
PatEdit: An Information Extraction Pattern Editor for Fast System
Customization

Dimitra Farmakiotou, Vangelis Karkaletsis, Ioannis Koutsias,
George Petasis and Constantine D. Spyropoulos

Software and Knowledge Engineering Laboratory,
Institute of Informatics and Telecommunications,

National Centre for Scientific Research (N.C.S.R.) “Demokritos”,
P.O. BOX 60228, Aghia Paraskevi,

GR-153 10, Athens, Greece.
{dfarmak, vangelis, jkoutsi, petasis, costass}@iit.demokritos.gr

Abstract
This paper addresses the problem of Information Extraction (IE) system customization to new domains and extraction needs with the
use of PatEdit, an IE Pattern Editor. PatEdit is a human-assisted knowledge engineering tool, that facilitates the production of IE
patterns. First, we present the problem of IE system customisation and the use of human assisted knowledge engineering tools. Then,
we describe PatEdit with respect to the IE pattern language used and discuss its characteristics that facilitate rapid pattern writing.
Finally, the exploitation of PatEdit in two information extraction projects is presented along with our plans for future work.

1. Introduction
Information Extraction (IE) systems fill in predefined

data structures (e.g. relational databases) involving a
particular event (e.g. company acquisitions) with
information they extract from unstructured natural
language texts that refer to a particular domain (e.g.
financial news). They do not attempt to “comprehend” the
texts they process in their entirety, but they simply try to
extract from them all the information that is needed to fill
in predefined data structures.

Within the Message Understanding Conferences1
(MUCs), IE is decomposed into the following sub-tasks:
Named Entity (involving the recognition of specific
semantic types of proper names and expressions),
Coreference (detection of coreferential expressions),
Template Element (identification of descriptions referring
to specific types of entities), Template Relations
(discovery of semantic relations holding between entities)
and the Scenario Template a task that uses the results of
the preceding sub-tasks for the generation of a template
that describes an entire event.

IE systems involve general purpose linguistic
processing (e.g. sentence splitting, part of speech tagging)
as well as task specific processing for the identification of
the elements (phrases, names, expressions) that fill the
slots of an event template. Linguistic processing relies on
general-purpose resources that do not require painstaking
adaptation to new domains or new types of events within a
given domain. Task specific processing, on the other hand,
involves extraction patterns (or rules or concept nodes
depending on the system) and resources (domain specific
gazetteers) that must be written anew whenever a new
event or domain is dealt with. The creation of extraction
patterns for a new domain or event requires domain
expertise and awareness of the underlying IE system
structure. This renders the customization of IE systems an
expensive and time-consuming process.

One of the ways in which researchers have attempted
to address the customization bottleneck of existing IE

1 http://www.itl.nist.gov/iaui/894.02/related_projects/muc/

systems is tools that allow domain experts to create
extraction patterns fast and easily without requiring
knowledge of linguistics or language engineering, as well
as tools that facilitate the work of the knowledge engineer
in adapting a system to different domains. Section 2
provides more details on these tools and explains the
motivation behind the development of PatEdit.

Section 3 presents the Pattern Representation language
used by PatEdit, whereas Section 4 presents the main
functionalities of PatEdit. Section 5 discusses the use of
PatEdit in two different IE projects. Finally, in Section 6
we present our concluding remarks and our plans for
future work.

2. Related Work
Tools that allow the customization of IE to new

domains can be distinguished in two broad categories
depending on the user they address. The first category
addresses domain experts, while the second one addresses
knowledge engineers and IE system developers.

2.1. Tools for domain experts
Tools for domain experts may require different

degrees of user involvement in the system customization
task.

An example of a tool that requires minimal user
involvement is the template construction interface of the
LOLITA IE system (Costantino 1997). Through the
LOLITA template construction interface, the domain
expert can define new templates using natural language
and a number of formal elements for ensuring
unambiguous definitions. In this framework, the template
definition is comprised of a template name, variables that
identify slot names, an enabling condition for the
construction of the template, slot names and slot rules.
The system translates template definitions into semantic
rules that are used by an internal inference engine that
conducts IE. It must be noted that this type of
customization is viable only for systems that conduct
natural language understanding, which involves deep

syntactic analysis as well as semantic and pragmatic
analysis, rendering them too expensive to build.

