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Abstract 
This article describes an evaluation method for spelling and grammar checkers and gives the results of its application to two French 
checkers. The evaluation process follows closely the ISO/IEC and EAGLES guidelines, and defines precisely the evaluation metrics, so 
that they can be easily reproduced. The choice of professional translators as user profile entails the use of a corpus of spelling 
mistakes, which was collected and annotated. The metrics are divided into three sets: classification of perfect vs. imperfect sentences; 
detection of mistakes; correction of mistakes. The results show in which respect the two systems are the most adapted to the user 
needs, and the points on which they could be improved. 
 

1. Introduction 
The methodology of evaluation in Natural Language 

Processing (NLP) has witnessed considerable 
standardization efforts in the past decade. Even if 
programs addressing complex NLP tasks are still hard to 
evaluate, lower-level programs can now be evaluated 
following a standard methodology, which enables one to 
tailor evaluation to the intended context of use, as well as 
compare results through different evaluations. 

The present article has two objectives. First, we aim at 
applying a standard evaluation process to spelling and 
grammar checker (SGC) programs, producing an 
evaluation specification that will help future evaluations. 
Given the increasing number of spelling and grammar 
checkers, it is indeed necessary to evaluate them 
impartially. Second, we show how the evaluation process 
is adapted to a specific type of user, namely a professional 
translator, in particular through the collection of a corpus 
of spelling mistakes. Two existing systems for French are 
evaluated and compared from the point of view of such a 
user. 

The article is organized as follows. The rest of 
section 1 situates our evaluation in the framework of 
several standards (ISO/IEC, EAGLES) and previous spell 
checker evaluations (TEMAA). Section 2 outlines the first 
stage in the evaluation process, namely the definition of 
the quality requirements, based on the user profile and the 
description of the corpus and its annotation. Section 3 
completely specifies the evaluation metrics, so that they 
can be reused by other evaluators. Section 4 provides the 
evaluation results and discussion of them, before the final 
conclusion (Section 5). 

1.1. Principles of Evaluation: Generic Software, 
NLP Software, Spelling Checkers 

The International Organization for Standardization 
(ISO), together with the International Electrotechnical 
Commission (IEC) have defined several standards for 
software evaluation, in two series: ISO/IEC 9126 (1 to 3) 
and ISO/IEC 14958 (1 to 6), some being still in press. We 
cannot summarize here the numerous aspects that are dealt 

with by these standards, but the first series is concerned 
with quality models, and the second with the evaluation 
process. Most important for us is that, according to 
ISO/IEC 14598-5 (1998), the evaluation process is 
divided into five stages: 

• establishment of the quality requirements (the list 
of required quality characteristics); 

• specification of the evaluation (mapping 
measurements to requirements); 

• design of the evaluation (documenting procedures 
used to perform measurements); 

• execution of the evaluation; 
• conclusion of the evaluation (and reporting). 
Regarding the quality characteristics, ISO/IEC 9126-1 

(2001) states that they must belong to the following six 
top-level classes: functionality, reliability, usability, 
efficiency, maintainability, and portability. 

The European EAGLES initiative aimed at developing 
standards for NLP software evaluation (EAGLES (Expert 
Advisory Group on Language Engineering Standards : 
Evaluation Working Group, 1993-1999). There was strong 
commitment towards applying the ISO/IEC standards to 
NLP (ISO/IEC 9126 was first published in 1991), and also 
towards giving a central place to the user throughout the 
evaluation design. The two phases of EAGLES produced 
guidelines for NLP software evaluation (cf. the “ EAGLES 
Seven Step Recipe”, http://www.issco.unige.ch/projects/ 
eagles/ewg99/7steps.html), including the definition of a 
quality model, then studied their application to case 
studies: spell checkers (cf. TEMAA) and machine 
translation (in the ISLE follow-up project). 

1.2. Our Contribution to the Methodology of 
Spelling and Grammar Checker Evaluation 

Given the existing evaluation initiatives mentioned 
above, our goal was to design an evaluation that conforms 
to the ISO/IEC and EAGLES guidelines, and apply it to a 
concrete user profile and associated test data. The 
evaluation process follows closely the ISO/IEC stages, so 
the choices made at each point are easily justified, and can 
be reproduced or modified by others. 



