
Corpus-based Evaluation of a French Spelling and Grammar Checker

Marianne Starlander and Andrei Popescu-Belis

ISSCO/TIM, University of Geneva,
École de Traduction et d’Interprétation

40 Bvd. du Pont d’Arve
CH-1211 Geneva 4 – Switzerland
marianne.starlander@eti.unige.ch

andrei.popescu-belis@issco.unige.ch

Abstract
This article describes an evaluation method for spelling and grammar checkers and gives the results of its application to two French
checkers. The evaluation process follows closely the ISO/IEC and EAGLES guidelines, and defines precisely the evaluation metrics, so
that they can be easily reproduced. The choice of professional translators as user profile entails the use of a corpus of spelling
mistakes, which was collected and annotated. The metrics are divided into three sets: classification of perfect vs. imperfect sentences;
detection of mistakes; correction of mistakes. The results show in which respect the two systems are the most adapted to the user
needs, and the points on which they could be improved.

1. Introduction
The methodology of evaluation in Natural Language

Processing (NLP) has witnessed considerable
standardization efforts in the past decade. Even if
programs addressing complex NLP tasks are still hard to
evaluate, lower-level programs can now be evaluated
following a standard methodology, which enables one to
tailor evaluation to the intended context of use, as well as
compare results through different evaluations.

The present article has two objectives. First, we aim at
applying a standard evaluation process to spelling and
grammar checker (SGC) programs, producing an
evaluation specification that will help future evaluations.
Given the increasing number of spelling and grammar
checkers, it is indeed necessary to evaluate them
impartially. Second, we show how the evaluation process
is adapted to a specific type of user, namely a professional
translator, in particular through the collection of a corpus
of spelling mistakes. Two existing systems for French are
evaluated and compared from the point of view of such a
user.

The article is organized as follows. The rest of
section 1 situates our evaluation in the framework of
several standards (ISO/IEC, EAGLES) and previous spell
checker evaluations (TEMAA). Section 2 outlines the first
stage in the evaluation process, namely the definition of
the quality requirements, based on the user profile and the
description of the corpus and its annotation. Section 3
completely specifies the evaluation metrics, so that they
can be reused by other evaluators. Section 4 provides the
evaluation results and discussion of them, before the final
conclusion (Section 5).

1.1. Principles of Evaluation: Generic Software,
NLP Software, Spelling Checkers

The International Organization for Standardization
(ISO), together with the International Electrotechnical
Commission (IEC) have defined several standards for
software evaluation, in two series: ISO/IEC 9126 (1 to 3)
and ISO/IEC 14958 (1 to 6), some being still in press. We
cannot summarize here the numerous aspects that are dealt

with by these standards, but the first series is concerned
with quality models, and the second with the evaluation
process. Most important for us is that, according to
ISO/IEC 14598-5 (1998), the evaluation process is
divided into five stages:

• establishment of the quality requirements (the list
of required quality characteristics);

• specification of the evaluation (mapping
measurements to requirements);

• design of the evaluation (documenting procedures
used to perform measurements);

• execution of the evaluation;
• conclusion of the evaluation (and reporting).
Regarding the quality characteristics, ISO/IEC 9126-1

(2001) states that they must belong to the following six
top-level classes: functionality, reliability, usability,
efficiency, maintainability, and portability.

The European EAGLES initiative aimed at developing
standards for NLP software evaluation (EAGLES (Expert
Advisory Group on Language Engineering Standards :
Evaluation Working Group, 1993-1999). There was strong
commitment towards applying the ISO/IEC standards to
NLP (ISO/IEC 9126 was first published in 1991), and also
towards giving a central place to the user throughout the
evaluation design. The two phases of EAGLES produced
guidelines for NLP software evaluation (cf. the “ EAGLES
Seven Step Recipe”, http://www.issco.unige.ch/projects/
eagles/ewg99/7steps.html), including the definition of a
quality model, then studied their application to case
studies: spell checkers (cf. TEMAA) and machine
translation (in the ISLE follow-up project).