The Concept Node Editor developed for the CIRCUS
IE system (Lehnert et al. 1993), involves a higher degree
of expert user involvement in system customization.
Using this editor the domain expert can review concept
nodes (equivalent to extraction patterns) that have been
constructed by processing a corpus with a system called
AutoSlog. The user distinguishes between valid and
invalid concept nodes for a specific extraction task. Even
though individual experts may not select the same number
of concept nodes from a given set, it has been shown that
the results obtained by the concept nodes selected by
domain experts were comparable to the results produced
by concept nodes that had been created manually by
researchers.

Tools based on corpus analysis for the construction
and validation of extraction patterns requires the highest
degree of domain expert involvement. The PROTEUS
Pattern Acquisition Tools (Yangarber et al. 1997) assist
the user in the creation of patterns by parsing examples
that are fed to the tool by the user. The user must associate
the elements of the parsed example to predefined event
slots for the creation of an extraction pattern and can
perform a set of operations on patterns such as
generalization of an element or marking an element as
optional. Finally the user can test against a corpus if a
pattern produces the desired results. A significant
advantage of this set of tools is that, given a pattern, the
user is not involved in the creation of variant patterns, e.g.
produce the passive form of an active pattern, since this is
performed automatically by a tool that performs syntactic
transformations.

More recent suggestions for IE customization tools
view the domain experts as the final users of an IE system
and stress their autonomy with the following
requirements:

• Assistance in the creation of new event templates
and the compilation of relevant corpora
(Ciravegna et al. 2001)

• Facilities for tagging corpora and use of machine
learning techniques for automatic acquisition of
extraction patterns (Catala et al. 2000, Ciravegna
et al. 2001)

• Facilities that enable users to tune a system to
individual extraction needs, e.g. a user may prefer
more recall than precision (Ciravegna et al. 2001)

2.2. Tools for knowledge engineers
A limited number of tools has been developed for

rapid system customization by knowledge engineers.
 (Doran et al. 1997) describe a graphical debugger for

MOP, an IE pattern description language. This tool assists
the knowledge engineer in monitoring the results of the
application of a MOP IE pattern to a text at different
execution stages. Within an interface that exhibits the
parts of the text that matched and the results obtained by
each one of the components of an extraction pattern, the
user can gradually improve extraction patterns or add new
ones.

(Ciravegna et al. 2000) propose Pinocchio, an
environment for developing and adapting an existing IE
system to new domains and languages. Pinocchio presents
the knowledge engineer with resources for one language

and an extraction task and a set of support tools for
resource development and testing. An editor and a
compiler are provided for the development of extraction
rules. Specialized browsers and tracers for extraction rules
and linguistic analysis results are provided for resource
testing. This set of tools is claimed to enable system
customization to new events and system extension to new
languages by only one computational linguist or
knowledge engineer.

2.3. The motivation behind PatEdit
System customization is one of the main objectives of

our laboratory2 concerning the development of IE systems
and in general language engineering applications. For this
purpose, we have developed Ellogon, a text-engineering
platform (Petasis et al. 2002), which is equipped with
annotation tools, viewers of the results obtained by
different processing modules, tools that facilitate the
creation of training vectors for machine learning
techniques. Ellogon provides infrastructure for managing
and exchanging textual data as well as the associated
linguistic information, creating, embedding and managing
linguistic processing components, as well as facilitating
communication among different linguistic components by
defining a suitable API. The facilities provided by Ellogon
along with the general purpose linguistic processing tools
and the machine learning techniques and tools developed
in our laboratory facilitate the customisation of IE
systems. Our objective is to develop an IE workbench
over the Ellogon platform in order to facilitate the
development and maintenance of IE systems. In this
context, in order to meet the needs of our IE technology,
we decided to develop PatEdit. These needs can be
summarized in the following:

• Definition of new event templates in a menu
driven environment since our IE technology
employs pattern matching techniques that do not
make use of natural language understanding and
deep linguistic analysis

• Addition of new types of information in the
pattern representation language we use, so it can
support future developments of an existing IE
system, e.g. addition of new types of semantic
information, new types of operators, as well as
new IE systems developed under the same
framework

• Fast construction of valid extraction patterns for
different domains and events both for domain
experts and knowledge engineers

PatEdit is a human-assisted knowledge engineering
tool that facilitates the production of IE patterns. It can
also be used by domain experts who have minimal
knowledge of linguistics and no knowledge of the
underlying IE system’s function.

