated the test described in the pre-
vious paragraph, with the classification task this time be-
ing the differentiation between singular and plural. The
average performance of the machine learning system was

75

65% (randomized averaged 48%). A paired two-tailed t-
test comparing the results of the systems with the results of
systems with the labels randomized revealed again a signifi-
cant advantage for the non-random system (¢t = 5.80, df =
9, p = 0.0003). The same test was performed on a group of
300 randomly chosen unambiguous verbs sampled evenly
among infinitive, gerund and third person singular forms,
with these labels being the ones the system should learn
to predict from the vectors. Performance in differentiat-
ing these verbal inflections was of 55% on average while
the average of randomized runs was 33%, and significantly
above randomized performance accoriding to a paired two-
tailed t-test (t = 4.25, df =9, p = 0.0021).

4.3. Performance in TOEFL synonyms test

Previous studies (Sahlgren, 2001; Landauer and Du-
mais, 1997) evaluated knowledge about semantic similarity
contained in co-occurrence vectors by assessing their per-
formance in a vocabulary test from the Test of English as a
Foreign Language (TOEFL). This is a standardized vocab-
ulary test employed by, for instance, American universi-
ties, to assess foreign applicants’ knowledge of English. In
the synonym finding part of the test, participants are asked
to select which word is a synonym of another given word,
given a choice of four candidates that are generally very re-
lated in meaning to the target. In the present experiment, we
used the selection of 80 test items described in (Sahlgren,
2001), with the removal of seven test items which contained
at least one word that was not present in our representation.
This left us with 73 test items consisting of a target word
and four possible synonyms. To perform the test, for each
test item, we calculated the normalized cosine distance be-
tween the target word and each of the candidates, and chose
as a synonym the candidate word that showed the smallest
cosine distance to the target. The model’s performance on
the test was 51% of correct responses.

4.3.1. Reliability scores

The results of this test can be improved once we have
a measure of the certainty with which the system consid-
ers the chosen answer to be a synonym of the target. What
we need is a reliability score, according to which, in cases

where the chosen word is not close enough in meaning,
i.e., its distance to the target is below a certain probabilis-
tic threshold, the system would refrain from answering. In
other words, the system would be allowed to give an an-
swer such as: “I’'m not sure about this one”. Given that
the values of the distances between words in our system,
follow a normal distribution N(0, 1), it is quite straightfor-
ward to obtain an estimate of the probability of the distance
between two words being smaller than a given value, by
just using the Normal distribution function F'(x). How-
ever, while the general distribution of distances between
any two given words follows A/(0,1), the distribution of
the distances from a particular word to the other words
does not necessarily follow this distribution. In fact they
generally do not do so. This difference in the distributions
of distances of words is due to effects of prototypicality and
probably also word frequency (McDonald and Shillcock,
2001).

To obtain probability scores on how likely it is that a
given word is at a certain distance from the target, we need
to see the distance of this word relative to the distribution
of distances from the target word to all other words in the
representation. We therefore slightly modify 3, which takes
the normalized distance between two words to be the max-
imum of the cosine distance normalized according to the
distribution of distances to the first word, and the cosine
distance normalized to the distribution of distances to the
second word. We now define the cosine distance between
two vectors v and w normalized relative to v as:

dv _ dCOS(V7W> — Uv

norm ~ ’
Ov

“

which provides us with distances that follow A(0,1) for
each particular word represented by a vector v.

Using 4, we calculated the distance between the target
words in the synonym test and the word that the system had
selected as most similar, counting only those answers for
which the system outputs a probability value below 0.18.
The performance on the test increases from 51% to 71%,
but the number of items reduced to 45. If we choose proba-
bility values below (.18, the percentage correct continues to
rise, but the number of items in the test drops dramatically.
Having such a reliability estimator is useful for real-world
applications.

4.4. Performance for WordNet synonyms

We can also use the WordNet (Miller, 1990) lexical
database to further assess the amount of word similarity
knowledge contained in our representations. We randomly
selected synonym pairs from each of the four grammatical
categories contained in WordNet: nouns, verbs, adjectives
and adverbs. We calculated the normalized cosine distance
for each of the synonym pairs. As expected, the median
distances between synonymous words were clearly smaller
than average distance. The median distances were —0.59
for verb synonyms, —0.53 for noun synonyms, —0.49 for
adjective synonyms and —0.62 for adverbial synonyms.
However, as we have already seen, our vectors contain a
great deal of information about morpho-syntactic proper-
ties. Hence the fact that synonyms share the same gram-
matical category could by itself explain the small distances

76

obtained for WordNet synonyms. To check whether this is
the case, each synonym pair from our set was coupled with
a randomly chosen baseline word of the same grammatical
category, and we calculated the distance between one of the
synonyms and the baseline word. In this case, as we were
interested in the distance of the word relative only to one of
the words in the pair, we calculated distances using 4. We
compared the series of distances obtained for the true Word-
Net synonym pairs with the baseline distances by means of
two-tailed t-tests. We found that WordNet synonyms were
clearly closer in all the cases: nouns (t = —5.30, df =
197, p < 0.0001), verbs (t = —4.60,df = 190, p <
0.0001), adjectives (t = —3.09, df = 195, p = 0.0023)
and adverbs (t = —4.06, df = 188, p < 0.0001). This
shows that true synonyms were significantly closer in dis-
tance space than baseline words.

4.5. Morphology as a measure of meaning

Morphologically related words tend to be related both
in form and meaning. This is true both for inflectionally re-
lated words, and derivationally related words. As morpho-
logical relations tend to reflect regular correspondences to
slight changes in the meaning and syntax, they can be used
for assessing the amount of semantic knowledge that has
been acquired by our system. In what follows, we inves-
tigate whether our system is able to recognize inflectional
variants of the same word, and whether the vectors of words
belonging to the same suffixation class cluster together.

4.5.1. Inflectional morphology

We randomly selected 500 roots that were unambigu-
ously nominal (they did not appear in the CELEX database
under any other grammatical category) and for which both
the singular and the plural form were present in our dataset.
For each of the roots, we calculated the normalized co-
sine distance between the singular and plural forms. The
median of the distance between singular and plural forms
was —0.39, which already indicates that inflectional vari-
ants of the same noun are represented by similar vectors.
As in the case of the WordNet synonyms, it could be ar-
gued that this below average distance is completely due to
all these word pairs sharing the “noun” property. To ascer-
tain that the observed effect on the distances was at least
partly due to real similarities in meaning, each stem 7 in
our set was paired with another stem ro also chosen from
the original set of 500 nouns. We calculated the normal-
ized cosine distance between the singular form of r; and
the plural form of 5. In this way we constructed a data
set composed of word pairs plus their normalized cosine
distance. A linear mixed effect model (Pinheiro and Bates,
2000) fit to the noun data with normalized cosine distance
as dependent variable, the ‘stem’ (same v. other) as inde-
pendent variable and the root of the present tense form as
random effect, revealed a main effect for stem-sharing pairs
(F(1,499) = 44.42, p < 0.0001). The coefficient of the
effect was —0.29 (¢ = 0.043). This indicates that the dis-
tances between pairs of nouns that share the same stem are
in general smaller than the distance between pairs of words
that do not share the same root but have the same number.
Interestingly, according to a Pearson correlation, 65% of

the variance in the distances is explained by the model.

In the same way, we randomly selected 500 unambigu-
ously verbal roots for which we had the present tense, past
tense, gerund and third person singular present tense in our
representation. The median normalized cosine distance be-
tween the present tense and the other forms of the verb was
—0.48, so verbs seem to be clustered together somewhat
more tightly than nouns. We repeated the test described
above by random pairing of stems, but now we calculated
the distances between the present tense form of r; and the
rest of the inflected forms of r5. We fit a linear mixed ef-
fect model with the normalized cosine distance between the
pairs as dependent variable, the pair of inflected forms, i.e.,
present-past, present-gerund, or present-third person sin-
gular, and the ‘stem’ (same versus different) as indepen-
dent variables and the root of the first verb as random effect.
We found significant, independent effects for type of inflec-
tional pair (F'(1,2495) = 289.06, p < 0.0001) and stem-
sharing (F(1,2495) = 109.76, p < 0.0001). The interac-
tion between both independent variables was not significant
(F' < 1). The coefficient for the effect of sharing a root was
—0.18 (6 = 0.017), which again indicates that words that
share a root have smaller distances than words that do not.
It is also interesting to observe that the coefficients for the
pairs of inflected forms also provide us with information of
how similarly these forms are used in natural language, or,
phrased in another way, how similar their meanings are. So,
the value of the coefficient for pairs of present tense (unin-
flected) and past tense forms was —0.48 (6 = 0.21) and the
coefficient for pairs composed of a present tense uninflected
form and a past tense was —0.38 (6 = 0.21), which sug-
gests that the contexts in which an un-inflected form is used
are more similar to the contexts where a past tense form is
used than to the contexts of a gerund. The model explained
43% of the variance according to a Pearson correlation.

4.5.2. Derivational morphology

Derivational morphology also captures regular meaning
changes, although these changes are often not as regular as
the ones that are carried out by inflectional morphology. We
tested whether our system captures derivational semantics
using the Memory-Based Learning technique that we used
for evaluating grammatical knowledge in the system (see
section 4.2.). Concentrating on morphological categories,
i.e. on words that share the same outer affix. For instance
“compositionality” belongs to the morphological category
“-ity” and not to the category “-al”, although it also con-
tains the suffix “-al”. Derivational suffixes generally effect
both syntactic and semantic changes. To test whether our
vectors reflect semantic regularities, we selected all words
ending in the two derivational suffixes “-ist” and “-ness”.
Both of these suffixes produce nouns, but while the first
one generates nouns that are considered agents of actions,
the second generates abstract ideas. These affixes gener-
ate words with the same grammatical category, but with
different semantics. We trained a TIMBL system on pre-
dicting the morphological category of the vectors, that is,
to predict “-ist” or “-ness”. The average performance of
the system in predicting these labels in a ten-fold cross-
validation was of 78% (compared to an average of 51% ob-

77

tained when randomizing the affix labels). A paired two-
sided t-test between the system performance at each run
and the performance of a randomized system on the same
run, revealed a significant improvement for the non random
system (t = 10.95, df =9, p < 0.0001).

Although performance was very good for these two
nominal affixes, a similar comparison between the adjecti-
val affixes “-able” and “-less”, did not render significant dif-
ferences between randomized and non-randomized labels,
indicating that the memory-based learning system was not
able to discriminate these two affixes on the sole basis of
their semantic vectors. This indicates that, although some
of the semantic variance produced by derivational affixes
can be captured, many subtler details are being overlooked.

5. Discussion

The analyses that we have performed on the vectors in-
dicate that a high amount of lexical information has been
captured by the combination of an SRN with VBSA. On
the one hand, the results reported in section 4.2. indicate
that the morpho-syntactic information that is coded in the
hidden units of a SRN is maintained after the applica-
tion of VSBA. Moreover, it is clear that the coding of the
morpho-syntactic features can be extracted using a standard
machine-learning technique such as Memory-Based Learn-
ing. This, by itself can be of great use in the bootstrapping
of language resources. Given a fairly small set of words that
have received morpho-syntactic tags, it is possible to train a
machine learning system to identify these labels from their
vectors, and then apply this to the vectors of words that
are yet to receive morpho-syntactic tagging. Importantly,
our technique relies only on word-external order and co-
occurrence information, but does not make use of word-
internal form information. As it it is evident that word-
form information such as presence of inflectional affixes
is crucial for morpho-syntactic tagging, our technique can
be used to provide a confirmation of possible inflectional
candidates. For instance, suppose that two words such as
“rabi” and “rabies” are found in a corpora, one would be
inclined to classify them as singular and plural version of
the same word, when in fact they are both singular forms.
The inflectional information in our vectors could be used to
disconfirm this hypothesis. In this same aspect, the fact that
inflectional variants of the same root tend to be very related
in meaning could be used as additional evidence to reject
this pair as being inflectional variants.

On the other hand, the nearest neighbors, the TOEFL
scores, the results on detecting inflectionally and deriva-
tionally related words, and the results on the WordNet syn-
onyms, provide solid evidence that the vectors have suc-
ceeded in capturing a great deal of semantic information.
Although it is clear to us that our technique needs further
fine-tuning, the results are already surprising given the con-
straints that have been imposed on the system. For in-
stance, the performance on the TOEFL test (51% without
the use of the Z scores) is certainly lower than many re-
sults that have been reported in the literature. Sahlgren
(2001), using the Random Indexing approach to VBSA
with random vectors reports 72% correct responses on the
same test items. However, he was using a tagged corpus

where all inflectional variants had been unified under the
same type. Without the use of stemming, the best perfor-
mance he reports is of 68%. In the current approach we
have used vectors of 150 elements, that is, less than 10% of
the size of the vectors used by Sahlgren, and much smaller
than the vectors needed to apply techniques such Hyper-
space Analog to Language (Lund et al., 1995; Lund and
Burgess, 1996) or Latent Semantic Analysis (Landauer and
Dumais, 1997) which need to deal with huge co-occurrence
matrices. Given the computational requirements of using
such huge vectors, we consider that our method provides a
good alternative. Our result of 51% on the TOEFL test is
clearly above chance performance (25%) and not that far
from the results obtained by average foreign applicants to
U.S. universities (64.5%). Interestingly, Landauer and Du-
mais (1997) reported a 64.4% performance on these test
items using LSA, but this was only after the application
of a dimensional reduction technique (SVD) to their orig-
inal document co-occurrence vectors. Before the applica-
tion of SVD, they report a performance of 36% on the plain
normalized vectors. Of course, a technique such as SVD
could be subsequently applied to the vectors obtained by
our method, probably leading to some improvement in our
results. However, given that our vectors already have a
moderate size, and especially, given that, in their current
state, one does not need to re-compute them to add infor-
mation contained in new corpora, we do not favor the use
of such techniques.

Regarding the evaluation of the system against synonym
pairs extracted from the WordNet database, although the
vectors represent synonyms as being more related than av-
erage, it still seems that most of the similarity in these cases
was due to morpho-syntactic properties (the average differ-
ence in distances between the synonym and baseline con-
ditions was always smaller than 0.1). We believe this is
due to several factors. WordNet synonym sets (synsets)
contain an extremely rich amount of information, that may
be too rich for the purposes of evaluating our current vec-
tors. First, many WordNet synonyms correspond to plain
spelling variants of the same word in British and Amer-
ican English, e.g., “analyze”-“analise”. Our whole train-
ing corpus was composed of British English, so the rep-
resentation of words in American spelling is probably not
very accurate. Second, and more importantly, given that
the synsets encoded in WordNet reflect in many cases rare
or even metaphoric uses of words, we think that the eval-
uation based on the average type representations provided
by our system are not the most appropriate to detect these
relations. Possibly, evaluating these synonyms against the
vectors corresponding to the particular tokens referring to
those senses might be more appropriate. An indication of
this is also given by the TOEFL scores, which reflect that
the meaning differences can still be detected in many cases.
This is important because the synonyms pairs chosen in the
TOEFL test, generally reflect the more standard senses of
the words involved.

Another important issue is the difference between
meaning relatedness and meaning similarity. These are two
different concepts that appear to be somewhat confounded.
While our representations reflect in many cases similarity

78

relations, e.g, synonymy, they also appear to capture many
relatedness and general world knowledge relations, for in-
stance, the three nearest neighbors of “student” are “univer-
sity” “pub” and “study”’, none of which is similar in mean-
ing to “student”, but all of them bearing a strong relation-
ship to it. Sahlgren (2001) argues that using a small window
to compute the co-occurrences (3 elements to each side, as
compared to the 10 elements used in (Burgess and Lund,
1998)), has the effect of concentrating on similarity rela-
tions instead of relatedness, which would need much larger
contexts such as the full documents used in LSA. The mo-
tivation to use very small context windows was to provide
an estimation of the syntactic context of words. However,
since syntactic information is already made more explicit
by our SRN this may not be necessary in our case, and us-
ing larger window sizes might actually improve our per-
formance both in similarity and relatedness. A further im-
provement that should be added to our vectors should come
from the inclusion of word internal information. In a pilot
experiment we have used the VBSA technique using (au-
tomatically constructed) distributed representations of the
formal properties of words instead of the random labels.
Performance on the TOEFL test were in the same range
that was reported here (49%). This suggest that a combi-
nation of the technique described here with the formal vec-
tors could probably provide much more precise semantic
representations, exploiting both word internal and internal
sources of information. This is also in line with the im-
provement of results found by (Sahlgren, 2001) when using
a stemming technique. The use of formal vectors provides
an interesting alternative, as it would supply implicit stem-
ming information to the system.