With respect to the TEMAA project, which already 
dealt with authoring assistant tools, our contribution is 
innovative with respect to at least two points. First, the 
choice of a human translator as the user model, while still 
general enough, lead us to use as test data a corpus of 
spelling mistakes, and no longer a test suite that was 
artificially built. As discussed in Section 2, we believe that 
this choice brings us closer to capturing user needs. 
Second, we define our metrics transparently, using 
formulae, whereas it seems no directly applicable 
formulae were ever published for TEMAA. We hope thus 
to provide ready-made metrics for use by future 
evaluators, and in particular by non professional 
evaluators who are interested in setting up their own 
evaluation process. 

These innovations are applied to the evaluation of two 
spelling and grammar checkers for texts written in French. 
Since these are commercial products (their names will not 
be disclosed), we had to design a black-box type 
evaluation (as opposed to glass-box), which relies mainly 
on test data. The numeric results enable us to draw 
eloquent conclusions about the adequacy of these tools 
with respect to our user profile, as well as point out at not-
so-performant features. A more detailed version of these 
results can be found in (Starlander, 2002). 

2. Quality Requirements: User Profile 
and Test Corpus 

2.1. Description of the User 
As we concentrated on a specific user population, 

translators, it is important to describe them by setting out 
their particularities: 

• Translators produce very varied texts, style and 
register as well as content wise. 

• Although they usually possess a good command 
of their working language, they are still likely to 
make mechanical mistakes, due for instance to 
copying and pasting text or to typing errors. 

• They usually produce a "thought of" text, as the 
translation process in itself needs some thinking. 
This implies that the text is not spontaneously 
produced, as in the case of emails. 

• They use a SGC if they can rely on it, meaning 
that the system is able to detect errors and to 
correct them, although the second requirement is 
less important as translators are language skilled 
enough to find the adequate correction if the 
mistake is being pointed out. 

• Finally, translators, being language professionals, 
are less tolerant to false alarms than other users, 
so they would dismiss the use of a weak SGC as 
time-consuming. 

2.2. A Corpus of Spelling Mistakes 

2.2.1. Corpus vs. Test Suites 
Facing the question of whether to use test suites or a 

corpus as test material, we decided to choose the latter 
because we wanted the test material to be representative of 
a particular type of user. Test suites are best suited to test 
specific aspects, for example to find out how a system 
would treat a specific error type such as the past participle 
agreement. Furthermore, with respect to test suites, 

corpora take less time to build, and account more 
precisely for the actual frequency of mistakes, provided 
they have a reasonable size. 

2.2.2. Collecting the Corpus 
As we decided to build a user-specific corpora, we 

collected a corpus of 27 translations (1-3 pages long), 
produced by French mother tongue students at the 
Translation and Interpretation School of the University of 
Geneva. These were written as training exercises, during 
the academic year 2001. 

Most translated texts are general topic articles from the 
German, English, Italian or Spanish press. 

The students were told not to correct their text while 
producing their translation and not to reread it before 
sending it. We guaranteed the students a total anonymity 
in order to keep the mistakes as close to a real situation as 
possible. 

Statistically speaking, the corpus counts a total of 
approximatively 15,000 words, which is equivalent to 
around 30 typed pages. The total number of sentences is 
637. The corpus is indeed not very large, but it is targeted 
towards a special population, and we believe it is 
representative enough for our evaluation. Furthermore, the 
reduced size allows us to process the corpus manually, as 
we will see now. 

2.3. Annotation of Spelling Mistakes 
The raw corpus has been annotated in order to reflect 

accurately all the mistakes present in it. This implies a 
human correction, detecting all the errors and 
subsequently marking them using predefined tags (see 
below). 