3. The Pattern Representation Language
PatEdit has been developed in the context of the

MITOS IE system3 (MITOS-IE). MITOS-IE processes
Greek Financial News texts and fills in predefined
templates for 10 different financial events (Kopanaki et al.
2001). The system architecture involves Lexical

2 http://www.iit.demokritos.gr/skel
3 http://www.iit.demokritos.gr/skel/mitos/index_en.html

Processing (tokenization, part of speech tagging,
chunking, shallow parsing), Text Classification, Named
Entity Recognition, Name Coreference, Template
Element, and Scenario Template. The Scenario Template
module uses extraction patterns for the identification of
relations between different entities. The extraction
patterns employed for filling specific event templates are
relational multi-slot patterns. They are written in a
domain-independent Pattern Representation Language,
which allows them to be insensitive to word and phrase
order, which is important for Greek.

The patterns embody a 3-layer structure comprised of
basic units, phrase patterns and complete patterns. Basic
units include names of template slots to be filled (e.g.
BUYER in an Acquisition event), phrase types (e.g. Noun
Phrase), grammatical relations (e.g. Subject), lexical
information (e.g. lemma, tense, case) and semantic
information (e.g. Organization name, monetary
expression).

Phrase patterns are comprised of basic units and may
carry certain weights depending on how confident the
pattern writer is about the results the patterns produce. A
phrase pattern may state, for instance, that a BUYER of an
Acquisition event is to be found in a noun phrase (NP)
that is a subject (PHRASESUBJ), and contains the lemma
“company” (TOKLEMMA|company), as well as the name
of an Organization (NAMETYPE|ORG). If weights are
used in the creation of the pattern file, a weight is added at
the beginning of the pattern to show how accurately this
pattern is expected to identify a slot-filler. General
patterns are assigned low weights, whereas more precise
patterns are assigned high weights.

Phrase Pattern examples:

BUYER+NP+PHRASESUBJ+TOKLEMMA|company
+NAMETYPE|ORG

W3^BUYER+NP+PHRASESUBJ+TOKLEMMA|company
+NAMETYPE|ORG

The conditions expressed by a single phrase pattern
may presuppose conditions present in other phrase
patterns that belong to the same final or complete
extraction pattern. For instance, the condition that a noun
phrase must be a subject presupposes that a pattern for a
verb phrase exists in the complete extraction pattern and
that the conditions imposed by this verb phrase pattern are
met. So complete or final extraction patterns consist of
phrase patterns that may be associated in some manner
and appear in the same sentence.

Final Extraction Pattern examples:

TIMEPAST+VP+TOKLEMMA|acquired@
BUYER+NP+PHRASESUBJ+TOKLEMMA|company
+NAMETYPE|ORG@
ACQUIRED+NP+PHRASEDOBJ+NAMETYPE|ORG

W3^TIMEPAST+VP+TOKLEMMA|acquired@
W3^BUYER+NP+PHRASESUBJ+TOKLEMMA|company
+NAMETYPE|ORG@
W3^ACQUIRED+NP+PHRASEDOBJ+NAMETYPE|ORG

For the extraction of slot fillers complete patterns are
matched against an internal representation of the text that
is rich with information from previous processing.

The construction of extraction patterns requires, apart
from domain knowledge, familiarity with the information
existing from previous processing and the Pattern
Representation Language. Even when the pattern writer is
familiar with the system, minor mistakes like misspellings
of reserved words of the Pattern Representation Language
may occur, e.g. writing “TOKLEM” instead of
“TOKLEMMA”. Mistakes in the syntax of patterns may
also occur since the form of the complete extraction
patterns is rather rigid. Certain constituents need precede
others, e.g. verb phrase patterns must precede all other
types of phrase patterns in a final rule. Also certain types
of features must appear in a certain order to provide valid
patterns, e.g. numeric expressions must follow named
entities in a phrase pattern. Extraction rules or patterns
that contain misspellings or syntax errors are not
processed by the IE system. Invalid patterns can be
detected only with evaluations of a system’s performance
and error analysis during an IE system’s development
circle. Thus detection of invalid patterns must be
performed every time new extraction patterns are added or
existing patterns are modified making the expansion of the
extraction pattern resources and system customization to
new events and domains an expensive and time-
consuming process.