In this paper, we have presented a representation that
encodes jointly morpho-syntactic and semantic aspects of
words. We have also provided evidence on how mor-
phology is an important cue to meaning, and vice-versa,
meaning is also an important cue to morphology. This
corroborates previous results from (Schone and Jurafsky,
2001). The idea of integrating formal, syntactic and se-
mantic knowledge about words in one single representa-
tion is currently gaining strength within the psycholinguis-
tic community (Gaskell and Marslen-Wilson, 2001; Plaut
and Booth, 2000). Some authors are considering morphol-
ogy as the “convergence of codes”, that is, as a set of quasi-
regular correspondences between form and meaning, that
would probably be linked at a joint representation level
(Seidenberg and Gonnerman, 2000). Clear evidence of this
strong link has also been put forward by (Ramscar, 2001)
showing that the choice of regular or non-regular past tense
inflection of a nonce verb is strongly influenced by the con-
text in which the nonce verb appears. If the word appears
in a context which entails a meaning similar to that of an
irregular verb that is also similar in form to the nonce word,
e.g. “frink” - “drink”, participants form its past tense in
the same manner as the irregular form, e.g., “frank” from
“drank”. If it appears in a context alike to a similar regu-
lar verb, e.g, “wink”, participants inflect in regularly, e.g.
“frinked” from “winked”. Crucially, the meaning of this
form is totally determined by context. This in line with the
results of (McDonald and Ramscar, 2001), which show how

the meaning of a nonce word is modulated by the context
in which it appears. In this respect, our vectors constitute a
first approach to such kind of representation: they include
contextual and syntactic information. A further step will
be the inclusion of word form information in this system,
which is left for future research. Our lexical representations
are formed by accumulation of predictions. On the one
hand, several authors are currently investigating the strong
role played by anticipation and prediction in human cogni-
tive processing (e.g., Altmann, 2001). On the other hand,
some current models of human lexical processing include
the notion of accumulation, generally by recurrent loops in
the semantic representations (e.g., Plaut and Booth, 2000).

Acknowledgments We are indebted to Harald Baayen and Rob

Schreuder for helpful discussion of the ideas and techniques
described in this paper.
The first author was supported by the Dutch Research Coun-
cil (NWO) through a PIONIER grant awarded to R. Harald
Baayen. The second author is funded through the DUMAS
project, supported by the European Union IST Programme
(contract IST-2000-29452).

6. References

Gerry Altmann. 2001. Grammar learning by adults, in-
fants, and neural networks: A case study. In 7th Annual
Conference on Architectures and Mechanisms for Lan-
guage Processing AMLaP-2001, Saarbriicken, Germany.

R. Harald Baayen, Richard Piepenbrock, and Léon Gu-
likers. 1995. The CELEX lexical database (CD-ROM).
Linguistic Data Consortium, University of Pennsylvania,
Philadelphia, PA.

C. Burgess and K. Lund. 1998. The dynamics of meaning
in memory. In E. Dietrich and A. B. Markman, editors,
Cognitive dynamics: Conceptual change in humans and
machines. Lawrence Erlbaum Associates, Mahwah, NJ.

Walter Daelemans, J. Zavrel, K. Van der Sloot, and
A. Van den Bosch. 2000. TiMBL: Tilburg Memory
Based Learner Reference Guide. Version 3.0. Technical
Report ILK 00-01, Computational Linguistics Tilburg
University, March.

. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer,
and R. Harshman. 1990. Indexing by latent semantic
analysis. Journal of the Society for Information Science,
41(6):391-407.

J. L. Elman. 1990. Finding structure in time. Cognitive

Science, 14:179-211.

J. L. Elman. 1993. Learning and development in neural
networks: The importance of starting small. Cognition,
48:71-99.

M. Gareth Gaskell and William D. Marslen-Wilson. 2001.
Representation and competition in the perception of spo-
ken words. (in press) Cognitive Psychology.

Z. Harris. 1968. Mathematical Structures of Language.
New York: Interscience publishers.

P. Kanerva, J. Kristofersson, and A. Holst. 2000. Random
indexing of text samples for latent semantic analysis. In
Proceedings of the 22nd Annual Conference of the Cog-
nitive Science Society, page 1036. Mahwah, New Jersey:
Erlbaum.

79

J. Karlgren and M. Sahlgren. 2001. From words to under-
standing. In Y. Uesaka, P. Kanerva, and H. Asoh, editors,
Foundations of real-world intelligence, pages 294-308.
Stanford: CSLI Publications.

T. K. Landauer and S. T. Dumais. 1997. A solution to
plato’s problem: The latent semantic analysis theory of
acquisition, induction and representation of knowledge.
Psychological Review, 104(2):211-240.

K. Lund and C. Burgess. 1996. Producing high-
dimensional semantic spaces from lexical co-occurrence.
Behaviour Research Methods, Instruments, and Comput-
ers, 28(2):203-208.

K. Lund, C. Burgess, and R. A. Atchley. 1995. Seman-
tic and associative priming in high-dimensional semantic
space. In Proceedings of the 17th Annual Conference of
the Cognitive Science Society, pages 660-665, Hillsdale,
NJ. Erlbaum.

Scott McDonald and Michael Ramscar. 2001. Testing
the distributional hypothesis: The influence of context
judgements of semantic similarity. In Proceedings of the
23rd Annual Conference of the Cognitive Science Soci-
ery.

Scott A. McDonald and Richard C. Shillcock. 2001. Re-
thinking the word frequency effect: The neglected role
of distributional information in lexical processing. Lan-
guage and Speech, 44(3):295-323.

G. A. Miller. 1990. Wordnet: An on-line lexical database.
International Journal of Lexicography, 3:235-312.

Fermin Moscoso del Prado and R. Harald Baayen. 2001.
Unsupervised extraction of high-dimensional lexical rep-
resentations from corpora using simple recurrent net-
works. In Alessandro Lenci, Simonetta Montemagni,
and Vito Pirrelli, editors, The Acquisition and Represen-
tation of Word Meaning. Kluwer Academic Publishers
(forthcoming).

J. C. Pinheiro and D. M. Bates. 2000. Mixed-effects models
in S and S-PLUS. Statistics and Computing. Springer,
New York.

D. C. Plaut and J. R. Booth. 2000. Individual and develop-
mental differences in semantic priming: Empirical and
computational support for a single mechanism account
of lexical processing. Psychological Review, 107:786—
823.

J. R. Quinlan. 1993. Programs for Machine Learning.
Morgan Kauffmann, San Mateo, CA.

Michael Ramscar. 2001. The role of meaning in inflection:
Why past tense doesn’t require a rule. (in press) Cogni-
tive Psychology.

Douglas L. T. Rohde and David C. Plaut. 1999. Language
acquisition in the absence of explicit negative evidence:
how important is starting small? Cognition, 72(1):67—
109.

Douglas L. T. Rohde and David C. Plaut. 2001. Less is less
in language acquisition. In P. Quinlan, editor, Connec-
tionist Modelling of Cognitive Development. (in press)
Psychology Press, Hove, U.K.

Douglas L. T. Rohde. 1999. LENS: The light, efficient
network simulator. Technical Report CMU-CS-99-164,
Carnegie Mellon University, Pittsburg, PA.

Magnus Sahlgren. 2001. Vector-based semantic analysis:
Representing word meanings based on random labels.
In Alessandro Lenci, Simonetta Montemagni, and Vito
Pirrelli, editors, The Acquisition and Representation of
Word Meaning. Kluwer Academic Publishers (Forthcom-
ing).

Patrick Schone and Daniel Jurafsky. 2001. Knowledge free
induction of inflectional morphologies. In Proceedings
of the North American Chapter of the Association for
Computational Linguistics NAACL-2001.

Hinrich Schiitze. 1992. Dimensions of meaning. In Pro-
ceedings of Supercomputing 92, pages 787-796.

Mark S. Seidenberg and Laura M. Gonnerman. 2000. Ex-
plaining derivational morphology as the convergence of
codes. Trends in the Cognitive Sciences, 4(9):353-361.

Ludwig Wittgenstein. 1953. Philosophical Investigations.
Oxford, Blackwell.

G. K. Zipf. 1949. Human Behavior and the Principle of
Least Effort. Addison-Wesley.

80

Detection of Errors in PoS-Tagged Corpora

by Bootstrapping Generalized Negative n-grams

Pavel Kvéton and Karel Oliva

Austrian Research Institute for Artificial Intelligence (OFAT)
Schottengasse 3, A-1010 Wien, Austria
{pavel karel }(@oefai.at

Abstract
This paper presents two simple yet in practice very efficient bootstrapping techniques serving for automatic detection of those
positions in a part-of-speech tagged corpus where an error is to be suspected. The first approach is based on the idea of stepwise
learning and application of "negative bigrams", i.e. on the search for pairs of adjacent tags which constitute an incorrect configuration
in a text of a particular language (in English, e.g., the bigram 4RTICLE - FINITE VERB). As the second technique, the paper describes the
stepwise generalization of the "negative bigrams" into "negative n-grams" (for increasing neN) which indeed provides a powerful tool
for error detection in a corpus. The evaluation of results of the approach when used for error detection in the NEGRA corpus of German
and the general implications for the quality of results of statistical taggers are also discussed. Illustrative examples in the text are taken
from German, and hence at least a basic command of this language would be helpful for their understanding - due to the complexity of
the necessary accompanying explanation, the examples are neither glossed nor translated. However, the central ideas of the paper

should be understandable also without any knowledge of German.

1 Errors in PoS-Tagged Corpora

The importance of correctness (error-freeness) of
language resources in general and of tagged corpora in
particular cannot probably be overestimated. However,
the definition of what constitutes an error in a tagged
corpus depends on the intended usage of this corpus.
If we consider a quite typical case of a Part-of-Speech
(PoS) tagged corpus used for training statistical taggers,
then an error is defined naturally as any deviation from
the regularities which the system is expected to learn; in
this particular case this means that the corpus should
contain neither errors in assignment PoS-tags nor
ungrammatical constructions in the corpus body', since if
any of the two cases is present in the corpus, then the
learning process necessarily:

e gets a confused view of probability distribution of
configurations (e.g., trigrams) in a correct text

and/or, even worse (and, alas, much more likely)

e gets positive evidence also about configurations (e.g.,
trigrams) which should not occur as the output of
tagging linguistically correct texts, while simulta-
neously getting less evidence about correct
configurations.

If we consider PoS-tagged corpora destinated for testing
NLP systems, then obviously they should not contain any
errors in tagging (since this would be detrimental to the
validity of results of the testing) but on the other hand
they should contain a certain amount of ungrammatical
constructions, in order to test the behaviour of the tested
system on a realistic input.

Both these cases share the quiet presupposition that the

tagset used is linguistically adequate, i.e. it is sufficient

" In this paper we on purpose do not distinguish between
"genuine" ungrammaticality, i.e. one which was present already
in the source text, and ungrammaticality which came into being
as a result of faulty conversion of the source into the corpus-
internal format, e.g., incorrect tokenization, OCR-errors, etc.

81

for unequivocal and consistent assignment of tags to the
source text’.

As for using annotated corpora for linguistic research, it
seems that even inadequacies in the tagset are tolerable
provided they are marked off properly - in fact, these
spots in the corpus might well be quite an important
source of linguistic investigation since, more often than
not, they constitute direct pointers to occurrences of
linguistically "interesting" (or at least "difficult")
constructions in the text.

2 Representativity

In corpus linguistics, the term representativity is under-

stood as the representativity of a corpus wrt. kind of text

or some phenomenon.

In this section, we intend to scrutinize the issue of

representativity of a part-of-speech (PoS) tagged corpus

wrt. to bigrams’. In this case, the phenomena’ whose

presence and relative frequency are at stake are:

e bigrams, i.c. pairs [First,Second] of tags of words
occurring in the corpus adjacently and in this order

® unigrams, i.e. the individual tags.

We shall define the qualitative representativity wrt.

bigrams as the kind of representativity meeting the

following two complementary parts:

% This problem might be — in a very simplified form — illustrated
on an example of a tagset introducing tags for NOUNs and VERBS
only, and then trying to tag the sentence John walks slowly -
whichever tag is assigned to the word slowly, it is obviously an
incorrect one. Natural as this requirement might seem, it is in
fact not met fully satisfactorily in any tagset we know of;, for
more, cf. (Kvéton and Oliva in prep.).

* The case of a trigrams, used more usual in tagging practice,
would be almost identical but require more lengthy explanat-
ions. For the conciseness of argument, we limit the discussion to
bigrams in most parts of the text.

4 In an indeed broadly understood sense of the word
"phenomenon".

e the representativity wrt. the presence of all valid
bigrams of the language in the corpus, which means
that if any bigram [First,Second] is a bigram in a
correct sentence of the language, then such a bigram
occurs also in the corpus - this part might be called
positive representativity

e the representativity wrt. the absence of all invalid
bigrams of the language in the corpus, which means
that if any bigram [First,Second] is a bigram which
cannot occur in a correct (i.e. grammatical) sentence
of the language, then such a bigram does not occur in
the corpus - this part might be called negative
representativity.

If a corpus is both positively and negatively

representative, then indeed it can be said to be a

qualitatively representative corpus’. In our particular

example this means that a bigram occurs in a qualitatively

representative (wrt. bigrams) corpus if and only if it is a

possible bigram in the language (and from this it already

follows that any unigram occurs in such a corpus if and
only if it is a possible unigram®). From this formulation, it
is also clear that the qualitative representativity depends
on the notion of grammaticality, that is, on the "language

competence" — on the ability of distinguishing between a

grammatical and an ungrammatical sentence.

The quantitative representativity of a corpus wrt. bigrams

can then be approximated as the requirement that the

frequency of any bigram and any unigram occurring in
the corpus be in the proportion "as in the language
performance” to the frequency of occurrence of all other
bigrams or unigrams, respectively’. However, even when
its basic idea is quite intuitive and natural, it is not
entirely clear whether quantitative representativity can be
formalized rigorously. At stake is measuring the
occurrence of a bigram (and of a unigram) within the
"complete language performance”, understood as set of
utterances of a language. This set, however, is infinite if
considered theoretically (i.e. as set of all possible
utterances in the language) and finite but practically
unattainable if considered as a set of utterances realized
within a certain time span (also, duc to immanent
language change, it is questionable whether the concept of
set of utterances over a time span is a true performance of

a single language). Notwithstanding these problems, the

frequencies are used in practice (e.g., for the purpose of

training statistical taggers), and hence it is useful to state
openly what they really mean: in our example, it is the

relative frequencies of the bigrams (and unigrams) in a

particular (learning or otherwise referential) corpus. For

this reason, since we would not like to be bound to a

particular corpus, we refrain from quantitative

3 The definitions of positive and negative representativity are
obviously easily transferable to cases with other definitions of a
phenomenon. Following this, the definition of qualitative
representativity holds of course generally, not only in the
particular case of a corpus representative wrt. bigrams.

® This assertion holds only on condition that each sentence of the
language is of length two (measured in words) or longer.
Similarly, a corpus qualitatively representative wrt. trigrams is
qualitatively representative wrt. bigrams and wrt. unigrams only
on condition that each sentence is of length three at least, etc.

7 From this it easily follows that any quantitatively represent-
ative corpus is also a qualitatively representative corpus.

82

representativity in the following and we shall deal only
with qualitative representativity.
3 PoS-Tagging Errors Detection

In this (core) section, we shall concentrate on methods
and techniques of generating "almost error-free" corpora,
or, more precisely, on the possibilities of (semi-)auto-
matic detection (and hence correction) of errors in a PoS-
tagged corpus. Due to this, i.e. to the aim of achieving an
"error-free" corpus, we shall not distinguish between er-
rors due to incorrect tagging, faulty conversion or ill-
formed input, and we shall treat them on a par.

