
A Practical Introduction to ATLAS

Christophe Laprun, Jonathan G. Fiscus, John Garofolo, Sylvain Pajot

National Institute of Standards and Technology
100 Bureau Drive Mail Stop 8940

Gaithersburg, MD 20899-8940
{claprun, jfiscus, jgarofolo, pajot}@nist.gov

Abstract
In this paper we introduce the ATLAS [Architecture and Tools for Linguistic Analysis Systems] architecture by describing how a
proposed annotation task would be modeled using ATLAS concepts. We first present a brief motivation for this work and then move
on to describe an example annotation task that will serve as the basis for this paper. Next we model the example task using ATLAS.
We describe how the introduction of the new Meta-Annotation construct enables us to move forward by allowing unambiguous
description of the annotation task and modeling of relations between the different annotation elements. We conclude by describing the
current state of the ATLAS framework.

1. Introduction
Annotated corpora are a central component of research

in human language technology. As corpora have
proliferated across languages, disciplines, and
technologies, the lack of common exchange and storage
formats has become a critical problem. This profusion of
formats has made reusing annotated data or adapting
existing tools for new annotation tasks significantly more
difficult.

Standardization of tag sets – an approach we tried with
our Universal Transcription Format (NIST, 1998) – is of
moderate usefulness since language research is usually an
open-ended task, subject to constant revision as the
research domains change and the theories evolve.

A solution to this "bazaar of tools and formats" (Bird
et al., 2000) is to interpose a generic annotation model via
which annotation data is manipulated. This level of
indirection1 has several benefits. In particular, physical
storage and application logic are clearly separated. This
separation did not exist when most tools were written to
directly read and write data using a specific format,
hindering their reusability. Interposing an intermediate
data model permits tools to be written in terms of the
generic abstractions instead of having to deal with the
particulars of specialized data formats. Tools can therefore
work with any data that can be represented using the
abstractions of the data model regardless of their actual
physical storage.

The recently updated ATLAS [Architecture and Tools
for Linguistic Analysis Systems] framework, which we
introduce in this paper, makes use of such a generic data
model. ATLAS provides an architecture targeted at
facilitating the development of linguistic annotation
applications2 and is comprised of four main components: a
data model, an Application Programming Interface (API),
the ATLAS Interchange Format (AIF, 1999) and the

1 “Computer Science is the discipline that believes that all

problems can be solved with one more layer of indirection.” –
Dennis DeBruler

2 Atlas was (in the Greek mythology) the Titan condemned to
bear heavens upon his shoulders. ATLAS is designed to bear
the complexity of annotation management for the benefit of
linguistic applications!

Meta-Annotation Infrastructure for ATLAS (MAIA3,
2002). The data model at its core provides the abstractions
on which the rest of the framework is built. These
abstractions can be implemented using any full-featured
programming languages. NIST has created a Java
instantiation of the data model. This implementation
provides a set of objects that can be used to quickly
develop linguistic applications. These objects each publish
operations via which their data can be manipulated and
behavior controlled. The ensemble of these operations
defines the ATLAS API. ATLAS annotations can be
serialized to XML using AIF to facilitate their exchange
and reuse. Finally, MAIA, an important new component,
was added to permit constraining of ATLAS’ generic
constructs for specific needs.

ATLAS began as a collaboration between the LDC,
MITRE and NIST in 1999 following Bird and Liberman's
seminal work on Annotation Graphs (Bird and Liberman,
1999) that demonstrated commonality across a diverse
range of annotation practices and defined a formalism
based on labeled, directed acyclic graphs. ATLAS was
formally introduced at LREC 2000 in Athens, Greece and
was the subject of (Bird et al., 2000).

After LREC, the LDC moved on to implement
Annotation Graphs – also called AGs or ATLAS level 0
(AG, 1999) – to address immediate needs in annotation
infrastructure for linear signals. NIST, on the other hand,
decided to defer immediate implementations to pursue the
development of the generalized version of ATLAS.
NIST’s version encompasses signals of arbitrary
dimensions because, as well-suited to linear signals as it
was, the logical model provided by AGs did not scale well
to higher-dimensional cases. A first implementation of the
generalized model was made available in April 2001. This
first release allowed us to gather valuable feedback, from
which we decided to evolve the framework towards better
expressiveness while fixing existing problems. The data
model was modified to accommodate new ideas and
significant parts of the implementation were rewritten. A
Beta release of this redesigned implementation was
released at the end of January 2002.