In a second phase, the same corpus has been submitted 
to each SGC system and, using the same tags, we marked 
the detected mistakes and encoded the suggested 
correction. In order to encode certain information such as 
the ranking of the suggestions for correction, we 
introduced slight changes to the tags used (e.g. we added a 
number beside the tag reflecting the position of the right 
correction suggestion). 

In general, the annotating of the text should ideally 
follow encoding directives such as TEI (Text Encoding 
Initiative) or CES (Corpus Encoding Standard) in order to 
be reused for other purposes. 

Let us see now how the tags were chosen and designed 
following an error typology which we are now going to 
describe. 

2.3.1. Typology of the Errors 
Classifying errors is sometimes difficult as the same 

error could be classified in various categories; for example 
in French a missing "s" at the end of a word could be 
tagged as a typographic error due to omission or as a 
syntactic one, being caused by a lack of agreement 
between a noun and its determinant. Thus different types 
of classification are possible: according to the origin of the 
error, complexity of error (real word error, long distance 
error) or type of techniques required to treat them. 

We chose a quite classical typology, first of all 
differentiating between lexical and syntactical errors, and 
then dividing the first into typographic and phonetic 
errors. Under typographic errors, the four classical 
transformation are to be found (Kukich 1992): insertion, 



omission, substitution and transposition, as well as two 
more difficult types: splitting and agglutinating words; 
and finally the French specific problem of accentuation. 

Under syntactic errors, we classified all agreement 
mistakes (determinant-noun; adjective-noun, subject-verb 
and past participle), usage errors (such as confusion 
between past participle and infinitive, which could also be 
counted in with the phonetically errors., or confusion 
between, là (location adverb) and la (determinant)) and 
construction errors (insertion or omission of a word). 
These errors are all context dependent. 

2.3.2. Resulting tags 
The typology developed by Vandenventer et al. 

inspired us for the choice of the tags themselves. We will 
briefly describe them below, as well as providing 
information about the frequency of each type of mistake in 
our corpus. 

 Tag Description Freq. 
TOM Omission of a letter 15.1% 
TIN Insertion of a letter 13.8% 
TSU Substitution bet. 2 letters 19.1% 

TTR 
Transposition bet. 2 
letters  6.9% 

TAC Accentuation 4.8% 

TCO 
Omitting a space bet. 2 
words 1.3% 

TSO 
Inserting a space bet. 2 
words 3.4% 

L
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TTRANS 
Transposition oral-
written 1.1% 

Lexical errors average frequency 67.9% 
SADN Determinant – noun 

agreement 10.3% 
SAAN Adjective – noun 

agreement 5.3% 
SASV Subject – verb agreement 1.6% 
SAPP Past participle agreement 2.4% 
ECON Usage confusion 7.7% 
CIM Insertion of a word 0.5% 
COM Omission of a word 2.4% 

Sy
nt

ax
 e

rr
or

s 

CTRM Word Order 0.3% 
Syntax errors average frequency 32.1% 

Table 1. Frequency of various errors in our corpus. 

In our corpus, typology errors are more vastly 
represented (67.9%) than grammar errors (32%). This is 
probably due to our user profile: as we described above, 
translators carefully think of the text to be written before 
typing it. In general, our corpus counts only 377 errors on 
a total of approximatively 15'000 words. Some error types 
are poorly represented, such as missing and inserted 
words, or subject to verb agreements, but this is the result 
of using a user representative corpus. 

2.4. Consequences for Quality Requirements 
The definition of a user profile, including user needs, 

entails the choice of a quality model, that is, a set of 
quality characteristics that are part of the ISO/IEC 9126 
hierarchy. The top-level qualities are: functionality, 
reliability, usability, efficiency, maintainability, and 
portability. Our user has advanced knowledge of the 

writing language, reasonable IT skills, and a need for 
speed in the production of texts. 

Functionality is the main feature in our quality model, 
i.e., the capacity of the system to detect and correct 
spelling and grammar mistakes. ISO/IEC 9126 
decomposes functionality into suitability, interoperability, 
security, compliance and accuracy. We have focused our 
model on the latter characteristic. Indeed, regarding 
adequacy, it seems quite obvious that the translator needs 
a checker, and not a language teaching software for 
instance. The integration into an editor could be studied at 
length, but many programs offer here similar capacities. 
Safety and conformance are less applicable here. 