The approach as well as its impact on the correctness of
the resulting corpus will be demonstrated on the version 2
of the NEGRA corpus of German (for the corpus itself see
www.coli.uni-sb.de/sfb378/negra-corpus, for description
cf. (Skut et al. 1997)). However, we believe the solutions
developed and presented in this paper are not bound
particularly to correcting this corpus or to German, but
hold generally.

The error search we use has several phases which differ in
the amount of context that has to be taken into
consideration during the error detection process. Put
plainly, the extent of context mirrors the linguistic
complexity of the detection, or, in other words, at the
moment when the objective is to search for "complex" er-
rors, the "simple(r)" errors should be already eliminated.
The first, preliminary phase, is thus the search for errors
which are detectable in the minimal local context of one
neighbouring word.

3.1 Bootstrapping Impossible Bigrams

Our starting point is the search for "impossible bigrams".
These as a rule occur in a realistic large-scale PoS-tagged
corpus, for the following reasons:

e in a hand tagged corpus, an "impossible bigram"
results from (and unmistakeably signals) either an ill-
formed text in the corpus body (including wrong
conversion) or a human error in tagging

e in a corpus tagged by a statistical tagger, an "im-
possible bigram" may result also from an ill-formed
source text, as above, and further either from
incorrect tagging of the training data (i.e. the error
was seen as a "correct configuration (bigram)" in the
training data, and was hence learned by the tagger) or
from the process of so-called "smoothing", i.e. of as-
signment of non-zero probabilities also to config-
urations (bigrams, in the case discussed) which were
not seen in the learning phase®.

For learning the process of detecting errors in PoS-

tagging, let us make a provisional and in practice

unrealistic assumption (which we shall correct
immediately) that we have a qualitatively representative

(wrt. bigrams) corpus of sentences of a certain language at

our disposal.

Given such a (hypothetical) corpus, all the bigrams in the

corpus are to be collected to a set CB (correct bigrams),

and then the complement of CB to the set of all possible
bigrams is to be computed; let this set be called IB

(incorrect bigrams). The idea is now that if any element of

This "smoothing" is necessary in any purely statistical tagger
since - put very simply - otherwise configurations (bigrams)
which were not seen during the learning phase cannot be
processed if they occur in the text to be tagged.

IB occurs in a PoS-tagged corpus whose correctness is to

be checked, then the two adjacent corpus positions where

this happened must contain an error (which then can be
corrected).

When implementing this approach to error detection, it is

first of all necessary to realize that learning the

"impossible bigrams" is extremely sensible to both

aspects of the qualitative representativity of the learning

corpus:

® the lack of negative representativity: The presence of
an erroneous bigram in the set of CB causes that the
respective error cannot be detected in the corpus
whose correctness is to be checked (even a single
occurrence of a bigram in the learning corpus means
correctness of the bigram),

e the lack of positive representativity: The absence of a
correct bigram from the CB set causes this bigram to
occur in IB, and hence any of its occurrences in the
checked corpus to be marked as a possible error
(absence of a bigram in the learning corpus means in-
correctness of the bigram).

However, the available corpora are’ - at least as a rule -

not (qualitatively) representative. Therefore, in practice

this deficiency has to be compensated for by appropriate
means. When applying the approach to NEGRA, we
employed

e bootstrapping for achieving positive representativity
as good as possible on a given "training" corpus

e manual pruning of the CB and IB sets for achieving
negative representativity.

We started by very careful hand-cleaning errors in a very

small sub-corpus of about 80 sentences (about 1.200

words). From this small corpus, we generated the CB set,

and pruned it manually, using linguistic knowledge (as
well as linguistic imagination) about German syntax.

Based on the CB set achieved, we generated the corres-

ponding IB set and pruned it manually again. The

resulting IB set was then used for automatic detection of

"suspect spots" in the sample of next 500 sentences from

the corpus, and for hand-elimination of errors in this

sample where appropriate (obviously, not all IB violations
were genuine errors !). Thus we arrived at a cleaned
sample of 580 sentences, which we used just in the same
way for generating CB set, pruning it, generating IB set
and pruning this set, arriving at an IB set which we used
for detection of errors in the whole body of the corpus

(about 20.500 sentences, 350.000 positions).

The procedure was then re-applied to the whole corpus.

For this purpose, we divided the corpus into four parts of

approximately 5.000 sentences each. Then, proceeding in

four rounds, first the IB set was generated (without
manual checking) out of 15.000 sentences and then the IB
set was applied to the rest of the corpus (on the respective
5.000-sentence partition). The corrections based on the
results improved the corpus to such an extent that we

made the final round, this time dividing the corpus into 20

partitions with approximately 1.000 sentences each and

then reapplying the whole process 20 times.

° and will hardly ever become, disregarding their size: e.g., in
the body of the 100.000.000 positions of the Czech National
Corpus, we easily dicovered a case of a missing trigram (and
there are most probably many more missing - we just did not
search for them)

83

3.2 Bootstrapping Impossible #-grams

The "impossible bigrams" are a powerful tool for
checking the correctness of a corpus, however, a tool
which works on a very local scale only, since it is able to
detect solely errors which are detectable as deviations
from the set of possible pairs of adjacently standing tags.
Thus, obviously, quite a number of errors remain unde-
tected by such a strategy. As an example of such an as yet
"undetectable" error in German we might take the con-
figuration where two words tagged as finite verbs are
separated from each other by a string consisting of nouns,
adjectives, articles and prepositions only. In particular,
such a configuration is erroneous since the rules of Ger-
man orthography require that some kind of clause separat-
or (comma, dash, coordinating conjunction) occur
inbetween two finite verbs'”.
In order to be able to detect also such kind of errors, the
above "impossible bigrams" have to be extended
substantially. Searching for the generalization needed, it
is first of all necessary to get a linguistic view on the
"impossible bigrams", in other words, to get a deeper
insight into the impossibility for a certain pair of PoS-tags
to occur immediately following each other in any lin-
guistically correct and correctly tagged sentence. The
point is that this indeed does not happen by chance, that
any "impossible bigram" comes into being as a violation
of a certain - predominantly syntactic'' - rule(s) of the
language. Viewed in more detail, these violations might
be of the following nature:

e violation of constituency: The occurrence of an
"impossible bigram" in the text signals that - if the
tagging were correct - there is a basic constituency
relation violated (resulting in the occurrence of the
"impossible bigram"); as an example of such
configuration, we might consider the bigram
PREPOSITION - FINITE VERB (possible German
example string: ...fiir-PREP reiche-VFIN...). From this
it follows that either there is indeed an error in the
source text (in our example, probably a missing
word, e.g., Der Sprecher der UNO-Hilfsorganisation
teilte mit, fiir Arme reiche diese Hilfe nicht.) or there
was a tagging error detected (in the example, e.g., an
error as in the sentence ... fiir reiche Leute ist solche
Hilfe nicht notig...). The source of the error is in both
cases violation of the linguistic rule postulating that,
in German, a preposition must always be followed by

19 At stake are true regular finite forms, exempted are words
occurring in fixed collocations which do not function as heads
of clauses. As an example of such usage of a finite verb form,
one might take the collocation wie folgt, e.g., in the sentence
Diese Ubersicht sieht wie folgt aus: ... Mind that in this
sentence, the verb folgt has no subject, which is impossible with
any active finite verb form of a German verb subcategorizing for
a subject (and possible only marginally with passive forms, e.g.,
in Gestern wurde getanzt, or — obviously — with verbs which do
not subcategorize for a subject, such as fiieren, grauen in Mich
friert, Mir graut vor Statistik).

" Examples of other such violations are rare and are related
mainly to phonological rules. In English, relevant cases would
be the word pairs an table, a apple, provided the tagset were so
fine-grained to express such a distinction, better examples are to
be found in other languages, e.g. the case of the Czech
ambiguous word se, cf. (Oliva to appear).

a corresponding noun (NP) or at least by an adjectival
remnant of this NP'?,
® violation of feature cooccurrence rules (such as
agreement, subcategorization, etc.): The point here is
that there exist configurations such that if two
wordforms (words with certain morphological
features) occur next to each other, they necessarily
stand in such a configuration, and because of this also
in a certain grammatical relation. This relation, in
turn, poses further requirements on the (morpholog-
ical) features of the two wordforms, and if these
requirements are not met, the tags of the two
wordforms result in an "impossible bigram". Let us
take an example again, this time with tags expressing
also morphological characteristics: if the words ...
Staaten schickt ... are tagged as Staaten-NOUN-MASC-
PL-NOM and schickt-MAINVERB-PRES-ACT-SG, then the
respective tags NOUN-MASC-PL-NOM and MAINVERB-
PRES-ACT-SG (in this order) create an "impossible
bigram". The reason for this bigram being impossible
is that if a noun in nominative case occurs in a
German clause headed by a finite main verb different
from sein/werden (which, however, are not tagged as
main verbs in the STTS tagset used in NEGRA), then
either this noun must be the verb's subject, which in
turn requires that the noun and the verb agree in
number, or that the noun is a part of coordinated
subject, in which case the verb must be in plural. The
configuration from the example meets neither of
these conditions, and hence it generates an
"impossible bigram".
The central observation lies then in the fact that the
property of being an impossible configuration can often
be retained also after the components of the "impossible
bigram" get separated by material occurring inbetween
them. Thus, for example, in both our examples the
property of being an impossible configuration is con-
served if an adverb is placed inbetween, creating thus an
"impossible trigram". In particular, in the first example,
the configuration PREP ADV VFIN cannot be a valid trigram,
exactly for the same reasons as PREP VFIN was not a valid
bigram: 4DV is not a valid NP remnant. In the second case,
the configuration NOUN-MASC-PL-NOM ADV MAINVERB-
PRES-ACT-SG is not a valid trigram either, since obviously
the presence (or absence) of an adverb in the sentence
does not change the subject-verb relation in the sentence.
In fact, due to recursivity of language, also two, three and
in fact any number of adverbs would not make the config-
uration grammatical and hence would not disturb the error
detection potential of the "extended impossible bigrams"
from the examples.
These linguistic considerations have a straightforward
practical application. Provided a qualitatively represent-
ative (in the above ideal sense) corpus is available, it is
possible to construct the IB set. Then, for each bigram
[First,Second] from this set, it is possible to collect all
trigrams of the form /[First, Between,Second] occurring in
the corpus, and collect all the possible tags Between in the
set Possible Inner Tags. Furthermore, given the imposs-
ible bigram [First,Second] and the respective set
Possible Inner Tags, the learning corpus is to be

2 unlike English, (standard) German has no preposition

stranding and similar phenomena - we disregard the colloquial
examples like Da weiss ich nix von.

84

searched for all tetragrams [FirstMiddle 1,Middle 2,
Second]. In case one of the tags Middle 1, Middle 2
occurs already in the set Possible Inner Tags, no action
is to be taken, but in case the set Possible Inner Tags
contains neither of Middle 1, Middle 2, both the tags
Middle 1 and Middle 2 are to be added into the set
Possible Inner Tags. The same action is then to be re-
peated for pentagrams, hexagrams, etc., until the maximal
length of sentence in the learn corpus prevents any further
prolongation of the n-grams and the process terminates.

If now the set Impossible Inner Tags is constructed as
the complement of Possible Inner Tags relatively to the
whole tagset, then any n-gram consisting of the tag First,
of any number of tags from the set Impossible In-
ner Tags and finally from the tag Second is very likely to
be an n-gram impossible in the language and hence if it
occurs in the corpus whose correctness is to be checked, it
is to be signalled as a "suspect spot". Obviously, this idea
is again based on the assumption of qualitative
representativity of the learning corpus, so that for training
on a realistic corpus the correctness of the resulting
"impossible n-grams" has to be hand-checked. This,
however, is well-worth the effort, since the resulting
"impossible n-grams" are an extremely efficient tool for
error detection. The implementation of the idea is a
straightforward extension of the above approach to "im-
possible bigrams". The respective algorithm in a semi-
formal coating looks like as in Fig 1.

The above approach does not guarantee, however, that all
"impossible n-grams" are considered. In particular, any
"impossible trigram" [First,Second, Third] cannot be
detected as such (i.e. as impossible) if the [First,Second],
[Second, Third] and [First, Third] are all possible bigrams
(i.e. they all belong to the set CB). Such an "impossible
trigram" in German is, e.g., [nominative-noun,
main verb,nominative-noun] - this trigram is impossible'’
since no German verb apart from sein/werden (which, as
said above, are not tagged as main verbs in NEGRA) can
occur in a context where a nominative noun stands both to
its right and to its left, however, all the respective bigrams
occur quite commonly (e.g., Johann schlidfi, Jetzt schidft
Johann, Konig Johann schldft). Here, an obvious gene-
ralization of the approach from "impossible bigrams" to
"impossible trigrams" (and "impossible tetragrams", etc.)
is possible, however, we did not perform this in full due
to the amount of possible trigrams as well as to the data
sparseness problem which, taken together, would make
the manual work on checking the results unfeasible in
practice. We rather applied only about 20 "impossible tri-
grams" and 6 "impossible tetragrams" stemming from
"linguistic invention" (such as the trigram discussed
above).As above, this empirical (performance-based)
result has to be checked manually (through a human
language competence) for correctness, since the
performance results might be distorted by tagging errors
or by lack of representativity of the corpus.

3 Exempted are quotations and other metalinguistic contexts,
such as Der Fluss heisst Donau, Peter iibersetzte Faust - eine
Tragddie ins Englische als Fist - one tragedy, which, however,
are as a rule lexically specific and hence can be coped with as
such.

forall invalid bigram [First, Second]
{n:=3;
possible i t =@,

while n=<maximal sentence length in_corpus

do { find all inner-sentential n-grams [First, V1, V2, .., Vn-2, Second],

for cach n-gram found

doif {V1, V2, ., Vn-2} N possible i t=0
then allowed i t := possible i t U {V1, V2, .. Vn-2};

n=n+1;

I
impossible i t([First, Second]) = tagset - possible i t;

Figure 1: Algorithm for Bootstrapping Negative n-grams

The above approach does not guarantee, however, that all
"impossible n-grams" are considered. For example, any
"impossible trigram" [First,Second, Third] cannot be
detected as such (i.c. as impossible) if the [First,Second],
[Second, Third] and [First, Third] are all possible bigrams
(i.c. they all belong to the set CB). Such an "impossible
trigram" in German is, e.g., [nominative-noun,
main_verb,nominative-noun] - this trigram is impossible'*
since no German verb apart from sein/werden (which, as
said above, are not tagged as main verbs via the STTS
tagset used in NEGRA) can occur in a context where a no-
minative noun stands both to its right and to its left,
however, all the respective bigrams occur quite
commonly (e.g., Johann schlidfi, Jetzt schlidft Johann,
Konig Johann schldft). Here, an obvious generalization of
the approach from "impossible bigrams" to "impossible
trigrams" (and "impossible tetragrams”, etc.) is possible,
however, we did not perform this in full due to the
amount of possible trigrams as well as to the data
sparseness problem which, taken together, would make
the manual work on checking the results unfeasible in
practice. We rather applied only about 20 "impossible tri-
grams" and 6 "impossible tetragrams" stemming from
"linguistic invention" (such as the trigram discussed
above).

4 Evaluation of the Results

By means of the error-detection techniques described
above, we were able to correct 2.661 errors in the NEGRA
corpus. These errors were of all sorts mentioned in Sect.
1, however the prevailing part was that of incorrect
tagging (only less than 8% were genuine source errors,
about 26% were errors in segmentation). The whole
resulted in changes on 3.774 lines of the corpus; the
rectification of errors in segmentation resulted in reducing
the number of corpus positions by over 700, from 355.096
to 354.354

After finishing the corrections, we experimented with
training and testing the TnT tagger (Brants, 2000) on the
"old" and on the "corrected" version of NEGRA. We used
the same testing as described by Brants, i.e. dividing each
of the corpus into ten contiguous parts of equal size, each
part having parallel starting and end position in each of
the versions, and then running the system ten times, each
time training on nine parts and testing on the tenth part,

4 Exempted are quotations and other metalinguistic contexts,
such as Der Fluss heisst Donau, Peter iibersetzte Faust - eine
Tragddie ins Englische als Fist - one tragedy, which, however,
are as a rule lexically specific and hence can be coped with as
such.