1.2. Our Contribution to the Methodology of
Spelling and Grammar Checker Evaluation

Given the existing evaluation initiatives mentioned
above, our goal was to design an evaluation that conforms
to the ISO/IEC and EAGLES guidelines, and apply it to a
concrete user profile and associated test data. The
evaluation process follows closely the ISO/IEC stages, so
the choices made at each point are easily justified, and can
be reproduced or modified by others.

With respect to the TEMAA project, which already
dealt with authoring assistant tools, our contribution is
innovative with respect to at least two points. First, the
choice of a human translator as the user model, while still
general enough, lead us to use as test data a corpus of
spelling mistakes, and no longer a test suite that was
artificially built. As discussed in Section 2, we believe that
this choice brings us closer to capturing user needs.
Second, we define our metrics transparently, using
formulae, whereas it seems no directly applicable
formulae were ever published for TEMAA. We hope thus
to provide ready-made metrics for use by future
evaluators, and in particular by non professional
evaluators who are interested in setting up their own
evaluation process.

These innovations are applied to the evaluation of two
spelling and grammar checkers for texts written in French.
Since these are commercial products (their names will not
be disclosed), we had to design a black-box type
evaluation (as opposed to glass-box), which relies mainly
on test data. The numeric results enable us to draw
eloquent conclusions about the adequacy of these tools
with respect to our user profile, as well as point out at not-
so-performant features. A more detailed version of these
results can be found in (Starlander, 2002).

2. Quality Requirements: User Profile
and Test Corpus

2.1. Description of the User
As we concentrated on a specific user population,

translators, it is important to describe them by setting out
their particularities:

• Translators produce very varied texts, style and
register as well as content wise.

• Although they usually possess a good command
of their working language, they are still likely to
make mechanical mistakes, due for instance to
copying and pasting text or to typing errors.

• They usually produce a "thought of" text, as the
translation process in itself needs some thinking.
This implies that the text is not spontaneously
produced, as in the case of emails.

• They use a SGC if they can rely on it, meaning
that the system is able to detect errors and to
correct them, although the second requirement is
less important as translators are language skilled
enough to find the adequate correction if the
mistake is being pointed out.

• Finally, translators, being language professionals,
are less tolerant to false alarms than other users,
so they would dismiss the use of a weak SGC as
time-consuming.

2.2. A Corpus of Spelling Mistakes

2.2.1. Corpus vs. Test Suites
Facing the question of whether to use test suites or a

corpus as test material, we decided to choose the latter
because we wanted the test material to be representative of
a particular type of user. Test suites are best suited to test
specific aspects, for example to find out how a system
would treat a specific error type such as the past participle
agreement. Furthermore, with respect to test suites,

corpora take less time to build, and account more
precisely for the actual frequency of mistakes, provided
they have a reasonable size.

2.2.2. Collecting the Corpus
As we decided to build a user-specific corpora, we

collected a corpus of 27 translations (1-3 pages long),
produced by French mother tongue students at the
Translation and Interpretation School of the University of
Geneva. These were written as training exercises, during
the academic year 2001.

Most translated texts are general topic articles from the
German, English, Italian or Spanish press.

The students were told not to correct their text while
producing their translation and not to reread it before
sending it. We guaranteed the students a total anonymity
in order to keep the mistakes as close to a real situation as
possible.

Statistically speaking, the corpus counts a total of
approximatively 15,000 words, which is equivalent to
around 30 typed pages. The total number of sentences is
637. The corpus is indeed not very large, but it is targeted
towards a special population, and we believe it is
representative enough for our evaluation. Furthermore, the
reduced size allows us to process the corpus manually, as
we will see now.

2.3. Annotation of Spelling Mistakes
The raw corpus has been annotated in order to reflect

accurately all the mistakes present in it. This implies a
human correction, detecting all the errors and
subsequently marking them using predefined tags (see
below).

In a second phase, the same corpus has been submitted
to each SGC system and, using the same tags, we marked
the detected mistakes and encoded the suggested
correction. In order to encode certain information such as
the ranking of the suggestions for correction, we
introduced slight changes to the tags used (e.g. we added a
number beside the tag reflecting the position of the right
correction suggestion).

In general, the annotating of the text should ideally
follow encoding directives such as TEI (Text Encoding
Initiative) or CES (Corpus Encoding Standard) in order to
be reused for other purposes.