4. PatEdit Functionalities
In order to accelerate the process of writing valid
extraction patterns for new domains and events we have
developed PatEdit, a pattern editor that allows fast and
easy creation of new patterns, modification of existing
ones, and deletion of unwanted ones, as well as definition
of new event templates and information to be used in the
construction of patterns. PatEdit has been implemented in
Tcl/Tk v8.4a2, and the environment vTcl v.1.5.2 has been
used in the construction of the GUI. It is part of a larger
workbench based on the Ellogon text-engineering
platform that supports the development of language
engineering applications.

Using PatEdit, the user constructs extraction patterns
by clicking specific types of information from selection
lists and by assigning values to specific features. Thus the
user is no longer burdened with typing commonly
occurring constructions of the pattern representation
language. Moreover they do not have to check whether the
patterns conform to the Pattern Representation Language.
The basic units that comprise the patterns are assembled
by the tool in the order required by the Pattern
Representation Language, irrespectively of the order in
which the user has selected or specified them. In case the
user attempts to write a pattern that violates important
conditions of the Pattern Representation Language, e.g. a
type of phrase is not specified in a phrase pattern, they are
not allowed to proceed in the creation of an invalid
pattern, but they are presented with messages explaining
the type of violation encountered and the course of action
needed in order to make the pattern conform to the
Representation Language. The user is also guided to the
creation of pattern files. Thus, the extraction patterns and
the pattern files produced with PatEdit are error proof,
since PatEdit does not allow invalid pattern constructions
and malformed files.

Figure1. A screenshot of the main GUI

4.1.1. PatEdit: the Main GUI
The Main GUI (Figure 1) is the one used for the

creation of the extraction patterns. It presents the user
with three menus, and two frames: one for the creation
of simple phrase rules and one for the creation and
storage of final rules.

From the menus the user can perform the following
actions:

• Create a new file for saving the rules
• Open existing rule files
• Save an open rule file
• Terminate the application
• Open a rule file for viewing and selecting

existing rules for editing
• Add new rules to an existing rules file
• Open the Resources GUI that allows the

configuration of the tool to handle new types of
events

The first frame named "Create simple rules”
presents the user with all the building blocks required
for the construction/creation of a phrase pattern, a
viewer that allows them to see the pattern under
construction and buttons that allow them to accept, reset
or edit it.

The selection lists appearing at the top of the frame
embody the types of information required for the
creation of simple phrase patterns. The first one is the
Event selection list, exhibiting all the events the tool can
be used to write extraction rules for. Whenever an event
is selected from this list, the event slots or roles
associated with it appear in the next selection list. If the
Acquisition event is selected, for instance, the relevant
event slots “Buyer”, “Acquired”, “Past”, “Present”,
“Future”, “Percentage” and “Amount” appear in the
next selection list. Six more selection lists appear after
the first two presenting types of information required
for the creation of patterns:

• Phrases

• Grammatical Relations
• Lexical Information
• Named Entity Types
• Expression Types
• System Operators
For the creation of a simple phrase pattern, the user

can select one or more types of phrases from the phrase
selection list and any type of features that are not
mutually exclusive from the next selection lists. A
mutually exclusive pair is the subject and object in the
Grammatical Relations list, since the same phrase
cannot be subject and object of the same verb phrase.
The Lexical Information list contains features like
“lemma”, “voice”, “stem” for which, when selected,
specific sets of required or alternative values must be
typed by the user in the values text entry box. For
instance, if the user selects “voice”, a value for voice,
e.g. “active” must be typed in the value text entry box.
From the Named Entity Types list (e.g. Organization,
Location) selection of only one named entity type is
allowed, whereas the Expression Types list allows the
selection of more than one expression types (e.g.
temporal expression, monetary expression). The System
Operators list is comprised of only one operator for the
time being, the ALLENTS operator employed whenever
we want to specify that all the entities within a phrase
that can act as slot fillers for a specific event slot must
fill that slot.