85

and finally computing the mean of the quality results. In

doing so, we arrived at the following results:

e if both the training and the testing was performed on
the "old" NEGRA, the tags assigned by the TnT tagger
differed from the hand-assigned tags within the test
sections on (together) 11.138 positions (out of the
total of 355.096), which yields the error rate of
3,14%

e if both the training and the testing was performed on
the "correct" NEGRA, the tags assigned by the TnT
tagger differed from the hand-assigned tags of the
test sections on (together) 10.889 positions (out of the
total of 354.354), which yields the error rate of
3.07%

e in the most interesting final experiment, the training
was performed on the "old" and the testing on the
"correct" NEGRA; in the result, the tags assigned by
TnT differed from the hand-assigned tags in the test
sections on (together) 12.075 positions (out of the
total of 354.354), yielding the error rate of 3,41%.

These results show that there was only a negligible (and,

according to the 4 test, statistically insignificant)

difference between the results in the cases when the
tagger was both trained and tested on "old" corpus and
both trained and tested on the "corrected" corpus.

However, the difference in the error rate when the tagger

was once trained on the "old" and once on the "corrected"

version, and then in both cases tested on the "corrected"
version'’, brought up a relative error improvement of

9,97%. This improvement documents the old and hardly

surprising truth that - apart from the size - also the

correctness of the training data is absolutely essential for
the results of a statistical tagger.

Conclusions

The main contribution of this paper lies in the
presentation of a method for detecting errors in part-of-
speech tagged corpus which is both quite powerful (as to
coverage of errors) and - due to bootstrapping - easy to
apply, and hence it offers a relatively low-cost means for
achieving high-quality PoS-tagged corpora. The main
advantage is that the approach described is based on the
combination of focussed search for errors of a particular,
specific type with bootstrapping of the search, which
makes it possible to detect errors even in a very large
corpus where manual checking would not be feasible (at
least in practice), since it requires passing through the

'S For obvious reasons, we did not even consider training on the
"corrected" corpus and testing on the "old" one.

whole of the text and paying attention to all kinds of
possible violations - while the approach described con-
centrates on violations of particular phenomena on
particular spots. Hence, it allows for straightforward
checking whether an error really occurs - and if so, for a
direct correction.

As a side-effect, it should be also mentioned that the
method allows not for detecting errors only, but also for
detecting inconsistencies in hand-tagging (i.e. differences
in application of a given tagging scheme by different
human annotators and/or in different time), and even
inconsistencies in the tagging guidelines. A particular
issue is further the area of detecting and tagging idioms
and collocations, in the particular case when these take a
form which makes them deviate from the rules of
standard syntax (i.e. they are detected as "suspect spots”
by the method). For details on all these points, including
the particular problems encountered in NEGRA, cf.
(Kvétont and Oliva in prep.).

Acknowledgement

This work has been sponsored by the Fonds zur Férder-
ung der wissenschaftlichen Forschung (FWF), Grant No.
P12920. The Austrian Research Institute for Artificial
Intelligence (OFAI) is supported by the Austrian Federal
Ministry of Education, Science and Culture.

86

References

Brants T. (2000). 7nT — A Statistical part-of-speech
tagger, in: Proceedings of the 6th Applied Natural
Language Processing conference, Seattle

Hirakawa H., Ono K. and Yoshimura Y. (2000).
Automatic refinement of a PoS tagger using a reliable
parser and plain text corpora, in: Proceedings of the
18th Coling conference, Saarbriicken

Kv¢toi P. and Oliva K. (in prep.). Correcting the
NEGRA Corpus: Methods, Results, Implications, OFAI
Technical Report

Miiller F.H. and Ule T. (2001). Satzkiammer annotieren
und tags korrigieren: FEin mehrstufiges top-down-
bottom-up System zur flachen, robusten Annotierung
von Sdtzen im Deutschen, in: Proceedings der GLDV-
Friihjahrstagung 2001, GieBen

NEGRA. www.coli.uni-sb.de/sfb378/negra-corpus

Oliva K. (2001). The possibilities of automatic
detection/correction of errors in tagged corpora: a
pilot study on a German corpus, in: 4th International
conference "Text, Speech and Dialogue" TSD 2001,
Lecture Notes in Artificial Intelligence 2166, Springer,
Berlin 2001

Oliva K. (to appear). Linguistics-based tagging of Czech:
disambiguation of 'se' as a fest case, in: Proceedings of
4th European Conference on Formal Description of
Slavic Languages held in Potsdam from 28th till 30th
November 2001

Petkevi¢ V. (2001). Grammatical agreement and auto-
matic morphological disambiguation of inflectional
languages, in: 4th International conference "Text,
Speech and Dialogue" TSD 2001, Lecture Notes in
Artificial Intelligence 2166, Springer, Berlin 2001

Schiller A., Teufel S., Stéckert C. and Thielen C. (1999).
Guidelines fiir das Tagging deutscher Text corpora,
University of Stuttgart / University of Tiibingen

Skut W., Krenn B., Brants T. and Uszkoreit H. (1997).
An annotation scheme for free word order languages,
in: Proceedings of the 3rd Applied Natural Language
Processing Conference, Washington D.C.

A Comparison Of Efficacy And Assumptions Of Bootstrapping Algorithms For
Training Information Extraction Systems

Rayid Ghani* and Rosie Jones'

* Accenture Technology Labs
Chicago, IL 60601, USA
rayid.ghani @accenture.com

TSchool of Computer Science
Carnegie Mellon University, Pittsburgh PA 15213, USA
rosie.jones @cs.cmu.edu

Abstract

Information Extraction systems offer a way of automating the discovery of information from text documents. Research and commercial
systems use considerable training data to learn dictionaries and patterns to use for extraction. Learning to extract useful information from
text data using only minutes of user time means that we need to leverage unlabeled data to accompany the small amount of labeled data.
Several algorithms have been proposed for bootstrapping from very few examples for several text learning tasks but no systematic effort
has been made to apply all of them to information extraction tasks. In this paper we compare a bootstrapping algorithm developed for
information extraction, meta-bootstrapping, with two others previously developed or evaluated for document classification; cotraining
and coEM. We discuss properties of these algorithms that affect their efficacy for training information extraction systems and evaluate
their performance when using scant training data for learning several information extraction tasks. We also discuss the assumptions
underlying each algorithm such as that seeds supplied by a user will be present and correct in the data, that noun-phrases and their contexts
contain redundant information about the distribution of classes, and that syntactic co-occurrence correlates with semantic similarity. We
examine these assumptions by assessing their empirical validity across several data sets and information extraction tasks.

1. Introduction al., 2000b).

Information Extraction systems offer a way of automat- A related set of research uses labeled and unlabeled data
ing the discovery of information from text documents. Both i pro!:)l.er.n domains where the féatur es naturally divi.de into
research and commercial systems for information extrac- two disjoint sets. Blum gnd Mitchell .(B.lum and Mitchell,
tion need large amounts of labeled training data to learn 1998) presented.an algorithm for classifying web pages that
dictionaries and extraction patterns. Collecting these la- builds two classifiers: one over the words t.hat appear on the
beled examples can be very expensive, thus emphasizing page, and another over the words appearing in hyperlinks
the need for algorithms that can provide accurate classifi- ~ Pointing to that page. Datasets whose features naturally
cations with only a a few labeled examples. One way to partition into two sets, and algorithms that use this divi-
reduce the amount of labeled data required is to develop al- ~ sion, fall into the co-training setting (Blum and Mitchell,
gorithms that can learn effectively from a small number of ~ 1998). Meta-Bootstrapping (Riloff and Jones, 1999) is an
labeled examples augmented with a large number of unla- approach to learning dictionaries for information extraction
beled examples. starting only from a handful of phrases which are examples

of the target class. It makes use of the fact that noun-phrases
and the partial-sentences they are embedded in can be used
as two complementary sources of information about seman-
tic classes. Similar methods have been used for named en-
tity classification (Collins and Singer, 1999).

Several algorithms have been proposed for bootstrap-
ping from very few examples for several text learning tasks.
Using Expectation Maximization to estimate maximum a
posteriori parameters of a generative model for text clas-
sification (Nigam et al., 2000), using a generative model

built from unlabeled data to perform discriminative classi- Although a lot of effort has been devoted to developing
fication (Jaakkola and Haussler, 1999), and using transduc- bootstrapping algorithms for text learning tasks, there has
tive inference for support vector machines to optimize per- been very little work in systematically applying these al-
formance on a specific test set (Joachims, 1999) are some gorithms for information extraction and evaluating them on
examples that have shown that unlabeled data can signifi- a common set of documents. All of the previously men-
cantly improve classification performance, especially with tioned techniques have been tested on different types of
sparse labeled training data. For information extraction, problems, with different sets of documents, under different
Yangarber et al. used seed information extraction template experimental conditions, thus making it difficult to objec-
patterns to find target sentences from unlabeled documents, tively evaluate the applicability and effectiveness of these
then assumed strongly correlated patterns are also relevant, algorithms. In this paper, we first describe a range of boot-

for learning new templates. They used an unlabeled corpus strapping approaches that fall into the cotraining setting and
of 5,000 to 10,000 documents, and suggest extending the lay out the underlying assumptions for each. We then ex-
size of the corpus used, as many initial patterns are very in- perimentally compare the performance of each algorithm
frequently occurring (Yangarber et al., 2000a; Yangarber et on a common set of information extraction tasks and docu-

87

ments and relate it to the degree to which the assumptions
are satisfied in the data sets and semantic learning tasks.

2. The Information Extraction Task

The information extraction tasks we tackle in this paper
involve extracting noun phrases that fall into the following
three semantic classes: organizations, people and locations.
It is important to note that although named entity recogniz-
ers are usually used to extract these classes, the distinction
we make in this paper is to extract all noun phrases (includ-
ing “construction company”, “jail warden”, and “far-flung
ports”) instead of restricting our task to only proper nouns
(which is the case in standard named entity recognizers).
Because our focus is extraction of general semantic classes,
we have not used many of the features common in English-
language named entity recognition, including ones based
on sequences of charactes in upper case, and matches to
dictionaries, though adding these could improve the accu-
racy for these classes. This is important to note since that
makes it likely that our results will translate to other seman-
tic classes which are not found in online lists or written in
capital letters.

The techniques we compare here are similar to those
that have been used for semantic lexicon induction (eg
(Riloff and Jones, 1999)). However, we believe that the
noun-phrases we extract should be taken “in context”.
Thus, terms we generally consider unambiguous, such as
place-names or dictionary terms, can now have different
meanings depending on the context that they occur in. For
example, the word “Phoenix” usually refers to a location,
as in the following sentence:

A scenic drive from Phoenix lies a place of leg-
endary beauty.

but can also refer to the “Phoenix Land Company”, as in
this sentence:

Phoenix seeks to divest non-strategic properties
if alternate uses cannot de monstrate sustainable
20% returns on capital investment.

We can group these types of occurences in three broad
categories:

General Polysemy: many words have multiple meanings.
For example, “company” can refer to a commercial
entity or to companionship.

General Terms: many words have a broad meaning that
can refer to entities of various types. For example,
“customer” can refer to a person or a company.

Proper Name Ambiguity: proper names can be associ-
ated with entities of different types. For example,
“John Hancock™ can refer to a person or a company,
sicne companies are often named after people.

In general, we belive that the context determines
whether the meaning of the word can be further deter-
mined and that we can correctly classify the noun phrase
into the semantic class by examining the immediate con-
text, in addition to the words in the noun phrase. Therefore

88

we approach this problem as an information extraction task,
where the goal is to extract and label noun phrase instances
that correspond to semantic categories of interest.

3. Data Set and Representation

As our data set, we used 4392 corporate web pages col-
lected for the WebKB project (Craven et al., 1998) of which
4160 were used for training and 232 were set aside as a test
set. We preprocessed the web pages by removing HTML
tags and adding periods to the end of sentences when neces-
sary.! We then parsed the web pages using a shallow parser.

We marked up the held out test data by labeling each
noun phrase as one or more of (NP) instance as an or-
ganization, person, location, or none. We addressed each
task as a binary classification task. Each noun phrase con-
text consists of two items: (1) the noun phrase itself, and
(2) and the context (an extraction pattern). We used the
AutoSlog (Riloff, 1996) system to generate extraction pat-
terns.

By using both the noun phrases and the contexts sur-
rounding them, we provide two different types of features
to our classifier. In many cases, the noun phrase itself will
be unambiguous and clearly associated with a semantic cat-
egory (e.g., “the corporation” will nearly always be an or-
ganization). In these cases, the noun phrase alone would
be sufficient for correct classification. In other cases, the
context itself is a dead give-away. For example, the context
containing the pattern “subsidiary of <np>" nearly always
extracts an organization. In those cases, the context alone is
sufficient. However, we suspect that both the noun phrase
and the context often play a role in determining the correct
classification.

4. Bootstrapping Algorithms

In this section we give a brief overview of each of the
algorithms we will be using for bootstrapping. We analyze
how the properties and assumptions of each may affect ac-
curacy.

4.1. Baseline Methods

Since our bootstrapping algorithms all use seed noun-
phrases for an initial labeling of the training data, we should
look at how much of their accuracy is based on the use of
those seeds, and how much is derived from bootstrapping
using those seeds. To this end, we implemented two base-
lines which use only the seeds, or noun-phrases containing
the seeds, but use no bootstrapping.

4.1.1. Extraction Using Seeds Only

All the algorithms we describe use seeds as their source
of information about the target class. A useful way of as-
sessing what we gain by using a bootstrapping algorithm is
to use the seeds as our sole model of information about the
target class. The seeds we use for bootstrapping all algo-
rithms are shown in Table 1.

"Web pages pose a problem for parsers because separate lines
do not always end with a period (e.g., list items and headers). We
used several heuristics to insert periods whenever an independent
line or phrase was suspected.

The algorithm for seed extraction is: any noun-phrase
in the test set exactly matching a word on the seed list is
assigned a score of 1. All other noun-phrases are assigned
the prior.

4.1.2. Head Labeling Extraction

All the bootstrapping algorithms we discuss use the
seeds to perform head-labeling to initialize the training set.
The algorithm for head labeling is: any noun-phrase in the
training set whose head matches a word on the seed list is
assigned a score of 1. This may not lead to completely ac-
curate initialization, if any of the seeds are ambiguous. We
will discuss this in more detail in Section 5.1.

In order to evaluate the contribution of the head-labeling
to overall performance of the bootstrapping, we performed
experiments using the head-labeling alone as information
in order to extracted from the unseen test set.

The algorithm for head labeling extraction is: any
noun-phrase in the test set whose head matches a word on
the seed list is assigned a score of 1. All other noun-phrases
are assigned the prior.

4.2. Bootstrapping Methods

The bootstrapping methods we describe fall under the
cotraining setting where the features naturally partition into
multiple disjoint sets, any of which individually is sufficient
to learn the task. The separation into feature sets we use for
the experiments in this paper is that of noun-phrases, and
noun-phrase-contexts.

4.2.1. Cotraining

Cotraining (Blum and Mitchell, 1998) is a bootstrap-
ping algorithm that was originally developed for combining
labeled and unlabeled data for text classification. At a high
level, it uses a feature split in the data and starting from
seed examples, labels the unlabeled data and adds the most
confidently labeled examples incrementally. When used in
our information extraction setting, the algorithm details are
as follows:

1. Initialize NPs from both positive and negative seeds
2. Use labeled NPs to score contexts

3. Select k£ most confident positive and negative contexts,
assign them the positive and negative labels

Use labeled contexts to label NPs

5. Select k most confident positive and negative NPs, as-
sign them the positive and negative labels

6. goto 2.

Note that cotraining assumes that we can accurately
model the data by assigning noun-phrases and contexts to
a class. When we add an example, it is either a member
of the class (assigned to the positive class, with a proba-
bility of 1.0) or not (assigned to the negative class, with a
probability of 0.0 of belonging to the target class). As we
will see in section 5.2., many noun-phrases, and many more
contexts, are inherently ambiguous. Cotraining may harm
its performance through its hard (binary 0/1) class assign-
ment.