Let us see now how the tags were chosen and designed
following an error typology which we are now going to
describe.

2.3.1. Typology of the Errors
Classifying errors is sometimes difficult as the same

error could be classified in various categories; for example
in French a missing "s" at the end of a word could be
tagged as a typographic error due to omission or as a
syntactic one, being caused by a lack of agreement
between a noun and its determinant. Thus different types
of classification are possible: according to the origin of the
error, complexity of error (real word error, long distance
error) or type of techniques required to treat them.

We chose a quite classical typology, first of all
differentiating between lexical and syntactical errors, and
then dividing the first into typographic and phonetic
errors. Under typographic errors, the four classical
transformation are to be found (Kukich 1992): insertion,

omission, substitution and transposition, as well as two
more difficult types: splitting and agglutinating words;
and finally the French specific problem of accentuation.

Under syntactic errors, we classified all agreement
mistakes (determinant-noun; adjective-noun, subject-verb
and past participle), usage errors (such as confusion
between past participle and infinitive, which could also be
counted in with the phonetically errors., or confusion
between, là (location adverb) and la (determinant)) and
construction errors (insertion or omission of a word).
These errors are all context dependent.

2.3.2. Resulting tags
The typology developed by Vandenventer et al.

inspired us for the choice of the tags themselves. We will
briefly describe them below, as well as providing
information about the frequency of each type of mistake in
our corpus.

 Tag Description Freq.
TOM Omission of a letter 15.1%
TIN Insertion of a letter 13.8%
TSU Substitution bet. 2 letters 19.1%

TTR
Transposition bet. 2
letters 6.9%

TAC Accentuation 4.8%

TCO
Omitting a space bet. 2
words 1.3%

TSO
Inserting a space bet. 2
words 3.4%

L
ex

ic
al

 e
rr

or
s

TTRANS
Transposition oral-
written 1.1%

Lexical errors average frequency 67.9%
SADN Determinant – noun

agreement 10.3%
SAAN Adjective – noun

agreement 5.3%
SASV Subject – verb agreement 1.6%
SAPP Past participle agreement 2.4%
ECON Usage confusion 7.7%
CIM Insertion of a word 0.5%
COM Omission of a word 2.4%

Sy
nt

ax
 e

rr
or

s

CTRM Word Order 0.3%
Syntax errors average frequency 32.1%

Table 1. Frequency of various errors in our corpus.

In our corpus, typology errors are more vastly
represented (67.9%) than grammar errors (32%). This is
probably due to our user profile: as we described above,
translators carefully think of the text to be written before
typing it. In general, our corpus counts only 377 errors on
a total of approximatively 15'000 words. Some error types
are poorly represented, such as missing and inserted
words, or subject to verb agreements, but this is the result
of using a user representative corpus.

2.4. Consequences for Quality Requirements
The definition of a user profile, including user needs,

entails the choice of a quality model, that is, a set of
quality characteristics that are part of the ISO/IEC 9126
hierarchy. The top-level qualities are: functionality,
reliability, usability, efficiency, maintainability, and
portability. Our user has advanced knowledge of the

writing language, reasonable IT skills, and a need for
speed in the production of texts.

Functionality is the main feature in our quality model,
i.e., the capacity of the system to detect and correct
spelling and grammar mistakes. ISO/IEC 9126
decomposes functionality into suitability, interoperability,
security, compliance and accuracy. We have focused our
model on the latter characteristic. Indeed, regarding
adequacy, it seems quite obvious that the translator needs
a checker, and not a language teaching software for
instance. The integration into an editor could be studied at
length, but many programs offer here similar capacities.
Safety and conformance are less applicable here.

We must now decompose accuracy into quality
attributes that can be measured (see metrics in Section 3).
Two sub-characteristics seem quite obvious, the capacity
to detect mistakes and the capacity to suggest corrections,
the first one being more relevant to our user type.

Detection can be further divided into the capacity to
detect a maximal number of mistakes, and the capacity to
avoid false alarms. If the checker raises many false
alarms, the user spends a lot of time checking them; if it
misses many mistakes, the resulting text is unacceptable.
In both cases the user would prefer manual checking.
These two capacities lead straightforwardly to recall and
precision measures (Section 3).