Underneath the selection lists, two selection buttons
appear: the first one is for use of weights in the
construction of the patterns the next one is for the
negation operator. Ticking the weights selection button
when starting a new rules file, the user activates a list of
weights from which he/she can choose a confidence
weight for every phrase pattern. Ticking the NOT
selection button the Phrase, Grammatical Relations,
Lexical Information, Named Entity Type and
Expression lists are marked in blue and the user must

select from these lists which characteristics the phrase
pattern should not have.

The second frame titled “Create and Store final
rules” consists of a text entry box for the addition of
comments to the rule, a final rule viewer that shows the
updated final pattern whenever a new simple phrase rule
has been created, and a set of buttons for viewing
previous patterns, accepting a final rule, resetting a final
rule, and saving a file with extraction patterns.

4.1.2. Handling Existing Rule Files
PatEdit enables the handling of rule files comprised

of several patterns by giving the user the chance to open
the file in a separate viewer (Figure 2). In this viewer all
patterns in the file appear and the user can select the
pattern they wish to modify. When a pattern is selected
from the viewer it is loaded to the main GUI and can be
edited. Using this option the user has a complete picture
of their work and can spot and load easily the patterns
they wish to revise.

Figure 2. A screenshot of the Edit Rules Function

4.1.3. The Edit Resources GUI
In the Edit Resources GUI (Figure 3), the user can

configure the tool to handle new types of events, and
manage the main GUI. From the first frame of Edit
Resources, the user can handle the information types
appearing in the selection lists (e.g. Events, Phrases) of
the main GUI. Thus information types and their
associated values in the main GUI and the Pattern
Representation Language can be modified or discarded
and new types can be added. In the second frame of Edit
Resources names of roles (i.e. names of slot fillers for
specific events) and operators can be added or modified.
When the user saves the file by pressing the “Save File”
button, they are warned that the application will
terminate and must be restarted for changes to take
effect.

Figure3. The Edit Resources GUI

5. Exploitation of PatEdit
In the context of the MITOS-IE system, PatEdit has

been used to include new financial events for Greek
texts. It has contributed to the rapid development of
valid extraction patterns by users familiar with the
Pattern Representation Language as well as users who
were unfamiliar with it. Extraction rule files have been
constructed for 10 financial event templates in total
(Acquisitions, Merges, Split, Capital Stock Increase,
Introduction to the Athens Stock Exchange Market,
Profits, Sales, Free Share Distribution, Turnover, and
Dividend Yield). Extraction patterns have been written
without the use of PatEdit for the first five events over a
period of 4 months, whereas development of extraction
patterns for the next 5 events with the use of PatEdit
took only 1 month.

Moreover, PatEdit is currently being used in the
CROSSMARC4 project, which develops IE technology
for multilingual e-retail product comparison. The type
of text we deal with in this project is hypertext, which is
quite different from flat text news items, and the first
domain is Computer Goods. Given the Edit Resources
GUI we are able to configure the tool for the new
domain and text type with the addition of new events
(e.g. Laptop Offer), new slot names associated with
them (e.g. IS_MODEL) and new types of information
(e.g. title, paragraph, list item).

6. Concluding Remarks and Future
Development

We have presented PatEdit, an IE system adaptation
tool that allows fast construction and editing of
information extraction pattern files conforming to a
certain Pattern Representation Language.

PatEdit forms a component of the IE technology
workbench we are developing in our laboratory over the
Ellogon text engineering platform. This workbench
involves general purpose language processing tools,
annotation tools (for the creation of the necessary
training and testing corpus), machine learning tools,
facilities for creating training vectors for machine
learning, named entity recognition tools (gazetteer
lookup, parser), a pattern representation language for
the creation of IE patterns, a pattern matcher, as well as

4http://www.iit.demokritos.gr/skel/CROSSMARC

the PatEdit. We exploited these tools and facilities for
the development of the MITOS-IE system (extraction of
information from financial news), which is currently
being customized in a different application domain
(extraction of products characteristics from web pages)
in the context of the CROSSMARC project.