We must now decompose accuracy into quality 
attributes that can be measured (see metrics in Section 3). 
Two sub-characteristics seem quite obvious, the capacity 
to detect mistakes and the capacity to suggest corrections, 
the first one being more relevant to our user type.  

Detection can be further divided into the capacity to 
detect a maximal number of mistakes, and the capacity to 
avoid false alarms. If the checker raises many false 
alarms, the user spends a lot of time checking them; if it 
misses many mistakes, the resulting text is unacceptable. 
In both cases the user would prefer manual checking.  
These two capacities lead straightforwardly to recall and 
precision measures (Section 3).  

Correction capacities are also relevant to the user, if 
they are often accurate, especially since checkers often 
propose an ergonomic replacement capacity (mouse 
clicks). The present of the correct suggestion among the 
proposed ones is here the main quality; preferably, the 
correct suggestion should be the first one. Even better is 
the capacity to explain mistakes and provide reasons for 
correction (but this will not be measured here). 

The other five top-level qualities were not used in our 
evaluation. Efficiency (the link between used resources 
and provided service) is not relevant since the evaluated 
software runs fast enough on standard PCs. Of course, the 
checker’s efficiency must not be confused with the user’s 
efficiency in their task, which depends partly on the 
checker’s accuracy but is best measured by quality in use 
metrics. The other four qualities, reliability, ease of use, 
maintainability, and portability, are more technical and 
have not been considered relevant to our user needs. 
Crashes are infrequent, platforms change too, and the 
integration of the checkers into common editing 
applications guarantees ease of use (though ease of 
installation may vary). If maintainability is related to 
dictionary updating, it may be relevant to our user, but its 
measure would imply ergonomic analyses that were 
beyond our purpose. 

3. Specification and Design of the Evaluation 
In order to quantify the functionality of a system as an 

acceptable spelling and grammar checker (SGC), we have 
defined a number of measures that grasp various aspects 
of functionality. It is of course not possible to ‘prove’ that 
these measures are indeed the right ones. Instead, we 
describe them fully below, so that the community of 
evaluators may study them and either adopt them or 
suggest modifications. 

As stated above, our test data is a text corpus 
containing various spelling and grammar mistakes that 
were annotated. After giving it the test data, the checker 



hypothesizes a certain number of mistakes: some of the 
guesses are correct (they correspond to real mistakes) and 
some are wrong (the text was correct in that place). 
Moreover, we are also interested in the suggestions for 
correction that were provided for the correct guesses—
those for the wrong ones are not relevant. Another 
measure concerns the ability to validate whole sentences, 
i.e. to detect sentences containing at least one mistake 
from those containing none. 

We will specify below these three metrics, starting 
with the last one. For each of them, we define first what 
exactly is measured or counted, then how the score is 
computed from these values. The metrics do not 
necessarily require manual counting, once the mistake 
corpus is fully annotated; neither do they require 
particular functions from the checker other than those 
described above. 

3.1. Sentence Level Precision and Recall 
3.1.1. How to Count Errors 

The first metric determines the system’s capacity to 
correctly classify correct vs. wrong sentences. A ‘correct 
sentence’ is a sentence containing no spelling or grammar 
mistakes, while a ‘wrong sentence’ contains at least one 
mistake. This capacity helps reducing the revision time for 
a document, since a human translator is quite good at 
detecting mistakes when shown in which sentence they 
are. That is why we introduced the present metric. 

The sentence level metric involves four quantities that 
are traditionally known as: 
• true positives (TP): correct sentences that are marked 

‘correct’ by the checker; 
• false positives (FP): wrong sentences that are marked 

‘correct’ by the checker; 
• false negatives (FN): correct sentences that are 

marked ‘wrong’ by the checker; 
• true negatives (TN) : wrong sentences that are marked 

‘wrong’ by the checker. 