This paper focuses on this release of the generalized
version of ATLAS (subsequently referred to as
"ATLAS"). We present an introduction to ATLAS from a

3 Maia was one of Atlas’ daughters in the Greek mythology.

practical point of view in the context of our new Rich
Transcription (RT) evaluation project. We first describe
part of the annotation task for this project. Next, we model
these annotations using ATLAS concepts that we
introduce along the way. We then briefly introduce the
Meta-Annotation concept before concluding with a
discussion of the benefits of using ATLAS and a summary
of the current status of the framework. Note that this paper
focuses on providing an overview of the core ATLAS
concepts and how they can be used. Later papers will
describe specific aspects of the architecture in greater
detail.

2. Example Annotation application: rich
transcription

In order to present a practical approach to using
ATLAS, we will work through an ATLAS example based
on an emerging NIST language technology evaluation.

For over fifteen years, NIST has been conducting
common evaluations of the performance of automatic
speech recognition technology. Traditionally, these
evaluations have focused on the accuracy of
automatically-generated orthographic word transcriptions.
The technology is now evolving and future speech
recognition systems will be required to output a variety of
integrated metadata as well as orthography to produce
data which will be more useful for downstream processing
and human readability. We refer to these enriched systems
as "Rich Transcription" (RT) systems. To support research
and evaluation in automatic RT, NIST is conducting a
pilot evaluation, Rich Transcription 2002 (RT-02,
Garofolo et al., 2002) that, in addition to the evaluation of
orthographic transcription, will also address the automatic
production of metadata. Given time and resource
constraints, the metadata annotation to be explored in the
pilot evaluation will involve only the segmentation of an
audio excerpt by speaker and then clustering the speaker
segments according to speaker identity within the excerpt.
However, a variety of other metadata annotations can be
envisioned for future RT evaluations including, but
certainly not limited to:

• Speaker segmentation and identification
• Sentence or phrasal unit segmentation and

classification
• Acronym detection and expansion
• Verbal edit detection, identifying regions of

disfluency
• Named entity detection/classification
• Numeric expression detection/classification
• Temporal expression detection/classification
Note that some of these detection tasks involve the

generation of sub-recognition or classification
information. This diversity of output requires a new
flexible non-monolithic approach to the development of
evaluation software.

The goal of the speaker segmentation and
identification task is to divide the audio signal excerpt into
homogeneous units spoken by the same person. The task
involves two concepts, identifying a set of speakers in the
recording and maintaining a list of speaker segments
where that speaker was talking. The speaker concept
encapsulates global attributes about the speaker, for
instance the gender, dialect, and etc., while a speaker
segment is used to record the extent of a particular speaker

utterance. Once speaker segments are identified, the next
step is to transcribe what was said. To represent the
orthography, we are using the generic concept of
‘orthographic units’ (OUnits).

OUnits are a way to generalize the transcription of
spoken units of language. There are many types of units
that need to be transcribed including the continuum from
non-speech verbalizations to spoken words. In English,
these are represented with printed words, in Mandarin,
printed characters. As such, OUnits can have a variety of
attributes that will further define their content.

While it is conceivable to attribute metadata directly to
the time stream, it is often expedient to attribute these
phenomena to the transcribed OUnits. Therefore, once
OUnits are established, other forms of metadata can then
be identified via the set of OUnits that constitute them.
For example, verbal edit detection can be accomplished by
identifying the set of OUnits involved in a verbal edit.
Detection of acronyms, Named Entities (NEs), numeric
expressions and temporal expressions can be identified in
the same way. Since the OUnits are related to a speaker
through a speaker segment annotation, these metadata can
be traced back to the speaker they are attributed to.

We envision that over time, RT systems will become
very complex, generating metadata covering a variety of
linguistic and non-linguistic phenomena. To support
current and future rich transcription evaluation needs, we
are developing evaluation software leveraging the ATLAS
framework. Using ATLAS, we are able to design a
relatively generic evaluation software engine that can
elegantly accommodate a vast variety of different
metadata types.

For the purpose of this paper, we will create a
hypothetical integrated RT annotation from an audio
excerpt from a speaker containing a word transcript and a
variety of metadata annotations. Our hypothetical excerpt
will be a recording of the spoken sentence: "Joe f- fell off
the log", containing a verbal edit ("f-") and a NE ("Joe").

Next, we outline the steps taken to create the transcript
described above and introduce ATLAS’ main concepts.

3. Annotating using ATLAS
The entry point to ATLAS is the core linguistic

annotation ontology upon which it is built:

An annotation is the fundamental act of
associating some content to a region in a
signal.