89

4.2.2. CoEM

coEM was originally proposed for semi-supervised text
classification by Nigam & Ghani (Nigam and Ghani, 2000)
and is similar to the cotraining algorithm described above,
but incorporates some features of EM. coEM uses the fea-
ture split present in the data, like co-training, but is instead
of adding examples incrementally, it is iterative, like EM.
It starts off using the same initialization as cotraining and
creates two classifiers (one using the NPs and the other us-
ing the context) to score the unlabeled examples. Instead
of assigning the scored examples positive or negative la-
bels, coEM uses the scores associated with all the examples
and adds all of them to the labeled set probabilistically (in
the same way EM does for semi-supervised classification).
This process iterates until the classifiers converge.

Muslea et al. (Muslea et al., 2000) extended the co-EM
algorithm to incorporate active learning and showed that
it has a robust behavior on a large spectrum of problems
because of its ability to ask for the labels of the most am-
biguous examples, which compensates for the weaknesses
of the underlying semi-supervised algorithm.

In order to apply coEM to learning information extrac-
tion, we seed it with a small list of words. All noun-phrases
with those words as heads are assigned to the positive class,
to initialize the algorithm.

Note that coEM does not perform a hard clustering of
the data, but assigns probabilities between 0 and 1 of each
noun-phrase and context belonging to the target class. This
may reflect well the inherent ambiguity of many terms.

4.2.3. Meta-bootstrapping

Meta-bootstrapping (Riloff and Jones, 1999) is a simple
two-level bootstrapping algorithm using two features sets to
label one another in alternation. It is customized for infor-
mation extraction, using the feature sets noun-phrases and
noun-phrase-contexts (or caseframes). There is no notion
of negative examples or features, but only positive features
and unlabeled features. The two feature sets are used asym-
metrically. The noun-phrases are used as initial data and the
set of positive features grows as the algorithm runs, while
the noun-phrase-contexts are relearned with each outer it-
eration.

Heuristics are used to score the features from one set
at each iteration, based on co-occurrence frequency with
positive and unlabeled features, using both frequency of
co-occurrence, and diversity of co-occurring features. The
highest scoring features are added to the positive feature
list.

Meta-bootstrapping treats the noun-phrases and their
contexts asymmetrically. Once a context is labeled as posi-
tive, all of its co-occurring noun-phrases are assumed to be
positive. However, a noun-phrase labeled as positive is part
of a committee of noun-phrases voting on the next context
to be selected. After a phase of bootstrapping, all contexts
learned are discarded, and only the best noun-phrases are
retained in the permanent dictionary. The bootstrapping is
then recommenced using the expanded list of noun-phrases.
Once a noun-phrase is added to the permanent dictionary,
it is assumed to be representative of the positive class, with
confidence of 1.0.

Class
locations

Seeds

australia, canada, china, england,
france, germany, japan,

mexico, switzerland, united states
inc., praxair, company, companies,
dataram, halter marine group,
Xerox, arco, rayonier timberlands,
puretec

customers, subscriber, people,
users, shareholders, individuals,
clients, leader, director, customer

organizations

people

Table 1: Seeds used for initialization of bootstrapping.

4.3. Active Initialization

As we saw in the discussion of head-labeling (Section
4.1.2.), using seed words for initializing training may lead
to initialization that includes errors. We give measures of
the rate of errors in head-labeling in Table 3. We will aug-
ment the intialization of bootstrapping by correcting those
errors before bootstrapping begins, and seeing the effects
on test set extraction accuracy. We call this active initial-
ization, by analogy to active learning.

5. Assumptions in Bootstrapping
Algorithms

The bootstrapping algorithms described in Section 4.2.
have a number of assumptions in common; that initializa-
tion from seeds leads to labels which are accurate for the
target class, that seeds will be present in the data, that sim-
ilar syntactic distribution correlates with semantic similar-
ity, and that noun-phrases and their contexts are redundant
and unambiguous with respect to the semantic classes we
are attempting to learn. We assess the validity of each of
these assumptions by examining the data.

5.1.

All the algorithms we describe use seed words as their
source of information about the target class. An assumption
made by all the algorithms we present is that seed words
suggested by a user will be present in the data. We as-
sess this by comparing seed density for three different tasks
over two types of data, one collected specifically for the
task at hand, one drawn according to a uniform random
distribution over documents on the world wide web. The
seeds we use for initializing bootstrapping all algorithms
are shown in Table 1. We show the density of seed words
in different corpora in Table 2. Note that the people and
organizations classes are much more prevalent in the
company data we are working with than in documents ran-
domly obtained using Yahoo’s random URL page.

Another assumption that arises from using seeds is that
labeling using them accurately labels items in the target se-
mantic class. All three algorithms initialize the unlabeled
data by using the seeds to perform head labeling. Any
noun-phrase with a seed word as its head is labeled as pos-
itive. For example, when canada is in the seed word list,
both “eastern canada” and “marketnet inc. canada” are la-
beled as being positive examples. Table 3 shows the accu-
racy for locations and people. For people, some

Initialization from Seeds Assumption

90

Corpus | Class Seed-density

(/10,000)
fixed locations 18
random 21
fixed organizations 112
random 17
fixed people 70
random 33

Table 2: Density of seed words per 10,000 noun-phrases in fixes
corpus of company web pages, and corpus of randomly collected
web pages.

Class Accuracy
locations 98%
people 95%

Table 3: Accuracy of labeling examples automatically using
seed-heads.

words were mostly unambiguous, with the exception of a
few examples, “customers”, which was unambigous except
in prhases such as “industrial customers”. The seed-word
“people” also led to some training examples of questionable
utility, for example “invest in people”. If we learn the con-
text “invest in”, it may not help in learning to extract words
for people, in the general case. Other seed-words from
the people class proved to be very ambiguous; “leader”
was most often to used to describe a company, as in the
sentence “Anacomp is a world leader in digital document-
management services”.

We will discuss the results of correcting these errors be-
fore beginning bootstrapping in Section 6.3.

5.2. Feature Sets Redundancy Assumption

The bootstrapping algorithms we discuss all assume
that there is sufficient information in each feature set (noun-
phrases and contexts) to use either to label an example.
However, when we look at the ambiguity of noun-phrases
in the test set (Table 4) we see that 81 noun-phrases were
ambiguous between two classes, and 4 were ambiguous be-
tween three classes. This means that these 85 noun-phrases
(2% of the 4413 unique noun-phrases occurring in the test
set) are not in fact sufficient to identify the class. This
discrepancy may hurt cotraining and meta-bootstrapping
more, since they assume that we can classify noun-phrases
into a class with 100% accuracy.

When we examine the same information for contexts
(Table 4) we see even more ambiguity. 36% of contexts are
ambiguous between two or more classes.

We have another measure of the inherent ambiguity of
the noun-phrases making up our target class when we mea-
sure the inter-rater(labeler) agreement on the test set. We
randomly sampled 230 examples from the test collection,
broken into two subsets of size 114 and 116 examples. We
had four labelers label subsets with different amounts of
information. The three conditions were:

e noun-phrase, local syntactic context, and full sentence
(all)

e noun-phrase, local syntactic context (np-context)

Ambiguity | Class(es) Number
of NPs
none 3574
loc 114
1 org 451
person 189
loc, none 6
org, none 31
2 person, none 25
loc, org 6
org, person 13
3 loc, org, none 1
org, person, none 3

Table 4: Distribution of test NPs in classes
Ambiguity | Class(es) Number
of Pats
none 1068
loc 25
1 org 98
person 59
loc, none 51
org, none 271
2 person, none 206
loc, org 5
org, person 50
3 loc, org, none 18
org, person, none 83
4 loc, org, 6

person, none

Table 5: Distribution of test patterns in classes

e noun-phrase only (np).

The labelers were asked to label each example with
any or all of the labels organization, person and
location. Before-hand, they each labeled 100 exam-
ples separate from those described above (in the all con-
dition) and discussed ways of resolving ambiguous cases
(agreeing, for example, to count “we” as both person and
organization when it could be referring to the organi-
zation or the individuals in it. The distribution of conditions
to labelers is shown in Figure 6.

We found that when the labelers had access to the noun-
phrase, context, and the full sentence they occurred in, they
agreed on the labeling 90.5% of the time. However, when
one did not have the sentence (only the noun-phrase and
context), agreement dropped to 88.5%. Our algorithms
have only the noun-phrase and contexts to use for learn-
ing. Based on the agreement of our human labelers, we

Labeler | Set 1 Condition | Set 2 Condition
1 NP-context all

2 all NP-context

3 NP all

4 all NP

Table 6: Conditions for inter-rate evaluation - All stands for
NP, context and the entire sentence in which the NP-context
pair appeared

91

conjecture that the algorithms could do better with more
information.

5.3. Syntactic - Semantic Correlation Assumption

All the algorithms we address in this paper use the as-
sumption that phrases with similar syntactic distributions
have similar semantic meanings. It has been shown (Dagan
et al., 1999) that syntactic cooccurrence leads to cluster-
ings which are useful for natural language tasks. However,
since we seek to extract items from a single semantic target
class at a time, syntactic correlation may not be sufficient
to represent our desired semantic similarity.

The mismatch between syntactic correlation and seman-
tic similarity can be measured directly by measuring con-
text ambiguity, as we did in Section 5.2.. Consider the con-
text “visit <X>”, which is ambiguous between all four
of our classes location, person, organization
and none. It occurs as a location in ‘“visit our area”,
ambiguously between person and organization in
“visit us”, and as none in “visit our website”.

Similarly, examining the ambiguous noun-phrases we
see that occurring with a particular noun-phrase does not
necessarily determine the semantics of a context. Three of
the three-way ambiguous noun-phrases in our test set are:
“group”, “them” and “they”. Adding “they” to the model
when learning one class may cause an algorithm to add con-
texts which belong to a different class.

Meta-bootstrapping deals with this problem by specif-
ically forbidding a list of 35 stop words (mainly preposi-
tions) from being added to the dictionaries. In addition,
the heuristic that a caseframe be selected by many differ-
ent noun-phrases in the seed list helps prevent the addition
of a single ambiguous noun-phrase to have too strong an
influence on the bootstrapping. The probabilistic labeling
used by coEM helps prevent problems from this ambiguity.
Though we also implemented a stop-list for cotraining, its
all-or-nothing labeling means that ambiguous words not on
the stop list (such as “group”) may have a strong influence
on the bootstrapping.

6. Empirical Comparison of Bootstrapping
Algorithms

After running bootstrapping with each algorithm we
have two models: (1) a set of noun-phrases, with associ-
ated probabilities or scores, and (2) a set of contexts with
probabilities or scores. We then use these models to extract
examples of the target class from a held-out hand annotated
test corpus. Since we are able to associate scores with each
test example, we can sort the test results by score, and cal-
culate precision-recall curves.

6.1.

There are several ways of using the models produced by
bootstrapping to extract from the test corpus:

Extraction on the Test Corpus

1. Use only the noun-phrases. This corresponds to using
bootstrapping to acquire a lexicon of terms, along with
probabilities or weights reflecting confidence assigned
by the bootstrapping algorithm. This may have advan-
tage over lists of terms (such as proper names) which

have no such probabilities associated with them. The
probabilities allow us to sort extracted phrases and
thus control whether we obtain few, highly probable
members of the target class, or obtain good coverage,
at the expense of accuracy. We will measure these
trade-offs using precision and recall, discussed in Sec-
tion 6.2..

Use only the contexts. In this case we discard the
noun-phrases we learned during bootstrapping, and
use only the contexts as extraction patterns for extract-
ing on the test set. We extract a noun-phrase when it
occurs with one of the contexts in our model, using
the score assigned by that context. This may have the
advantage of allowing greater generalization. Unseen
words and phrases can be extracted from the test cor-
pus, and overspecialization based on the training cor-
pus can be avoided.

3. Use both models. To score a noun-phrase context
pair in the test set, assume independence, and multi-
ply the model noun-phrase and context scores to get
a probability for the example. Noun-phrases and con-
texts not seen in the training corpus are given a score
based on the prior probability. This has the advantage
of combining all the information we acquired during
training. This method is most effective for methods
which assign probability-like scores (coEM and co-
training). For meta-bootstrapping, there is no natural
way of combining the scores.

We experimented with these extraction methods for
all three algorithms, and found that method 2, extract-
ing using only the contexts, was by far the best for meta-
bootstrapping, so all our results for meta-bootstrapping use
this extraction method. CoEM and cotraining performed
best with method 3, combining information from both
noun-phrase and context models, so all results reported for
coEM and cotraining use this extraction method.

6.2. Evaluation

We use the models to score all noun-phrase in-
stances in the test corpus, using context-scoring for meta-
bootstrapping, and noun-phrase-context scoring for coEM
and cotraining, as described in Section 6.1.. Since we could
select a variety of thresholds if we used our models for clas-
sifiation, depending on the target application, we use a large
number of thresholds, calculating precision and recall for
each. Precision is given by

tpe
tpe + fpi
where tp; is the number of correct examples above the

threshold, and fp; is the number of incorrect examples
above the threshold. Recall is given by

Precision =

tpe
tpy + fry
where tp; is the number of correct examples above the

threshold and fn, is the number of correct examples below
the threshold.

Recall =

92

locations
l T
coem —
metaboot -
08 1 cotraining <
£ osf 7
a 04 |
0.2 r |
0 L ‘
’ 02 04 0.6 08 1
Recall
people
1 ‘ |
coem —
metaboot ---------
08t cotraining -]
=1
2
B
&
0 0.2 04 0.6 08)
Recall
organizations
1 ‘ |
coem ————
metaboot -
08 1 cotraining
=1
.2
8
&
0.2 e
0 ‘ ‘ ‘ |
0 0.2 04 0.6 08)
Recall
Figure 1: Comparison of bootstrapping using coEM, meta-

bootstrapping and cotraining, for the classes locations,
people and organizations.

6.3. Experimental Results

Figure 1 compares using models obtained by bootstrap-
ping with coEM, meta-bootstrapping and cotraining, for ex-
tracting on a held out test set. CoEM performs better than
meta-bootstrapping, while cotraining does very poorly.

Figure 2 shows that bootstrapping using unlabeled doc-
uments gives us significant gains over using just the seeds,
or noun-phrases with the seeds as heads, for extracting from
the test corpus. This difference is least marked for the class
people, which had the most ambiguous seed words.

Figure 3 shows that only a small gain is obtained by
hand-labeling all 669 examples matching the 1ocation
seeds before commencing bootstrapping, and all 2521 ex-
amples matching the people class before commencing
bootstrapping.

locations

coem ———
seedonly -
08] headlabeling -~ |
§ 061 |
£ 04 ,\ |
i
02 r ‘ |
0 ‘ : | ‘
0 0.2 0.4 0.6 08 ;
Recall
people
1 ‘ |
coem ———
seedonly -
08 Fl headlabeling -~ |
s ool
£ 04 |
02
0 ‘) ‘ |
0 0.2 04 0.6 0.8 1
Recall
organizations
1 ‘ |
r coem —————
seedonly -
081 headlabeling -~]
§ 06
~ 0471
02
0 ‘ ‘ | |
0 02 04 0.6 0.8 1
Recall

Figure 2: Comparison of the effects of using seeds alone, noun-
phrases with seeds as heads (head-labeling) and models learned by
bootstrapping with coEM to extract on the unseen test set. Seeds
and head-labeling lead to good precision, but poor recall. Boot-
strapping using coEM improves recall without loss of precision.

7. Discussion

The advantage coEM has over meta-bootstrapping and
cotraining may reflect the good match between its prob-
abilistic treatment of the data, and the inherent ambigu-
ity of the classes. This permits an ambiguous example
to be labeled with a probability that reflects its true am-
biguity, rather than committing it to a class, then being
overly influenced by its presence in that class. Since meta-
bootstrapping repeatedly discards the contexts, ambiguity
in the contexts does not hurt the algorithm as much as it
hurts cotraining.