PatEdit can be easily configured for new event
templates as well as for variations (presentation of new
types of information and new operators) in the Pattern
Representation Language. It has been used successfully
for adapting MITOS-IE system to new financial events
and it is being used in CROSSMARC for the
construction of extraction patterns for descriptions of
computer goods from Web pages.

The provision of a facility for testing a single
extraction pattern against a corpus would be very useful
for the patterns author. We intend to incorporate this
facility in PatEdit since inspection of results in a large
corpus of several texts facilitates the construction of
patterns that do not overgenerate, promoting system
accuracy. Moreover, comparison of system extraction
results to results provided by manual annotation
facilitates the construction of general patterns that
promote system recall. Currently the user can view and
compare extraction results using Ellogon built-in tools
but the results come from all the patterns present in a
file for a specific event and detecting patterns that have
produced erroneous results can be a time consuming
process depending on the size of the pattern file.

The incorporation of domain specific resources like
term dictionaries and thesauri is also a desired feature
that we plan to incorporate in PatEdit. Allowing the user
to specify the type of dictionary to use and insert
synonyms easily in extraction patterns is our second aim
for further development.

References
Català, N., Castell, N., Martín, M. (2000) ESSENCE: a

Portable Methodology for Acquiring Information
Extraction Patterns. In Proceedings of 14th European
Conference on Artificial Intelligence (ECAI-2000)
(pp. 411--415). Berlin: IOS Press.

Ciravegna, F., Petrelli, D. (2001) User Involvement in
Customizing Adaptive Information Extraction:
Position Paper. In Proceedings of the IJCAI-2001
Workshop on Adaptive Text Extraction and Mining
held in conjunction with the 17th International
Conference on Artificial Intelligence (IJCAI-01),
(http://www.smi.ucd.ie/ATEM2001/proceedings/cira
vegna-position-atem2001.pdf).

Ciravegna, F., Lavelli, A., Satta, G. (2000) Bringing
Information Extraction out of the Labs: the Pinocchio
Environment. In Proceedings of the 14th European
Conference on Artificial Intelligence (pp. 416--420).
Berlin: IOS Press.

Costantino, M. (1997) Financial Information Extraction
Using Pre-defined and User-definable templates in
the LOLITA System. Phd Thesis, University of
Durham.

Doran, C., Niv, M., Baldwin, B., Reynar, J.C. and B.
Srinivas (1997). Mother of PERL: A Multi-tier
Pattern Description Language. In Proceedings of the
Lexically-Driven Information Extraction Workshop

(pp. 13--22). Universita di Roma: Dept. of Computer
Science.

Kopanaki, E., Karkaletsis, V., Spyropoulos, C.D.,
Avradinis, N., Fakotakis, N., Kalamboukis, Th.,
Kladis, B., Lazarou, Y., Panayiotopoulos, Th..,
Spinellis, D. (2001). MITOS: An Integrated Web-
based System for Information Management. In
Proceedings of the 8th Panhellenic Conference on
Informatics, (pp. 328--337). Nicosia, Cyprus:
Livanis.

Lehnert, W., McCarthy, J., Soderland, S., Riloff, E.,
Cardie, C., Peterson, J., Feng, F., Dolan, C.,
Goldman, S. (1993). UMASS/HUGHES: Description
of the Circus System Used for MUC-5. In
Proceedings of the Fifth Message Understanding
Conference (pp. 277--291). Baltimore: Morgan
Kaufmann.

Petasis, G., Karkaletsis, V., Paliouras, G.,
Androutsopoulos, I., and Spyropoulos, C.D. (2002)
“Ellogon: A New Text Engineering Platform”. In
Proceedings of the Language Resources and
Evaluation Conference (LREC-2002). Las Palmas,
Spain.

Yangarber, R., Grishman, R. (1997). Customization of
Information Extraction Systems. In Proceedings of
the Lexically Driven Information Extraction
Workshop (pp. 1--11). Universita di Roma: Dept. of
Computer Science.

	1097: 1097
	1098: 1098
	1099: 1099
	1100: 1100
	1101: 1101
	1102: 1102