These four primary concepts are represented within the

ATLAS framework by $QQRWDWLRQ, &RQWHQW, 5HJLRQ and
6LJQDO constructs. The preceding notation defines a
convention that we follow in this paper: ATLAS concepts
are formatted using WKLV� IRQW� DQG� VW\OH to allow us to
distinguish them.

Even though ATLAS’ core ontology is fairly simple, it
is nevertheless surprisingly powerful when it comes to
expressing complex annotation schemes. The annotation
process using ATLAS can be broken down into three
major steps:

• Identification of regions of interest in a signal
• Association of content with these regions to form

annotations
• Linking related annotations together

Next, we detail each step in sequence.

3.1. Identification of regions of interest in a
signal

The annotation process begins by specifying a 6LJQDO.
An ATLAS 6LJQDO is an immutable, N-dimensional space
containing phenomena that might be the target of
$QQRWDWLRQV. Even though typical 6LJQDOV can be equated
to physical signal files (speech waveforms, newswire text,
video or other more complex data with higher
dimensionality), it is not a necessity. In ATLAS, a 6LJQDO
is an entity that identifies a logical (as opposed to a
physical file) target for $QQRWDWLRQV and can thus refer,
for example, only to the left track of a stereo recording.
ATLAS also does not prescribe to any single format or
dimensionality for physical signals, but there must be a
way to define an unambiguous coordinate system for the
6LJQDO.

Once a 6LJQDO is established, it is possible to begin
annotating it. The first step is to identify a region within
the 6LJQDO relative to a phenomenon of interest. In
ATLAS, a 5HJLRQ is an abstraction for identifying an area
of the 6LJQDO space. 5HJLRQV are delimited by a set of
coordinates that mark specific locations delimiting the
interesting area. These markers are modeled (in ATLAS)
by the $QFKRU construct, thus called because they are used
to “anchor” annotations to 6LJQDOV. $QFKRUV are the only
ties that annotations have to the physical structure of the
signal and the only ATLAS concept that is signal-specific.
5HJLRQV use as many $QFKRUV as needed to index into
6LJQDOV. The 5HJLRQ construct encapsulates the
complexity of multidimensionality by abstracting away
the specificity of the underlying signal. This is a
particularly important aspect of ATLAS since it allows the
framework to evolve and scale gracefully, when
confronted with new classes of signals, without requiring
change to the basic ontology.

For our RT example, the 6LJQDO is a speech waveform
and time is the dimension along which $QFKRUV are
specified. 5HJLRQV of interest are thus intervals in time
and are modeled in ATLAS via the use of two $QFKRUV –
one marking the beginning of the 5HJLRQ’s extent and the
other marking the end of it.

REGION

Signal

REGION

3.0

ANCHOR

1.1

ANCHOR

4.5

ANCHOR

3.0

ANCHOR

Figure 1: Identifying regions in a signal

Figure 1 shows two 5HJLRQV for our RT example.
ATLAS constructs as described above are represented
using boxes. The number in the $QFKRU boxes records the
instant in time that the $QFKRU points to in the 6LJQDO. The
first interval of interest in our 6LJQDO thus spans from the
time recorded by the first $QFKRU it references to the time
recorded by the second $QFKRU. Note that this information
is signal specific: a different kind of signal (a video for
example) would have required a different coordinate
scheme. $QFKRUV encapsulate the specificity of signals

(coordinate scheme, units, etc…) allowing signal-specific
information to be strictly localized.

3.2. Association of content with the regions to
form annotations

Once an interesting linguistic phenomenon has been
located in the 6LJQDO via the use of a 5HJLRQ, an
$QQRWDWLRQ is built by associating some content with it.
&RQWHQW constructs represent (in ATLAS) any information
that annotators would like to specify about the linguistic
event occurring in the specified 5HJLRQ. The information
can be a simple data type like a string or a complex data
structure like those used in typical programming
languages.

REGION

ANNOTATION T ype=OUnit

Signal

“Joe”
CONTENT

ANNOTATION T ype=OUnit

“f-”
CONTENT

REGION

3.0

ANCHOR

1.1

ANCHOR

4.5

ANCHOR

3.0

ANCHOR

Figure 2: Example of a STT output

Figure 2 shows an example of OUnit $QQRWDWLRQV as
would be produced by a STT system. We have taken the
5HJLRQV that we identified in the previous step and
associated them with the text transcription associated to
the interval identified in the audio signal. This association
is recorded in the context of an ATLAS $QQRWDWLRQ. We
have thus created two OUnit $QQRWDWLRQV recording the
transcription associated with the intervals that we
previously identified.