We can see from the comparison of gains from boot-
strapping over using the seeds or head-labeling, that classes
for which we have ambiguous seeds words, such as our

93

locations
1 T T
activeinit.coem ———
0.8 [
O
a 04
0.2
0
0 0.2 04 0.6 0.8 1
Recall
people
1 . . .
activeinit.coem ———
=1
2
B
£

04
Recall

0.6 0.8 1

Figure 3: Comparison of the effects of hand-labeling all exam-
ples matching the seed-words before commencing bootstrapping
(active initialization), against bootstrapping assuming all are cor-
rect (coem). A small gain is obtained by labeling all data input.

people class benefit less from bootstrapping than those
with relatively unambiguous seed words. However, we still
benefit from bootstrapping. This may be because the noise
introduced by the ambiguous seed-words is somewhat mit-
igated by the presence of the less ambiguous seed words.

For locations and people we saw that correcting
by hand the examples labeled using the seed words did not
have a significant impact on the results. This means that for
relatively unambiguous seed words, at least, hand-labeling
them in context does not give us an advantage over using
automatic head-labeling.

For the seed-words and datasets we used, seed density
in the training corpus does not appear to be a major issue.

8. Conclusions and Future Work

We presented a range of bootstrapping algorithms for
information extraction and provide experimenal results
comparing cotraining, coEM and meta-bootstrapping over
a common set of documents and semantic learning tasks.
We also analyzed the underlying assumptions for each of
the algorithms and found that performance is affected by
the degree to which the assumptions are violated in the data
set and the task at hand.

We also analyzed several ways of initializing the boot-
strapping algorithms and found that the accuracy does not
appear to hinge greatly on initialization that is 100% accu-
rate. A greater density of seeds in the training set for a class
(organizations and people had greater seed density

than locations) does not appear to lead to greater ex-
traction accuracy on the held out test set. Algorithms which
cater to the ambiguity inherent in the feature set are more
reliable for bootstrapping, whether they do that by using the
feature sets asymmetrically (like meta-bootstrapping), or
by allowing probabilistic labeling of examples (like coOEM).

Although we have limited the scope of this paper to al-
gorithms that utilize a feature split present in the data (co-
training setting), we believe that this comparison of algo-
rithms should be extended to settings where such a split
of the features dies not exist, for examples algorithms like
expectation maximization (EM) over the entire combined
feature set. It would also be helpful to extend the analysis
to a greater variety of semantic classes and larger sets of
documents.

Acknowledgements

We thank Tom Mitchell and Ellen Riloff for numerous,
extremely helpful discussions and suggestions that con-
tributed to the work described in this paper.

9. References

Avrim Blum and Tom Mitchell. 1998. Combining labeled
and unlabeled data with co-training. In COLT: Proceed-
ings of the Workshop on Computational Learning The-
ory, Morgan Kaufmann Publishers.

M. Collins and Y. Singer. 1999. Unsupervised Mod-
els for Named Entity Classification. In Proceedings of
the Joint SIGDAT Conference on Empirical Methods in
Natural Language Processing and Very Large Corpora
(EMNLP/VLC-99).

M. Craven, D. DiPasquo, D. Freitag, A. McCallum,
T. Mitchell, K. Nigam, and S. Slattery. 1998. Learning
to Extract Symbolic Knowledge from the World Wide
Web. In Proceedings of the Fifteenth National Confer-
ence on Artificial Intelligence.

Ido Dagan, Lillian Lee, and Fernando Pereira. 1999.
Similarity-based models of cooccurrence probabilities.
Machine Learning, 34(1-3):43—-69.

Tommi Jaakkola and David Haussler. 1999. Exploiting
generative models in discriminative classifiers. In Ad-
vances in NIPS 11.

Thorsten Joachims. 1999. Transductive inference for text
classification using support vector machines. In Pro-
ceedings of ICML ’99.

Ion Muslea, Steven Minton, and Craig A. Knoblock. 2000.
Selective sampling with redundant views. In AAAI/IAAI
pages 621-626.

Kamal Nigam and Rayid Ghani. 2000. Analyzing the ef-
fectiveness and applicability of co-training. In CIKM,
pages 86-93.

Kamal Nigam, Andrew McCallum, Sebastian Thrun, and
Tom Mitchell. 2000. Text classification from labeled
and unlabeled documents using EM. Machine Learning,
39(2/3):103-134.

Ellen Riloff and Rosie Jones. 1999. Learning Dictio-
naries for Information Extraction by Multi-level Boot-
strapping. In Proceedings of the Sixteenth National Con-
ference on Artificial Intelligence, pages 1044—-1049. The
AAAI Press/MIT Press.

94

E. Riloff. 1996. An Empirical Study of Automated Dic-
tionary Construction for Information Extraction in Three
Domains. 85:101-134.

R. Yangarber, R. Grishman, P. Tapanainen, and S. Hut-
tunen. 2000a. Automatic acquisition of domain knowl-
edge for information extraction. In Proceedings of the
18th International Conference on Computational Lin-
guistics (COLING 2000).

R. Yangarber, R. Grishman, P. Tapanainen, and S. Hut-
tunen. 2000b. Unsupervised discovery of scenario-level
patterns for information extraction. In Proceedings of
the Sixth Conference on Applied Natural Language Pro-
cessing, (ANLP-NAACL 2000), pages 282-289.

Using Decision Trees to Predict Human Nouns in Spanish Parsed Text

Marisa Jiménez

Microsoft Research
One Microsoft Way
Redmond, WA 98052, USA
marialj@microsoft.com

Abstract
This paper discusses the use of decision tree models in the acquisition of human nouns for a Spanish monolingual dictionary. This
method uses decision tree models to learn the contexts in which a pre-classified set of human nouns occur. We then use the predictions
of the model to acquire new human nouns at run time during sentence parsing. The acquisition process was done in 5 stages. First, we
annotated automatically all nouns in a selected corpus from Spanish Encarta as “human” and “non-human”. Then, we parsed all
sentences in the corpus, and extracted linguistic features from the parsed sentences in which each annotated noun occurs. Afterwards
we built decision tree models using the data and the features extracted. The task was to classify and assign probabilities to the contexts
in which human nouns occur. Finally, we dynamically acquired new human nouns for the Spanish dictionary during sentence parsing;
we used the predictions made by the model in this acquisition task.

1. Introduction

Manual annotation schemes to acquire lexical
knowledge are costly and time-consuming. To circumvent
this problem, different methods to bootstrap already
annotated data have been proposed in the literature. One
of the bootstrapping methods proposed is using already
existing taggers to annotate more data. Some of the work
reported focuses on the use of already existing taggers to
create mappings between the older tagger and the new tag
set (Atwell et al., 1994; Teufel, 1994, among others).
Other work proposes combining existing taggers to
improve accuracy rates (Van Halteren et al., 1998; Brill
and Wu, 1998; Van Halteren et al., 2000; Zavrel and
Daelemans, 2000).

Another bootstrapping method that has been proposed
is using the statistical distributions of already lexically-
classified words to classify new words (Stevenson et al.,
1999; Stevenson and Merlo, 1997; Schulte im Walde,
1998). Stevenson and Merlo (2000) discuss a method to
automatically classify verbs into semantic classes by
looking at the statistical distributions of a few annotated
verbs within a big corpus.

Along the lines of the second method mentioned
above, this paper discusses a bootstrapping technique to
acquire human nouns for a Spanish monolingual
dictionary. This method uses decision tree models to learn
the contexts in parsed text in which a pre-classified set of
human nouns occur. The predictions of the model are
then used in the acquisition of new human nouns at run
time during sentence parsing.

2. Human Nouns in our Spanish NLP
System

The Spanish monolingual dictionary that is part of our
Natural Language Processing (NLP) system contains
140,664 entries, of which 72,445 are nouns. Out of these
72.445 nouns, 9,068 are tagged as human nouns in the
dictionary. These human nouns were annotated partially
by hand and also automatically by using information in
their dictionary definitions.

Our system has several strategies to deal with human
nouns occurring in text and that are not part of the Spanish

95

dictionary. The first strategy is using derivational
morphology rules. If a noun is not in the Spanish
dictionary, the system tries to derive it morphologically
from a noun that is present in the dictionary. Furthermore,
if the noun from which this unfound noun is derived is
human, we copy the human information from the base
noun. In figure 1 we provide an example of a noun record
created derivationally. The noun camarerito “little waiter’
is derived from camarero “waiter’. As the base noun is
tagged Humn (which stands for “human”) in the
dictionary, the human tag is copied to the derived noun as
well.

{Segtype HOUHN
Hodetype HOUH
Hodename HOTHI1

FtLt 1-1

Sting "camarerta"
Lex "camarento”
Lemuma "camawro"
Bits Mase Pers3 5ing
Denved Hinm Coumt
AnimH_ito

Prch 100000

Parent NP1 "camarerito "
Infl Houn-casa

Bases

{Lemma "camarera"
Bits H_ito

Cat Heun }

Figure 1. Example of a human noun record created by
derivational morphology

We also have a strategy to identify human names that
are not in the dictionary when they occur in a collocation.
In figure 2, we provide an example of a human name
identified by our system, Boris Karloff. Although neither
Boris nor Karloff is in the Spanish dictionary, the system
is able to recognize them as the first name and last name
of a person. Nevertheless, if either Boris or Karloff
appears alone, they are not identified as human names.

{Segtype HOUH
Hodetype HOUH
Hodename HOUHN1

FtLt 12

Sting 'Bons Kadoff"
Copy2f HNOTNI

Fules [(GatherMames)
Constits (HOTUHS NOTHZ)
Lemmna "Bons_Karloff™
Bits Masc Pers3 Sing Prprl

Factoid IutC ap Humn

Hme fimm Frome U nfhd
Proh 100000
Farent NP1 'Bons Kadoff "

Factrecs FIRSTHAME] "Bons"
LASTHAME] "Kadoff"

FactPred person
FartClass PERSON }

Figure 2. Record of a human name identified by our
system

Despite these strategies, our system sometimes fails to
identify some human nouns that are encountered in text.
Knowing whether a noun is human is essential for our
Spanish parser as this information is used to identify
sentential subjects. Sentential position alone is not
sufficient for successful subject identification because
Spanish subjects may appear in multiple positions.

Decisions on subject identification are taken as our
parser builds up the syntactic tree. Whether a noun is
human or not is crucial for subject identification in many
instances. One of these cases is when a sentence contains
two noun phrases (NPs) that both appear to the right of the
verb. If one of the NPs is recognized as human, and the
other is not, our parser takes the human NP to be the
subject of the sentence.

ayer declard la ey marcial el presidente de 1a repiblica.

DECLL APl ADVL¥ "hyer
VERELY "declars” (Subject NP1 object NR2)
NP2 DETFl ADIL¥ ES
NOUWL* "Tey" (Predadj AJPl)
AJFL ADIZ¥ "marcial”
NPl DETPZ ADIZH "a]"
NOUMZ¥ “presidente”
PPl PP PREFLY "de"
DETP3 ADI4¥ il
NOUN3* “repdblica”
CHaRL 608

Translation: Yesterday, the president of the Republic
declared martial law.

Figure 3. Example of a Spanish sentence with two NPs to
the right of the verb.

In figure 3 we provide an example of a Spanish
sentence where human information on an NP is used for
subject identification. In this sentence there are two NPs
appearing to right of the verb declaré ‘you-formal
declared’, NP1, el presidente de la repiblica ‘the
president of the Republic’, and NP2, la ley marcial
‘martial law’. In order to determine that NP1 is the subject
of the sentence, the parser uses the fact that the head of the
NP presidente is marked human in the Spanish dictionary.

96

3. Motivation and Experiment Design

Motivated by the importance of human nouns for our
NLP system, we designed a bootstrapping method to add
new human nouns to the Spanish dictionary. This method
uses decision tree models to learn the contexts in parsed
text in which a pre-classified set of human nouns occur.
The predictions made by the model are then used in the
dynamic acquisition of new human nouns during sentence
parsing.

There were 5 stages in the experiment design:

= Automatic annotation of all nouns in a selected
corpus into “human” and “non-human”.

= Parsing of sentences in the selected corpus.

= Linguistic feature extraction from the parsed
sentences in which each annotated noun occurs.
The goal was determining which features were
relevant or not with respect to human nouns.

* Building decision tree models using the features
extracted. The task was to classify and assign
probabilities to the contexts in which human nouns
occur.

* Dynamically adding new human nouns to the
Spanish dictionary based on the predictions made
by the model.

In section 4 we will describe the first 4 stages of our
experiment, which have to do with the different steps in
building the decision tree models. In section 5 we will
discuss the dynamic acquisition of new human nouns
using the model predictions.

4. Using Decision Trees to Predict Human
Nouns

4.1. Data and Feature Extraction

We used the Spanish version of Encarta as the data
resource for our experiment because this encyclopedia is a
good source of human nouns. We gathered 126,935
sentences, and extracted all their nouns. There were a total
of 641,673 nouns, which we then annotated automatically.
Those nouns that were recognized as human by our
system were tagged as “human”, and the rest were tagged
as “not-human”. Unfound words were excluded from the
annotation task for obvious reasons.

We were quite confident that these automatic tags had
a high degree of accuracy. Our confidence was based on
the fact that the Spanish system has mechanisms to
identify human nouns that are not in the dictionary.
Furthermore, over the years we have done manual
revisions of the 10,000 most common nouns in the
Spanish dictionary; in these revisions we made sure that
all the human nouns in the high-frequency set were tagged
correctly.

Despite our degree of confidence in the accuracy of
the automatic tags, we did some manual revision to have
an estimation of our error rate. We reviewed 3,000 tagged
nouns by hand; they were extracted at random from
different parts of the corpus. We did not find any errors in
the subset of tags reviewed; this gave us confidence that
the error rate was small.!

' We would like to thank an anonymous reviewer for his/her
comments on making sure that our tags were correct. His/her

The next step in the experiment was parsing all the
sentences associated with the tagged nouns. We discarded
sentences that did not obtain a complete parse.
Afterwards, we automatically extracted 232 linguistic
features from the parsed tree of the sentence associated
with each tagged noun. Our approach was extracting the
full set of features available in the parse, instead of
performing manual feature selection. Nevertheless, one of
the features extracted, “the ending of the noun”, was
selected manually. We included this morphological
feature because of its highly suspected relevance.

The pool of extracted features fell into the following
categories:

= All verbal features present in the main verb of the
sentence.

= Seclected features of the parent and the grandparent
of the noun, such as gender, number, and (in)
definiteness, among others.

= All the features present in the pre-modifiers and
post-modifiers of the parent.

= The lemma of the preposition governing the parent,
if present.

= The syntactic label of the parent and the
grandparent.

= The ending of the noun.

In figure 4 we provide a sample of some features
extracted for the noun peliculas “movies’. The noun and
its sentence are listed first. Under Values some values for
the features extracted are listed. The first value is always
the value of the tag, which is “NoHuman” in this case.

Sentence: [peliculas]: Durante los ultimos veinticinco afios
de su vida, Gabin hizo unas veinticuatro peliculas, entre ellas
destaca El clan de los sicilianos (1969) de Henri Verneuil,
obra maestra del cine negro francés.

Translation: During the last twenty-five years of his life,
Gabin made twenty-four movies, among them ‘The Sicilian
Clan’ (1969), directed by Henri Verneuil, master piece of the
French film noir.

Values:

A~is_human_noun = "NoHuman"

A~has_possible human_ending = "NoPossHumEnding"
1~Sing~Parent = "0"

1~Plur~Parent = "1"

1~Art~Parent = "1"

1~Def~Parent = "0"

1~PPobj~Parent = "0"

1~Nodetype~Parent = "NP"

Figure 4. Values of some of the features extracted for
the noun peliculas “movies’

4.2. Building and Examining the Models

Once the feature extraction was completed, we used
the data and the values extracted to build decision tree
models. The goal was to classify the features by their

concern was that we would tag as “non-human” true human
nouns that were just missing the tag in our dictionary. The
manual revision of a 3000 noun sample confirmed to us that the
error rate was small.

97

relevance in predicting human nouns. Decision trees are a
popular tool used in machine-learning for classification
tasks. They provide a classification of selected features
and rank their relative importance in predicting a target
feature. The tools that we used to build our decision trees
are the WinMine toolkit (Chickering ef al., 1997, n.d.),
developed at Microsoft Research. Decision trees built by
WinMine predict a probability distribution over all
possible target values.