3.1.2. How to Compute the Scores 
There are several traditional scores used to compute 

the accuracy of this kind of classifier. If one is interested 
in the capacity to detect correct sentences, one can 
compute recall and precision for this task. These are 
defined as following: 

FPTP

TP
P

FNTP

TP
R cc +

=
+

= and  

Conversely, if one is interested in the capacity to 
detect wrong sentences, one can compute other recall and 
precision scores: 

FNTN

TN
P

FPTN

TN
R ff +

=
+

= and  

It is interesting to note that these four quantities are not 
completely independent, because TP+FP = FN+TN. 
However, it is not completely informative to provide only 
two of them. Therefore, another score is sometimes used 
in addition to either two of them, namely predictive 
accuracy: 

FNTNFPTP

TNTP
PA

+++
+=   

In addition, one can compute f-measure, i.e. the 
harmonic mean between recall and precision, either for 
correct sentences or for wrong ones: 
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 As usual, recall and precision vary between 0 and 1, 

the best score being one. Recall is the capacity to detect 
all correct (resp. wrong) sentences, precision is the 
capacity to detect only correct (resp. wrong) sentences. 
Trivial strategies enable a system to obtain high recall 
(‘select all the sentences as correct’) or high precision 
(‘select very few sentences’), therefore f-measure 
combines these two scores. The results of our evaluation 
will take into consideration the four precision and recall 
scores Rc, Pc, Rf and Pf. 

3.2. Precision and Recall for Error Detection 
3.2.1. How to Count Errors 

The second metric (or rather set of metrics) concerns 
the detection of the mistakes themselves. More precisely, 
the system has correctly detected a mistake if it signals a 
mistake on the same word. An exception is made for 
agreement errors, when signaling either of the two 
elements that do not agree (e.g., subject + verb) is 
acceptable, provided there are no other cues (e.g., an 
adjective or determiner). This task is similar to a retrieval 
task, and it is quite normal to count, for each type of 
mistake defined in Section 2, the number of real mistakes 
found by the checker (x), the number of real mistakes not 
found (y) and the number of mistakes hypothesized by the 
checker that do not correspond to real mistakes (z). 

3.2.2. How to Compute the Scores 
Recall and precision scores are therefore computed for 

this task, using the above numbers, for each type of 
mistakes. For ‘TOM’ mistakes (letter omission) we have : 

TOMTOM

TOM
c

TOMTOM

TOM
TOM zx

x
P
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x
R

+
=

+
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Once again, the f-measure can be computed as above. 
To integrate the scores per type of mistake, it would be 

unfair to average recall and precision scores, since this 
would mean that all types of mistakes have the same 
frequency in the collected corpus. To account for their 
relative importance, the number of mistakes must be 
summed up, then the formulae applied, such as, for 
instance, for recall: 

∑∑
∑

+
=

types ttypes t

types t

yx

x
Rdetect  

3.3. Precision and Recall for Error Correction  
3.3.1. How to Count Errors and Compute Scores 

The capacity of the program to suggest the right 
correction for a detected mistake must finally be 
measured. It seems fair to take here into account only the 
suggestions concerning mistakes that were correctly 
detected. Otherwise, for wrongly hypothesized mistakes, 
the suggestion would be necessarily wrong (because the 
text is correct) and this would penalize the checker twice 
(once for the previous score and once here). 

Therefore, for each ‘true mistake’, we check whether 
the suggested solution is correct, or wrong, or absent (no 
suggestion), then total these three figures. Given that our 
user is probably able to detect the correct suggestion 



among a small set of suggestions, we count as a correct 
suggestion the case when the correct one is present among 
the set of suggestions (in case there are several), but not 
necessarily in the first position. 
3.3.2. How to Compute Scores 

The scores are then quite straightforward to compute: 
percentage of right suggestions (BS), percentage of false 
suggestions (FS) and percentage of absent 
suggestions (AS). 

3.4. Integration of the scores 
The three sets of metrics defined above provide a 

multitude of scores. The first set yields (here) two 
recall/precision couples, one for correct sentences, one for 
wrong ones. The second yields one recall/precision couple 
per type of error. The third one yields three percentages of 
suggestions (correct, false, absent) per type of error. 
Should all these scores be integrated to provide a single 
number ? 