Correction capacities are also relevant to the user, if
they are often accurate, especially since checkers often
propose an ergonomic replacement capacity (mouse
clicks). The present of the correct suggestion among the
proposed ones is here the main quality; preferably, the
correct suggestion should be the first one. Even better is
the capacity to explain mistakes and provide reasons for
correction (but this will not be measured here).

The other five top-level qualities were not used in our
evaluation. Efficiency (the link between used resources
and provided service) is not relevant since the evaluated
software runs fast enough on standard PCs. Of course, the
checker’s efficiency must not be confused with the user’s
efficiency in their task, which depends partly on the
checker’s accuracy but is best measured by quality in use
metrics. The other four qualities, reliability, ease of use,
maintainability, and portability, are more technical and
have not been considered relevant to our user needs.
Crashes are infrequent, platforms change too, and the
integration of the checkers into common editing
applications guarantees ease of use (though ease of
installation may vary). If maintainability is related to
dictionary updating, it may be relevant to our user, but its
measure would imply ergonomic analyses that were
beyond our purpose.

3. Specification and Design of the Evaluation
In order to quantify the functionality of a system as an

acceptable spelling and grammar checker (SGC), we have
defined a number of measures that grasp various aspects
of functionality. It is of course not possible to ‘prove’ that
these measures are indeed the right ones. Instead, we
describe them fully below, so that the community of
evaluators may study them and either adopt them or
suggest modifications.

As stated above, our test data is a text corpus
containing various spelling and grammar mistakes that
were annotated. After giving it the test data, the checker

hypothesizes a certain number of mistakes: some of the
guesses are correct (they correspond to real mistakes) and
some are wrong (the text was correct in that place).
Moreover, we are also interested in the suggestions for
correction that were provided for the correct guesses—
those for the wrong ones are not relevant. Another
measure concerns the ability to validate whole sentences,
i.e. to detect sentences containing at least one mistake
from those containing none.

We will specify below these three metrics, starting
with the last one. For each of them, we define first what
exactly is measured or counted, then how the score is
computed from these values. The metrics do not
necessarily require manual counting, once the mistake
corpus is fully annotated; neither do they require
particular functions from the checker other than those
described above.

3.1. Sentence Level Precision and Recall
3.1.1. How to Count Errors

The first metric determines the system’s capacity to
correctly classify correct vs. wrong sentences. A ‘correct
sentence’ is a sentence containing no spelling or grammar
mistakes, while a ‘wrong sentence’ contains at least one
mistake. This capacity helps reducing the revision time for
a document, since a human translator is quite good at
detecting mistakes when shown in which sentence they
are. That is why we introduced the present metric.

The sentence level metric involves four quantities that
are traditionally known as:
• true positives (TP): correct sentences that are marked

‘correct’ by the checker;
• false positives (FP): wrong sentences that are marked

‘correct’ by the checker;
• false negatives (FN): correct sentences that are

marked ‘wrong’ by the checker;
• true negatives (TN) : wrong sentences that are marked

‘wrong’ by the checker.

3.1.2. How to Compute the Scores
There are several traditional scores used to compute

the accuracy of this kind of classifier. If one is interested
in the capacity to detect correct sentences, one can
compute recall and precision for this task. These are
defined as following:

FPTP

TP
P

FNTP

TP
R cc +

=
+

= and

Conversely, if one is interested in the capacity to
detect wrong sentences, one can compute other recall and
precision scores:

FNTN

TN
P

FPTN

TN
R ff +

=
+

= and

It is interesting to note that these four quantities are not
completely independent, because TP+FP = FN+TN.
However, it is not completely informative to provide only
two of them. Therefore, another score is sometimes used
in addition to either two of them, namely predictive
accuracy:

FNTNFPTP

TNTP
PA

+++
+=

In addition, one can compute f-measure, i.e. the
harmonic mean between recall and precision, either for
correct sentences or for wrong ones:

pp
p

cc
c PR

fm
PR

fm
11

2
and

11

2

+
=

+
=

 As usual, recall and precision vary between 0 and 1,

the best score being one. Recall is the capacity to detect
all correct (resp. wrong) sentences, precision is the
capacity to detect only correct (resp. wrong) sentences.
Trivial strategies enable a system to obtain high recall
(‘select all the sentences as correct’) or high precision
(‘select very few sentences’), therefore f-measure
combines these two scores. The results of our evaluation
will take into consideration the four precision and recall
scores Rc, Pc, Rf and Pf.