These tools take as input a text file with the
characteristics shown in figure 4. The data is split into
training and testing at a 70/30 rate. For both training and
testing, we only extracted features from sentences that had
a complete parse. The tools produce several decision tree
models at different levels of accuracy. All the models are
in xml format.

In order to inspect the models, we use a model viewer
that allows the user to view the shape of the decision tree.
This tool also shows the relative importance of all the
relevant features selected by the model. All features that
are found relevant in the human model are connected with
arrows to the target feature that we are trying to predict,
which appears in the center of the viewer. The features
that are not found relevant by the model are shown
disconnected at the bottom of the screen.

In figure 5 we provide a snapshot of the four best
predictors in the model for human nouns. The viewer has
a slider (to the left of the figure) that highlights the
strongest predictors as the slider goes up. The following
characteristics of the main verb are the top predictors in
the model shown in figure 5:

e The verb takes a nominal predicate object (e.g.: Lo
considero mi amigo ‘1 consider him my friend’).
The verb is transitive.

The verb is transitive and followed by preposition
+ infinitive (e.g.: Te animo a venir ‘1 encourage
you to come”).

The verb takes an adjectival predicate object (¢.g.:
No te creo tonto ‘1 don’t believe you stupid’).

. DTs-Human14.model.0.1.xm
Fle Edt View Help
BM % BQA L
Aliks e, 4

/

11" Head"Parent
A”is_human_noun
T < 1°T3"Head"Parent
1°TI"Head"Parent 1°T3" Head" Parent
Shongest o
liks v
¢ >
Selected Predicted by Predictive of Predicted by and
Hode Selected Node Selected Mode Predictive of

Figure 5. Snapshot of the four top predictors in the model
for human nouns

4.3. Model Predictions

Out of the 232 features that were extracted for each
noun, 111 were found to have predictive value in the
model for human nouns. The selected features fell into the
following categories:

» Ending of the noun. Certain endings such as —or
‘er’, and —ista ‘-ist’ were found to be strong
indicators that the noun is human.

Governing preposition of the parent. Certain
prepositions such as a ‘to’ and por by’ were
found likely to govern a human noun, while
others such as en ‘in’ tend not to govern human
nouns.

The noun was upper case. Upper case was found
to be a strong predictor in certain contexts, for
example, nominal apposition.

Syntactic label of the parent and grandparent.
Whether the parent is in apposition to another
noun.

Syntactic features of the sentence main verb.
Whether the parent of the noun has pre-
modifiers.

Some features of the pre-modifiers and post-
modifiers of the parent (e.g.: whether the parent
has a definite post-modifier, and the pre-modifier
iS a possessive pronoun).

Whether the parent is definite.

Whether the parent has a post-modifier that is a
relative clause.

YV VYV VYV v

\ A%

Some of the predictions made by the model were
pretty straightforward, such as the relevance of the noun
ending or capitalization. Other predictions were not as
straightforward, such as the relevance of the parent being
post-modified by a relative clause.

One of the main advantages of the decision tree model
for human nouns was its complexity. The model had 1,194
branching nodes, which means that 1,194 linguistic
decisions were made when predicting whether a noun is
likely to be human or not. Manually coding each one of
these decisions would be extremely time-consuming,.

As for evaluation numbers, the best model had an
overall accuracy of 84.29% over a 69.83% baseline. The
baseline corresponds to the accuracy if the most frequent
value (non-human) had been assigned to all nouns in the
test set. In table 1 we provide the evaluation numbers for
this model. These calculations are based on the 1922502
nouns in the test set. For each noun in the test set, the
value predicted by the model was compared to the value
observed.

Human | Non-Human Total

Total 58066 134436 192502
Predicted 54238 138264

Correctly 46030 116228 162258

Predicted

Precision 84.86% 84.06%
Recall 79.27% 86.45%
F-measure 81.97% 85.23%

Baseline 69.83%

Overall Accuracy 84.29%

Table 1. Evaluation numbers for the human model

98

5. Using the Decision Tree Model to Acquire
New Human Nouns

The last step in our experiment was using the
predictions made by the model in the acquisition of human
nouns that were not yet in the Spanish dictionary. The
plan was to add new human noun records dynamically
during sentence analysis using the decision tree
predictions.

Our NLP system has in place rules to do lexical
learning at run time during sentence parsing. Lexical-
learning rules are used dynamically to create domain-
specific corpus-based lexicons. These domain-specific
dictionaries arec used as supplements to the general
dictionary (see Pentheroudakis (technical report), and Wu
et al.,2002).

In preparation for lexical learning, we gathered 57,397
sentences from Spanish Encarta; we made sure that these
sentences contained unfound words.” Afterwards, the
decision tree model for human nouns was invoked from
the lexical-learning rules while parsing the sentences.

After parsing the sentences, a new learned lexicon was
created; this lexicon contained 16,902 human nouns. After
quickly inspecting a handful of dictionary entries, we
realized that a good amount of the learned nouns were
human names. This realization seemed consistent with the
fact that Encarta is an encyclopedia, and that our Spanish
dictionary does not contain many proper names. Some
examples of the names that were learned were Filippo,
Yourcenar and Hemingway, among others. Among the
“non-proper name” human nouns that were learned were
zapatistas ‘zapatists’, antirreeleccionista ‘anti-
reelectionist’, and c/arinero “clarinist’, among others.

To evaluate the accuracy of the learned dictionary, we
randomly gathered 600 nouns from the pool of sentences
used for the creation of the dictionary. We then manually
reviewed all the words in the 600 set. We checked
whether each noun was truly human or not, and whether it
was part of the learned dictionary. 41 nouns from the 600
set were discarded because they were either typos or did
not have a noun part of speech; we ended up with a total
of 559 nouns.’ In table 2, we provide the results of the
manual evaluation.

Human Non-Human Total
Total 269 290 559
Predicted 230 329
Correctly 205 265 470
Predicted
Precision 89.13% 80.54%
Recall 76.20% 91.37%
Baseline 51.88%
F-measure 82.16% 85.61%
Overall 84.07%
Accuracy

Table 2. Summary of manual evaluation of 559 nouns
from Encarta

? The first time that we invoked the model during parsing, we did
not make sure that unfound words were in the data. As a result,
few new human nouns were learned.

* Our NLP system assigns by default a noun part of speech to
unfound words. It is possible that some of the unfound nouns
that were in the test set were not nouns.

6. Conclusions

In this paper we have presented a method to augment
the number of human nouns in the Spanish dictionary of
our NLP system. This method uses decision tree models to
learn the contexts in which a pre-classified set of human
nouns occur. The experiment was done in 5 stages. First,
we annotated automatically all nouns in a selected corpus
from Spanish Encarta into “human” and “non-human”.
We then parsed all sentences in the corpus, and extracted
several linguistic features from each parsed sentence. We
then built decision tree models using the features
extracted. The task was to classify and assign probabilities
to the contexts in which human nouns occur. Finally we
added dynamically new human nouns to the Spanish
dictionary based on the predictions made by the model.

Evaluation of our experiment showed that we were
able to learn a significant amount of human nouns at good
accuracy levels. This method reduces human effort in
dictionary maintenance. We see another two advantages to
using decision tree models for human noun acquisition.
The first one is that the model makes complex decisions
that would be very costly and time-consuming to be hand-
coded. And, second, the model made more complete
predictions than our native speaker intuitions.

7. Acknowledgments

We would to thank the members of the NLP group at
Microsoft Research for their comments and help at
various stages during the development of this paper.

8. References

Atwell, E., J. Hughes, and C. Souter (1994). Amalgam:
Automatic Mapping among Lexico-grammatical
Annotation Models. Technical report, Internal Paper,
CCALAS, Leeds University.

Brill, E. and J. Wu (1998). Classifier Combination for
Improved Lexical Disambiguation. In COLING-ACL'98
Montreal, Canada.

Chikering, D. Max nd. WinMine Toolkit Home Page.
http.//research.microsoft.com/~dmax/WinMine/Tooldoc
htm.

Pentheroudakis, J. (2001). Lex Rules!. Technical report.

Schulte im Walde, S., 1998. Automatic Semantic
Classification of Verbs according to their Alternation
Behaviour. AIMS Report 4(3), IMS, Universitit
Stuttgart.

Stevenson, S. and P. Merlo (1997). Lexical Structure and
Processing Complexity. Language and Cognitive
Processes, 12(1-2):349-399.

Stevenson, S., P. Merlo, N. Karaeva, and K. Whitehouse
(1999). Supervised Learning of Lexical Semantic Verb
Classes using Frequency Distributions. In Procs of
SigLex 99, College Park, Maryland.

Stevenson, S. and P. Merlo (2000). Automatic Lexical

Acquisition Based on Statistical Distributions.
Proceedings of COLING 2000, Saarbriiecken,
Germany.

Teufel, S. (1995). A Support Tool for Tagset Mapping. In
Proc. of of the Workshop SIGDAT (FACL95)

Van Halteren, H., J. Zavrel, and W. Daelemans (1998).
Improving Data Driven Wordclass Tagging by System
Combination. In Proceedings of ACL-COLING’98,
Montreal, Canada.

99

Van Halteren, H., J. Zavrel, and W. Daelemans (2001).
Improving Accuracy in NLP through Combination of
Machine Learning Systems. Computational Linguistics
27 (2), 199-230.

Wu, A., J. Pentheroudakis, and Z. Jiang (2002). Dynamic
Lexical Acquisition in Chinese Sentence Analysis.
Submitted to COLING 2002 for consideration.

Zavrel, H.J. and W. Daelemans (2000). Bootstrapping a
Tagged Corpus through Combination of Existing
Heterogeneous Taggers. International Conference on
Language Resources and Evaluation. Athens, Greece.

X-TRACTOR: A Tool For Extracting Discourse Markers

Laura Alonso*, Irene Castellén*, Lluis Padro6’

*Department of General Linguistics
Universitat de Barcelona
{lalonso, castel}@lingua.fil.ub.es

fTALP Research Center
Software Department
Universitat Politecnica de Catalunya
padro@lsi.upc.es

Abstract

Discourse Markers (DMs) are among the most popular clues for capturing discourse structure for NLP applications. However, they
suffer from inconsistency and uneven coverage. In this paper we present X-TRACTOR, a language-independant system for automatically
extracting DMs from plain text. Seeking low processing cost and wide applicability, we have tried to remain independent of any hand-
crafted resources, including annotated corpora or NLP tools. Results of an application to Spanish point that this system succeeds in
finding new DMs in corpus and ranking them according to their likelihood as DMs. Moreover, due to its modular architecture, X-
TRACTOR evidences the specific contribution of each out of a number of parameters to characterise DMs. Therefore, this tool can be
used not only for obtaining DM lexicons for heterogeneous purposes, but also for empirically delimiting the concept of DM.

1.

The problem of capturing discourse structure for com-
plex NLP tasks has often been addressed by exploiting sur-
face clues that can yield a partial structure of discourse
(Marcu, 1997; Dale and Knott, 1995; Kim et al., 2000).
Cue phrases such as because, although or in that case, usu-
ally called Discourse Markers (DMs), are among the most
popular of these clues because they are both highly infor-
mative of discourse structure and have a very low process-
ing cost.

However, they present two main shortcomings: incon-
sistency in their characterisation and uneven coverage. The
lack of consensus about the concept of DM, both theo-
retically and for NLP applications, is the main cause for
these two shortcomings. In this paper, we will show how
a knowledge-poor approach to lexical acquisition is useful
for addressing both these problems and providing partial
solutions to them.

Motivation

1.1.

A general consensus has not been achieved about the
concept of DM. The set of DMs in a language is not delim-
ited, nor by intension neither by extension. But however
controversial DM characterisation may be, there is a core of
well-defined, prototypical DMs upon which a high consen-
sus can be found in the literature. By studying this lexicon
and the behaviour of the lexical units it stores in naturally
occurring text, DM characterising features can be discov-
ered. These features can be applied to corpus to obtain
lexical items that are similar to the original ones. Apply-
ing bootstraping techniques, these newly identified lexical
items can be incorporated to the lexicon and this enhanced
lexicon can be used for discovering new characterising fea-
tures. This process can be repeated until the obtained lexi-
cal items are not considered valid any more.

It may be argued that enlarging this starting set implies

Delimitation of the concept of DM

100

making it more controversial, by adding items whose sta-
tus as DMs is questionable. However, being empirically
grounded, this enlargement is relatively unbiased, and it
yields an enhancement of the concept of DM that may be
useful for NLP applications.

Taking it to the extreme, unendlessly enhancing the con-
cept of DM implies that anything loosely signalling dis-
course structure would be considered as a DM. Although
this might sound absolutely undesirable, it could be argued
that a number of lexical items can be assigned a varying
degree of marking strength or markerhood'. 1t would be
then up to the human expert to determine the load of mark-
erhood required for a lexical item to be considered a DM in
a determined theoretical framework or application. Lexical
acquisition can evidence the load of discursive information
in every DM by evaluating it according to the DM charac-
terising features used for extraction.

1.2. Scalability and Portability of DM Resources

Work concerning DMs has been mainly theoretical, and
applications to NLP have been mainly oriented to restricted
NLGeneration applications. So, DM resources of wide cov-
erage have still to be built. The usual approach to building
DM resources is fully manual. For example, DM lexicons
are built by gathering and describing DMs from corpus or
literature on the subject, a very costly and time-consuming
process. Moreover, due to variability among humans, DM
lexicons tend to suffer from inconsistency in their extension
and intension. To inherent human variability, one must add
the general lack of consensus about the appropriate charac-
terisation of DMs for NLP. All this prevents reusability of
these costly resources.

'By analogy with termhood(Kageura and Umino, 1996),
which is the term used in terminology extraction to indicate the
likelihood that a term candidate is an actual term, we have called
markerhood the likelihood that a DM candidate is an actual DM.

As aresult of the fact that DM resources are built manu-
ally, they present uneven coverage of the actual DMs in cor-
pus. More concretely, when working on previously unseen
text, it is quite probable that it contains DMs that are not in
a manually built DM lexicon. This is a general shortcoming
of all knowledge that has to be obtained from corpus, but it
becomes more critical with DMs, since they are very sparse
in comparison to other kinds of corpus-derived knowledge,
such as terminology. As follows, due to the limitations of
humans, a lexicon built by mere manual corpus observation
will cover a very small number of all possible DMs.

The rest of the paper is organised as follows. In Section
2., we present the architecture of the proposed extraction
system, X-TRACTOR, with examples of an application of
this system to acquiring a DM lexicon for discourse-based
automated text summarisation in Spanish. In Section 2 we
present the results obtained for this application, to finish
with conclusions and future directions.

2. Proposed Architecture

One of the main aims of this system is to be useful for
a variety of tasks or languages. Therefore, we have tried
to remain independent of any hand-crafted resources, in-
cluding annotated texts or NLP tools. Following the line
of (Engehard and Pantera, 1994), syntactical information
is worked by way of patterns of function words, which are
finite and therefore listable. This makes the cost of the sys-
tem quite low both in terms of processing and human re-
sources.

Focusing on adaptability, the architecture of X-
TRACTOR is highly modular. As can be seen in Figure 1, it
is based in a language-independent kernel implemented in
perl and a number of modules that provide linguistic knowl-
edge.

The input to the system is a starting DM lexicon and
a corpus with no linguistic annotation. DM candidates are
extracted from corpus by applying linguistic knowledge to
it. Two kinds of knowledge can be distinguished: gen-
eral knowledge from the language and that obtained from
a starting DM lexicon.

The DM extraction kernel works in two phases: first,
a list of all might-be-DMs in the corpus is obtained, with
some characterising features associated to it. A second step
consists in ranking DM candidates by their likelihood to be
actual markers, or markerhood. This ranked list is validated
by a human expert, and actual DMs are introduced in the
DM lexicon. This enhanced lexicon can be then re-used as
input for the system.

In what follows we describe the different parts of X-
TRACTOR in detail.

2.1.