We believe that reducing all scores to one is not 
particularly eloquent, even for comparing two systems as 
in the present case. It seems more relevant to analyze each 
of the three sets separately, draw conclusions, then 
integrate these conclusions. Therefore, we will provide 
below detailed scores for the three sets, and integrate each 
set separately—that is, average scores across all types of 
errors. 

4. Results 

4.1. Execution of the Evaluation 
There is nothing much to say about the execution of 

the evaluation. In our particular case, there was no API 
available to the two checkers, therefore the results had to 
be collected manually. The corpus of mistakes was 
submitted to each of the checkers (without the markup, of 
course), and the responses were manually annotated on the 
corpus using similar markup. The correctness of the 
suggestion was also annotated manually from the 
graphical response of each checker. The various numbers 
defined above were then counted, by extracting the tagged 
portions into tables. The scores were then computed using 
the above definitions. We provide them hereafter, 
referring to the two checkers as S1 and S2. 

4.2. Scores for the Three Measures 
We are going to present the results for detection 

followed by those for correction. 

4.2.1. Sentence Level 
Recall Precision 

 
Correct s. Wrong s. Correct s. Wrong s. 

S1 87.1% 89.5% 94.4% 77.4% 
S2 70.2% 86.4% 91.1% 59.5% 

Table 2. Precision and recall for the detection at sentence 
level (system S1 vs. S2). 

At sentence level, S2 seems to perform worse than S1, 
but remember that this measure is only very indicative of 
accuracy, as sentences marked as incorrect can include 
varying amounts of errors. For S2, the recall for wrong 
sentences is quite similar to the one obtained by S1 but the 

precision rate varies considerably. According to these 
figures, S1 and S2 are quite comparable on the recall 
level, but S2 appears to be far less accurate, as S2 counts 
almost 17 points less for precision on wrong sentences. It 
will be interesting to see if these first impressions are 
going to be confirmed by the precision and recall rates on 
error level. 

4.2.2. Error Detection 
Here are the results by category of error, first for 

lexical errors and second for syntax errors: 
 

Lexical Errors 

System 1 System 2 Error 
types Recall Precision R P 

TOM 78.9% 95.7% 82.5% 95.9% 
TIN 76.9% 95.2% 88.5% 80.7% 
TSU 79.2% 100.0% 88.9% 98.5% 
TTR 84.6% 100.0% 84.6% 100.0% 
TAC 84.2% 94.1% 83.3% 88.2% 
TCO 100.0% 100.0% 40.0% 66.7% 
TSO 80.0% 100.0% 100.0% 100.0% 
TTRANS 100.0% 100.0% 100.0% 100.0% 
Total 80.2% 97.5% 86.2% 92.6% 

Table 3. Recall and precision for error detection (per 
category of error): lexical errors. 

S1 performs quite well on lexical errors, with an 
average recall of 80.2% and a precision of 97,5%. The 
difference between these two figures is quite high. 
Compared to that, S2, although showing lower figures, is 
far more balanced. Generally speaking, the scores are 
quite high, as they are all are above 75%, there is not one 
category of errors scoring particularly low. 

 
Syntax Errors 

System 1 System 2 Error 
types Recall Precision R P 

SADN 87.2% 81.0% 97.4% 92.7% 
SAAN 65.0% 40.6% 90.0% 36.7% 
SASV 66.7% 33.3% 66.7% 20.0% 
SAPP 11.1% 11.1% 88.9% 72.7% 
ECON 34.5% 27.8% 34.5% 22.2% 
CIM 0.0% 0.0% 100.0% 100.0% 
COM 11.1% 25.0% 55.6% 62.5% 
CTRM 0.0% 0.0% 0.0% 0.0% 
Total 54.8% 46.7% 73.9% 48.3% 

Table 4. Recall and precision for error detection (per 
category of error): syntax errors. 