3.2. Precision and Recall for Error Detection
3.2.1. How to Count Errors

The second metric (or rather set of metrics) concerns
the detection of the mistakes themselves. More precisely,
the system has correctly detected a mistake if it signals a
mistake on the same word. An exception is made for
agreement errors, when signaling either of the two
elements that do not agree (e.g., subject + verb) is
acceptable, provided there are no other cues (e.g., an
adjective or determiner). This task is similar to a retrieval
task, and it is quite normal to count, for each type of
mistake defined in Section 2, the number of real mistakes
found by the checker (x), the number of real mistakes not
found (y) and the number of mistakes hypothesized by the
checker that do not correspond to real mistakes (z).

3.2.2. How to Compute the Scores
Recall and precision scores are therefore computed for

this task, using the above numbers, for each type of
mistakes. For ‘TOM’ mistakes (letter omission) we have :

TOMTOM

TOM
c

TOMTOM

TOM
TOM zx

x
P

yx

x
R

+
=

+
= and

Once again, the f-measure can be computed as above.
To integrate the scores per type of mistake, it would be

unfair to average recall and precision scores, since this
would mean that all types of mistakes have the same
frequency in the collected corpus. To account for their
relative importance, the number of mistakes must be
summed up, then the formulae applied, such as, for
instance, for recall:

∑∑
∑

+
=

types ttypes t

types t

yx

x
Rdetect

3.3. Precision and Recall for Error Correction
3.3.1. How to Count Errors and Compute Scores

The capacity of the program to suggest the right
correction for a detected mistake must finally be
measured. It seems fair to take here into account only the
suggestions concerning mistakes that were correctly
detected. Otherwise, for wrongly hypothesized mistakes,
the suggestion would be necessarily wrong (because the
text is correct) and this would penalize the checker twice
(once for the previous score and once here).

Therefore, for each ‘true mistake’, we check whether
the suggested solution is correct, or wrong, or absent (no
suggestion), then total these three figures. Given that our
user is probably able to detect the correct suggestion

among a small set of suggestions, we count as a correct
suggestion the case when the correct one is present among
the set of suggestions (in case there are several), but not
necessarily in the first position.
3.3.2. How to Compute Scores

The scores are then quite straightforward to compute:
percentage of right suggestions (BS), percentage of false
suggestions (FS) and percentage of absent
suggestions (AS).

3.4. Integration of the scores
The three sets of metrics defined above provide a

multitude of scores. The first set yields (here) two
recall/precision couples, one for correct sentences, one for
wrong ones. The second yields one recall/precision couple
per type of error. The third one yields three percentages of
suggestions (correct, false, absent) per type of error.
Should all these scores be integrated to provide a single
number ?

We believe that reducing all scores to one is not
particularly eloquent, even for comparing two systems as
in the present case. It seems more relevant to analyze each
of the three sets separately, draw conclusions, then
integrate these conclusions. Therefore, we will provide
below detailed scores for the three sets, and integrate each
set separately—that is, average scores across all types of
errors.

4. Results

4.1. Execution of the Evaluation
There is nothing much to say about the execution of

the evaluation. In our particular case, there was no API
available to the two checkers, therefore the results had to
be collected manually. The corpus of mistakes was
submitted to each of the checkers (without the markup, of
course), and the responses were manually annotated on the
corpus using similar markup. The correctness of the
suggestion was also annotated manually from the
graphical response of each checker. The various numbers
defined above were then counted, by extracting the tagged
portions into tables. The scores were then computed using
the above definitions. We provide them hereafter,
referring to the two checkers as S1 and S2.

4.2. Scores for the Three Measures
We are going to present the results for detection

followed by those for correction.

4.2.1. Sentence Level
Recall Precision

Correct s. Wrong s. Correct s. Wrong s.