Two kinds of linguistic knowledge are distinguished:
general and lexicon-specific. General knowledge is stored
in two modules. One of them accounts for the distribu-
tion of DMs in naturally occurring text in the form of rules.
It is rather language-independant, since it exploits general
discursive properties such as the occurrence in discursively
salient contexts, like beginning of paragraph or sentence.

Linguistic Knowledge

101

The second module is a list of stopwords or function words
of the language in use.

Lexicon-specific knowledge is obtained from the start-
ing DM lexicon. It also consists of two modules: one con-
taining classes of words that constitute DMs and another
with the rules for legally combining these classes of words.
We are currently working in an automatic process to induce
these rules from the given classes of words and the DMs in
the lexicon.

In the application of this system to Spanish, we started
with a Spanish DM lexicon consisting of 577 DMs 2. Since
this lexicon is oriented to discourse-based text summarisa-
tion, each DM is associated to information useful for the
task (see Table 1), such as rhetoric type. We adapted the
system so that some of this information could also be au-
tomatically extracted for the human expert to validate. Re-
sults were excellent for the feature of syntactic type, and
very good for rhetorical content and segment boundary.

We transformed this lexicon to the kind of knowledge
required by X-TRACTOR, and obtained 6 classes of words
(adverbs, prepositions, coordinating conjunctions, subordi-
nating conjunctions, pronouns and content words), totalling
603 lexical items, and 102 rules for combining them. For
implementation, the words are listed and they are treated by
pattern-matching, and the rules are expressed in the form of
if - then - else conditions on this pattern-matching (see Ta-
ble 2).

2.2. DM candidate extraction

DM candidates are extracted by applying the above
mentioned linguistic knowledge to plain text. Since DMs
suffer from data sparseness, it is necessary to work with a
huge corpus to obtain a relatively good characterisation of
DMs. In the application to Spanish, strings were extracted
by at least one of the following conditions:

e Salient location in textual structure: beginning of para-
graph, beginning of the sentence, marked by punctua-
tion.

e Words that are typical parts of DMs, such as those hav-
ing a strong rhetorical content. thetorical content types
are similr to those handled in RST (Mann and Thomp-
son, 1988).

Word patterns, combinations of function words, some-
times also combined with DM-words.

2.3. Assessment of DM-candidate markerood

Once all the possible might-be-DMs are obtained from
corpus, they are ponderated as to their markerhood, and a
ranked list is built.

Different kinds of information are taken into account to
assess markerhood:

e Frequency of occurrence of the DM candidate
in corpus, normalised by its length in words
and exclusive of stopwords. Normalisation is
achieved by the function normalised frequency =
length - log(frequency).

>We worked with 784 expanded forms corresponding to 577
basic cue phrases

Y

YN
N

stopwords

~_

Y
)

eneric
g DM

modules

rules

dependant

DISCOURSE
MARKER
LEXICON

Language

sy]I)lE\a/l[ctic

rules

Human Validation

X-TRACTION KERNEL

DM EXTRACTION

=
<

CORPUS

»‘ properties of the DM set ‘

< i
=

DM PONDERATION

A\

/ properties of the corpus ‘

—
T
R
IR

Figure 1: Architecture of X-Tractor

DM boundary | syntactic type | rhetorical type | direction con tent
ademas not appl. satellizer inclusion | reinforcement
a pesar de strong preposition satellizer right concession
asi que weak subordinating chainer right consequence
dado que weak subordinating satellizer right enablement

Table 1: Sample of the cue phrase lexicon

e Frequency of occurrence in discursively salient con-

it contains. These

words are listed in one of the mod-

text. Discursively salient contexts are preferred oc-
currence locations for DMs. This parameter has been
combined with DM classes motivated by clustering in
(Alonso et al., 2002).

Mutual Information of the words forming the DM
candidate. Word strings with higher mutual informa-
tion are supposed to be more plausible lexical units.

Internal Structure of the DM, that is to say, whether
it follows one of the rules of combination of DM-
words. For this application, X-TRACTOR was aimed
at obtaining DMs other than those already in the start-
ing lexicon, therefore, longer well-structured DM can-
didates were priorised, that is to say, the longer the rule
that a DM candidate satisfies, the higher the value of
this parameter.

Rhetorical Content of the DM candidate is increased
by the number of words with strong rhetorical content

ules of external knowledge, and each has a rhetorical
content associated to them. This rhetorical content can
be pre-assigned to the DM candidate for the human ex-
pert to validate.

Lexical Weight accounts for the the presence of non
frequent words in the DM candidate. Unfrequent
words make a DM with high markerhood more likely
as a segment boundary marker.

Linking Function of the DM candidate accounts for
its power to link spans of text, mostly by reference.

Length of the DM candidate is relevant for obtaining
new DMs if we take into consideration the fact that
DMs tend to aggregate.

These parameters are combined by weighted voting for

markerhood assessment, so that the importance of each of
them for the final markerhood assessment can be adapted

for each word in string
if word is a preposition, then
if word-1 is an adverb, then

if word-2 is a coordinating conjunction,
if word+] is a rhetorical-content word,

if word+2 is a preposition, then
assign the DM candidate structural weight 5

elsif word+2 is a subordinating conjunction,

then
then

then

assign the DM candidate structural weight 5
else assign the DM candidate structural weight 4

elsif word+1 is a pronoun, then

assign the DM candidate structural weight 4
else assign the DM candidate structural weight 3

Figure 2: Example of rules for combination of DM-constituing words

to different targets. By assigning a different weight to each
one of these parameters, the system can be used for extract-
ing DMs useful for heterogeneous tasks, for example, au-
tomated summarisation, anaphora resolution, information
extraction, etc.

In the application to Spanish, we were looking for DMs
that signal discourse structure useful for automated text
summarisation, that is to say, mostly indicators of relevance
and coherence relations.

3. Results and Discussion

We ran X-TRACTOR on a sample totalling 350,000
words of Spanish newspaper corpus, and obtained a ranked
list of DMs together with information about their syntac-
tical type, rhetorical content and an indication of their po-
tential as segment boundary markers. Only 372 out of the
577 DMs in the DM lexicon could be found in this sample,
which indicates that a bigger corpus would provide a better
picture of DMs in the language, as will be developed below.

3.1.

Evaluation of lexical acquisition systems is a problem
still to be solved. Typically, the metrics used are standard
IR metrics, namely, precision and recall of the terms re-
trieved by an extraction tool evaluated against a document
or collection of documents where terms have been identi-
fied by human experts (Vivaldi, 2001). Precision accounts
for the number of term candidates extracted by the system
which have been identified as terms in the corpus, while
recall states how many terms in the corpus have been cor-
rectly extracted.

This kind of evaluation presents two main problems:
first, the bottleneck of hand-tagged data, because a large-
scale evaluation implies a costly effort and a long time for
manually tagging the evaluation corpus. Secondly, since
terms are not well-defined, there is a significant variability
between judges, which makes it difficult to evaluate against
a sound golden standard.

For the evaluation of DM extraction, these two prob-
lems become almost unsolvable. In the first place, DM
density in corpus is far lower than term density, which
implies that judges should read a huge amount of corpus
to identify a number of DMs significant for evaluation.
In practical terms, this is almost unaffordable. Moreover,

Evaluation of Results

103

X-TRACTOR’s performance is optimised for dealing with
huge amounts of corpus. On the other hand, the lack of a
reference concept for DM makes inter-judge variability for
DM identification even higher than for term identification.

Given these difficulties, we have carried out an alterna-
tive evaluation of the presented application of the system.
To give a hint of the recall of the obtained DM candidate
list, we have found how many of the DMs in the DM lexi-
con were extracted by X-TRACTOR, and how many of the
DM candidates extracted were DMs in the lexicon®. To
evaluate the goodness of markerhood assessment, we have
found the ratio of DMs in the lexicon that could be found
among the first 100 and 1000 highest ranked DM candi-
dates given by X-TRACTOR. To evaluate the enhancement
of the initial set of DMs that was achieved, the 100 highest
ranked DMs were manually revised, and we obtained the
ratio of actual DMs or strings containing DMs that were
not in the DM lexicon. Noise has been calculated as the
ratio of non-DMs that can be found among the 100 highest
ranked DM candidates.

3.2. Parameter Tuning

To roughly determine which were the parameters more
useful for finding the kind of DMs targeted in the presented
application, we evaluated the goodness of each single pa-
rameter by obtaining the ratio of DMs in the lexicon that
could be found within the 100 and 1000 DM candidates
ranked highest by that parameter.

In Figure 3 it can be seen that the parameters with best
behaviours in isolation are content, structure, lexical weight
and occurrence in pausal context, although none of them
performs above a dummy baseline fed with the same cor-
pus sample. This baseline extracted 1- to 4-word strings
after punctuation signs, and ranked them according to their
frequency, so that the most frequent were ranked high-
est. Frequencies of strings were normalised by length, so
that normalised frequency = length - log(frequency).
Moreover, the frequency of strings containing stopwords
was reduced.

3We previously checked how many of the DMs in the lexicon
could actually be found in corpus, and found that only 386 of them
occurred in the 350,000 word sample; this is the upper bound of
in-lexicon DM extraction.

kbl

B within highest 100
[within highest 1000

baseline
from
sarmple

baseline
fram full
text

content inter-pausal

sTructure

T
lexical
weight

post-pausal frequency

Figure 3: Ratio of DM andidates that contain a DM in the lexicon among the 100 and 1000 highest ranked by each individual parameter

Coverage of the DM lexicon

Noise

ratio of DMs in the lexicon
within 100 highest ranked
within 1000 highest ranked

within the 100 highest ranked

Enhancement Ratio

within the 100 highest ranked

baseline | X-TRACTOR
88% 87.5%
31% 41%
21% 21.6%
57% 32%
9% 15%

Table 2: Results obtained by X-TRACTOR and the baseline

However, the same dummy baseline performed better
when fed with the whole of the newspaper corpus, consist-
ing of 3,5 million words. This, and the bad performance of
the parameters that are more dependant on corpus size, like
frequency and mutual information, clearly indicates that the
performance of X-TRACTOR, at least for this particular
task, will tend to improve when dealing with huge amounts
of corpus. This is probably due to the data sparseness that
affects DMs.

This evaluation provided a rough intuition of the good-
ness of each of the parameters, but it failed to capture inter-
actions beteween them. To assess that, we evaluated combi-
nations of parameters by comparing them with the lexicon.
We finally came to the conclusion that, for this task, the
most useful parameter combination consisted in assigning a
very high weight to structural and discourse-contextual in-
formation, and a relatively important weight to content and
lengh, while no weight at all was assigned to frequency or
mutual information. This combination of parameters also
provides an empirical approach to the delimitation of the
concept of DM, by eliciting the most influential among a
set of DM-characterising features.

However, the evaluation of parameters failed to capture
the number of DMs non present in the lexicon retrieved by
each parameter or combination of parameters. To do that,
the highest ranked DM candidates of each of the lists ob-
tained for each parameter or parameter combination should
have been revised manually. That’s why only the best com-
binations of parameters were evaluated as to the enhance-
ment of the lexicon they provided.

3.3. Results with combined parameters

In Table 2 the results of the evaluation of X-TRACTOR
and the mentioned baseline are presented. From the sample
of 350,000 words, the baseline obtained a list of 60,155 DM
candidates, while X-TRACTOR proposed 269,824. Obvi-
ously, not all of these were actual DMs, but both systems

104

present an 88% coverage of the DMs in the lexicon that are
present in this corpus sample, which were 372.

Concerning goodness of DM assessment, it can be seen
that 43% of the 100 DM candidates ranked highest by the
baseline were or contained actual DMs, while X-TRACTOR
achieved a 68%. Out of these, the baseline succeeded in
identifying a 9% of DMs that were not in the lexicon, while
X-TRACTOR identified a 15%. Moreover, X-TRACTOR
identified an 8% of temporal expressions. The fact that they
are identified by the same features characterising DMs in-
dicates that they are very likely to be treated in the same
way, in spite of heterogeneous discursive content.

In general terms, it can be said that, for this task, X-
TRACTOR outperformed the baseline, suceeded in enlarg-
ing an initial DM lexicon and obtained quality results and
low noise. It seems clear, however, that the dummy base-
line is useful for locating DMs in text, although it provides
a limited number of them.

4. Conclusions and Future Directions

By this application of X-TRACTOR to a DM extraction
task for Spanish, we have shown that bootstrap-based lex-
ical acquisition is a valid method for enhancing a lexicon
of DMs, thus improving the limited coverage of the start-
ing resource. The resulting lexicon exploits the properties
of the input corpus, so it is highly portable to restricted do-
mains. This high portability can be understood as an equiv-
alent of domain independence.

The use of this empirical methodology circumvents the
bias of human judges, and elicits the contribution of a num-
ber of parameters to the identification of DMs. Therefore,
it can be considered as a data-driven delimitation of the
concept of DM. However, the impact of the enhancement
obtained by bootstraping the lexicon should be assessed in
terms of prototypicality, that is to say, it should be stud-
ied how enlarging a starting set of clearly protoypical DMs

may lead to finding less and less prototypical DMs. For an
approach to DM prototypicality, see (Alonso et al., 2002).

Future improvements of this tool include applying tech-
inques for interpolation of variables, so that the tuning
of the parameters for markerhood assessment can be car-
ried out automatically. Also the process of rule induc-
tion from the lexicon to the rule module can be automa-
tised, given classes of DM-constituting-words and classes
of DMs. Moreover, it has to be evaluated in bigger corpora.

Another line of work consists in exploiting other kinds
of knowledge for DM extraction and ponderation. For ex-
ample, annotated corpora could be used as input, tagged
with morphological, syntactical, semantic or even discur-
sive information. The resulting DM candidate list could
be pruned by removing proper nouns from it, for exam-
ple, with the aid of a proper noun data base or gazetteer
(Arévalo et al., 2002).

To test the portability of the system, it should be ap-
plied to other tasks and languages. An experiment to build
a DM lexicon for Catalan is currently under progress. To
do that, we will try to alternative strategies: one, translating
the linguistic knowledge modules to Catalan and directly
applying X-TRACTOR to a Catalan corpus, and another,
obtaining an initial lexicon by applying the dummy base-
line presented here and carrying out the whole bootstrap
process.

5. Acknowledgements

This research has been conducted thanks to a grant asso-
ciated to the X-TRACT project, PB98-1226 of the Spanish
Research Department. It has also been partially funded by
projects HERMES (TIC2000-0335-C03-02) and PETRA
(TIC2000-1735-C02-02).

6. References

Laura Alonso, Irene Castellon, Lluis Padrd, and Karina
Gibert. 2002. Clustering discourse markers. submitted.
Montse Arévalo, Xavi Carreras, Lluis Marquez, M.Antonia
Marti, Lluis Padr6, and M.José¢ Simén. 2002. A pro-
posal for wide-coverage spanish named entity recogni-
tion. Technical Report LSI-02-30-R, Dept. LSI, Univer-

sitat Politecnica de Catalunya, Barcelona, Spain.

Robert Dale and Alistair Knott. 1995. Using linguistic
phenomena to motivate a set of coherence relations. Dis-
course Processes, 18(1):35-62.

C. Engehard and L. Pantera. 1994. Automatic natural ac-
quisition of a terminology. Journal of Quantitative Lin-
guistics, 2(1):27-32.

Kyo Kageura and Bin Umino. 1996. Methods of automatic
term recognition: A review. Terminolgy, 3(2):259-289.

Jung Hee Kim, Michael Glass, and Martha W. Evens. 2000.
Learning use of discourse markers in tutorial dialogue for
an intelligent tutoring system. In COGSCI 2000, Pro-
ceedings of the 22nd Annual Meeting of the Cognitive
Science Society, Philadelphia, PA.

William C. Mann and Sandra A. Thompson. 1988. Rhetor-
ical structure theory: Toward a functional theory of text
organisation. Text, 3(8):234-281.

105

Daniel Marcu. 1997. From discourse structures to text
summaries. In Mani and Maybury, editors, Advances in
Automatic Text Summarization, pages 82 — 88.

Jorge Vivaldi. 2001. Extraccion de candidatos a término
mediante combinacion de estrategias heterog éneas.
Ph.D. thesis, Departament de Llenguatges i Sistemes In-
formatics, Universitat Politecnica de Catalunya.