On the syntax level, the differences between the types 
of errors are much more significant: the past participle 
agreement is very low for S1, whereas S2 performs really 
well. S2 has particularly a high figure for recall for 
adjective to noun agreement (SAAN), but this has to be 
tempered by the particularly low precision rate (36.7%). 



4.2.3. Error Correction 
In the table bellow, we reproduced only the rate of 

good correction, that is, when the system, once a mistake 
detected was able to propose the right correction.  

 S 1 S 2 
TOM 72.7% 74.0% 
TIN 75.6% 75.5% 
TSU 51.7% 53.0% 
TTR 91.3% 72.7% 
TAC 100.0% 94.4% 
TCO 80.0% 0.0% 
TSO 83.3% 15.4% 
TTRANS 100.0% 75.0% 
Average 72.6% 65.6% 
SADN 87.9% 100.0% 
SAAN 78.6% 100.0% 
SASV 100.0% 100.0% 
SAPP 100.0% 85.7% 
ECON 85.7% 91.7% 
CIM 0.0% 0.0% 
COM 100.0% 100.0% 
CTRM 0.0% 0.0% 
Average 87.0% 69.2% 
Total 77.0% 73.9% 

Table 5. Percentage of good correction per category of 
errors for S1 and S2 

On average, S1 performs better both on lexical and 
syntax errors than S2. 

The error types which are corrected worse by S2 are 
the pasting and cutting of two words (TSO and TCO), 
while S1’s worse performances are letter substitution 
errors (TSU). 

The scores are astonishingly high for S2 on syntax 
errors due to agreement (100%) except past participle 
agreement presenting a lower rate (SAPP, 85.7%). On the 
contrary, SAPP has the highest score for S1. 

The scores for errors of usage which were really low 
on detection level, are much better on correction level for 
both systems. This means, that once such an error is 
detected, it is well corrected, although this type of error 
often implies semantic elements. 

4.2.4. Overall scores 
The overall scores are given here, in the two following 

tables. 

Figure 1. Average recall and precision for detection, 
system 1 (S1) and system 2 (S2). 

We described our user to be specially annoyed by false 
alarms; the score obtained for precision is thus significant, 
if the figure is below 75% we estimate that the system is 
not accurate enough. 

On average, precision for S1 amounts to 74.2% while 
S2 obtains 73.4%. The difference between the lexical and 
the syntax average are quite significantly high, specially 
for S1. This points out again, that the average figure, is 
not enough to evaluate a system, as the two systems 
appear quite equal on a general average level, while as the 
detailed results, indeed point out that S1 performs better. 

 

Figure 2. Average percentage of good suggestions for S1 
and S2 

The same comment could be made about the average 
percentages for correction. Regarding only the total, 
which some up the percentages of all errors, the difference 
between the systems does not appear clearly, although 
again, the detailed scores are clearly higher for S1. 

5. Conclusion and Further Work 
The point of the evaluation methodology is to enable a 

translator to be able himself to determine which system 
would suit him best. The average scores obtained by the 
systems are quite close to each other, so that it is not 
possible to decide on one system or the other on this base. 
The user would have to determine according to the type of 
mistakes he is more likely to commit.  

The scores given on sentence level gave the accurate 
impression of S1 performing better. But the other 
measures are absolutely necessary in order to have a more 
nuanced and accurate image of the systems performance. 

The methodology could be improved through the 
following changes: 

(1) automating the counting phase would increase 
objectivity and certainly accuracy of the 
results. This would also make it possible to 
treat a larger corpus in a reasonable time. 

(2) enlarging the corpus or maybe including some 
test suites in order to study more profoundly 
certain observations made from the corpus. 

(3) unfortunately automating the annotation seems 
difficult, but if possible, a certain flexibility in 
the tag setting should be provided to the user, 
as the systems do not treat or present the 
corrections in a uniform or even analogous 
fashion. 

This study was limited on French SGCs systems. It 
would be interesting to gather a similar corpus in different 
languages, so that the method could be applied to other 
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languages. Of course this also implies adjusting the error 
typology to the language treated. In any case, the metrics 
described in this paper can be used as they are, 
independently of the language treated. 
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