S1 87.1% 89.5% 94.4% 77.4%
S2 70.2% 86.4% 91.1% 59.5%

Table 2. Precision and recall for the detection at sentence
level (system S1 vs. S2).

At sentence level, S2 seems to perform worse than S1,
but remember that this measure is only very indicative of
accuracy, as sentences marked as incorrect can include
varying amounts of errors. For S2, the recall for wrong
sentences is quite similar to the one obtained by S1 but the

precision rate varies considerably. According to these
figures, S1 and S2 are quite comparable on the recall
level, but S2 appears to be far less accurate, as S2 counts
almost 17 points less for precision on wrong sentences. It
will be interesting to see if these first impressions are
going to be confirmed by the precision and recall rates on
error level.

4.2.2. Error Detection
Here are the results by category of error, first for

lexical errors and second for syntax errors:

Lexical Errors

System 1 System 2 Error
types Recall Precision R P

TOM 78.9% 95.7% 82.5% 95.9%
TIN 76.9% 95.2% 88.5% 80.7%
TSU 79.2% 100.0% 88.9% 98.5%
TTR 84.6% 100.0% 84.6% 100.0%
TAC 84.2% 94.1% 83.3% 88.2%
TCO 100.0% 100.0% 40.0% 66.7%
TSO 80.0% 100.0% 100.0% 100.0%
TTRANS 100.0% 100.0% 100.0% 100.0%
Total 80.2% 97.5% 86.2% 92.6%

Table 3. Recall and precision for error detection (per
category of error): lexical errors.

S1 performs quite well on lexical errors, with an
average recall of 80.2% and a precision of 97,5%. The
difference between these two figures is quite high.
Compared to that, S2, although showing lower figures, is
far more balanced. Generally speaking, the scores are
quite high, as they are all are above 75%, there is not one
category of errors scoring particularly low.

Syntax Errors

System 1 System 2 Error
types Recall Precision R P

SADN 87.2% 81.0% 97.4% 92.7%
SAAN 65.0% 40.6% 90.0% 36.7%
SASV 66.7% 33.3% 66.7% 20.0%
SAPP 11.1% 11.1% 88.9% 72.7%
ECON 34.5% 27.8% 34.5% 22.2%
CIM 0.0% 0.0% 100.0% 100.0%
COM 11.1% 25.0% 55.6% 62.5%
CTRM 0.0% 0.0% 0.0% 0.0%
Total 54.8% 46.7% 73.9% 48.3%

Table 4. Recall and precision for error detection (per
category of error): syntax errors.

On the syntax level, the differences between the types
of errors are much more significant: the past participle
agreement is very low for S1, whereas S2 performs really
well. S2 has particularly a high figure for recall for
adjective to noun agreement (SAAN), but this has to be
tempered by the particularly low precision rate (36.7%).

4.2.3. Error Correction
In the table bellow, we reproduced only the rate of

good correction, that is, when the system, once a mistake
detected was able to propose the right correction.

 S 1 S 2
TOM 72.7% 74.0%
TIN 75.6% 75.5%
TSU 51.7% 53.0%
TTR 91.3% 72.7%
TAC 100.0% 94.4%
TCO 80.0% 0.0%
TSO 83.3% 15.4%
TTRANS 100.0% 75.0%
Average 72.6% 65.6%
SADN 87.9% 100.0%
SAAN 78.6% 100.0%
SASV 100.0% 100.0%
SAPP 100.0% 85.7%
ECON 85.7% 91.7%
CIM 0.0% 0.0%
COM 100.0% 100.0%
CTRM 0.0% 0.0%
Average 87.0% 69.2%
Total 77.0% 73.9%

Table 5. Percentage of good correction per category of
errors for S1 and S2

On average, S1 performs better both on lexical and
syntax errors than S2.

The error types which are corrected worse by S2 are
the pasting and cutting of two words (TSO and TCO),
while S1’s worse performances are letter substitution
errors (TSU).

The scores are astonishingly high for S2 on syntax
errors due to agreement (100%) except past participle
agreement presenting a lower rate (SAPP, 85.7%). On the
contrary, SAPP has the highest score for S1.

The scores for errors of usage which were really low
on detection level, are much better on correction level for
both systems. This means, that once such an error is
detected, it is well corrected, although this type of error
often implies semantic elements.

4.2.4. Overall scores
The overall scores are given here, in the two following

tables.

Figure 1. Average recall and precision for detection,
system 1 (S1) and system 2 (S2).

We described our user to be specially annoyed by false
alarms; the score obtained for precision is thus significant,
if the figure is below 75% we estimate that the system is
not accurate enough.

On average, precision for S1 amounts to 74.2% while
S2 obtains 73.4%. The difference between the lexical and
the syntax average are quite significantly high, specially
for S1. This points out again, that the average figure, is
not enough to evaluate a system, as the two systems
appear quite equal on a general average level, while as the
detailed results, indeed point out that S1 performs better.

Figure 2. Average percentage of good suggestions for S1
and S2

The same comment could be made about the average
percentages for correction. Regarding only the total,
which some up the percentages of all errors, the difference
between the systems does not appear clearly, although
again, the detailed scores are clearly higher for S1.

5. Conclusion and Further Work
The point of the evaluation methodology is to enable a

translator to be able himself to determine which system
would suit him best. The average scores obtained by the
systems are quite close to each other, so that it is not
possible to decide on one system or the other on this base.
The user would have to determine according to the type of
mistakes he is more likely to commit.

The scores given on sentence level gave the accurate
impression of S1 performing better. But the other
measures are absolutely necessary in order to have a more
nuanced and accurate image of the systems performance.

The methodology could be improved through the
following changes:

(1) automating the counting phase would increase
objectivity and certainly accuracy of the
results. This would also make it possible to
treat a larger corpus in a reasonable time.

(2) enlarging the corpus or maybe including some
test suites in order to study more profoundly
certain observations made from the corpus.

(3) unfortunately automating the annotation seems
difficult, but if possible, a certain flexibility in
the tag setting should be provided to the user,
as the systems do not treat or present the
corrections in a uniform or even analogous
fashion.

This study was limited on French SGCs systems. It
would be interesting to gather a similar corpus in different
languages, so that the method could be applied to other

80.3%
86.2%

91.9%92.6%

56.8%

73.9%

46.9%

48.3%

72.8%

82.3%

74.2%

73.4%

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

Lexical Syntax Total

Recall S1

Recall S2

Precision S1

Precision S2

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

lexical syntax T otal

SY ST EM 1

SY ST EM 2

languages. Of course this also implies adjusting the error
typology to the language treated. In any case, the metrics
described in this paper can be used as they are,
independently of the language treated.

6. References
Eagles evaluation work group, 1996. EAGLES Evaluation

of Natural Language Processing Systems, Final report,
Center for Sprogteknologi, Denmark.

ISO/IEC 9126-1, 2001. ISO/IEC 9126-1:2001 (E)
Standard – Software engineering - Product quality -
Part 1: Quality model, Geneva: International
Organization for Standardization / International
Electrotechnical Commission.

ISO/IEC 14598-5, 1998. ISO/IEC 14598-5:1998 (E)
Standard – Information technology --- Software product
evaluation --- Part 5: Process for evaluators, Geneva:
International Organization for Standardization /
International Electrotechnical Commission.

Kukich, K., 1992. "Techniques of Automatically
Correcting Words in Text", in ACM Computing
Surveys, 24(4):377-438.

Starlander, M. 2002. Evaluation d'un correcteur
d'orthographe et de grammaire : L'utilité de Cordial 7
pour le traducteur. ETI, Université de Genève, janvier
2002.

TEMAA, 1996. TEMAA Final Report - A Testbed Study of
Evaluation Methodologies: Authoring Aids. Technical
Report LRE-62-070 (March 1996), Center for
Sprogteknologi, Copenhagen, Denmark.

Vandeventer, A., Granger, S., Hamel, M.-J., 2002.
Analyse du corpus d'apprenants pour ELAO basé sur le
TAL. In Revue TAL, Hermès, Paris, 42(2).

	268: 268
	269: 269
	270: 270
	271: 271
	272: 272
	273: 273
	274: 274