Embedded boxes represent a composition (tight
coupling) relationship. In a composition, parts cannot be
decoupled from their parent, meaning that their existence
is tied to their parent’s. For example, &RQWHQW is tightly
coupled to its parent $QQRWDWLRQ: it cannot exist
independently of its defining $QQRWDWLRQ. Arrows
represent references, which are a weaker form of
coupling: a reference associates concepts but the
participating elements’ existences are not tied to one
another. For example, an $QQRWDWLRQ has a reference to a
5HJLRQ but the 5HJLRQ exists independently of the
$QQRWDWLRQ (which can be destroyed without impacting
the existence of the 5HJLRQ).

References support another important feature of
ATLAS: the reuse of annotation data. Some ATLAS
entities (such as 5HJLRQV, $QFKRUV and $QQRWDWLRQV) are
reusable via the use of references, thus allowing elements
defined in a given context to be reused in different
contexts. It is worth noting, though, that reusability is a
capability that is judiciously bestowed only to certain
ATLAS entities because it comes with added complexity.
In particular, in order to be reusable, an ATLAS element
must be identifiable by having a unique identifier (,G)
explicitly assigned to it. The management of these
elements’ identity incurs additional processing. However,

the advantages in expressiveness and power far outweigh
the inconvenience, especially considering that this
complexity is totally handled by the framework (in the
Java implementation). Furthermore, reusability of
$QQRWDWLRQV, which will be discussed later, gives ATLAS
most of its flexibility.

Identified constructs are distinguished by their ,G
regardless of the value they hold (if any) whereas, in the
case of composition, two elements holding the same
values are interchangeable. Note that different semantics
can be expressed by distinguishing between value and
identity. In the previous figure, note that two $QFKRUV
share the same value but are still duplicated. This is
because, for our annotation task, OUnits are not
necessarily contiguous. For this reason, the fact that two
$QFKRUV share the same offset is purely coincidental. If
we wanted to enforce the contiguity of OUnits, we would
have made 5HJLRQV share their $QFKRUV. In this situation,
modifying the offset of a shared $QFKRU allows every
5HJLRQ that references it to access the new value without
having to modify them.

3.3. Linking related annotations together
Now that we have an ATLAS representation of a STT

system output, RT metadata information can be encoded
by extending the base transcript. We are interested, for our
particular example, to associate a NE Annotation to the
OUnit “Joe” and a verbal edit Annotation to the Ounit
“f-“. In addition, we want to link together all speaker
segments associated with a given speaker.

To do so, we will use the &KLOGUHQ construct to model
relations between $QQRWDWLRQV. The purpose of &KLOGUHQ
is to maintain a list of $QQRWDWLRQV (via $QQRWDWLRQ
references) that are descendants of a parent $QQRWDWLRQ.
For example in TIMIT (Garofolo et al., 1986), words are
composed of a set of phones, which would be modeled in
ATLAS by the fact that word $QQRWDWLRQV maintain a list
of phone $QQRWDWLRQ references via a &KLOGUHQ
subordinate. For our RT example, we model the relations
that a speaker has with its subordinate speaker segments
by adding a &KLOGUHQ subordinate to the speaker. This
&KLOGUHQ element will contain a list of the speaker
segment $QQRWDWLRQ references related to the considered
speaker. Each speaker segment is itself linked to a list of
OUnit (part of this speaker segment) $QQRWDWLRQV via a
&KLOGUHQ element. A speaker can also be linked to NEs or
verbal edits since we want to be able to identify which
speaker uttered a given NE or verbal edit. We would
therefore model our speaker $QQRWDWLRQ as containing
three &KLOGUHQ elements: one for NEs, one for verbal edits
and one for speaker segments.

Since &KLOGUHQ elements link to the descendant
$QQRWDWLRQV via references, it is possible to build
overlapping hierarchies reusing the same $QQRWDWLRQV
without the kinds of problems that occur in other purely
hierarchical annotation schemes. For example, our NE
$QQRWDWLRQV reference the same OUnit as speaker
segments. This means that reuse is optimal since already
created $QQRWDWLRQV can be reused in lots of different
contexts.

ANNOTATION
Type=OUnit

“joe”

CONTENT

ANNOTATION Type=speaker

ANNOTATION
Type=OUnit

“f-”

CONTENT

ANNOTATION
Type=OUnit

“fell”

CONTENT

ANNOTATION
Type=segment

CHILDREN
ofType=OUnit

ANNOTATION Type=edit

CHILDREN
ofType=OUnit

ANNOTATION
Type=OUnit

“off”

CONTENT

ANNOTATION
Type=OUnit

“the”

CONTENT

ANNOTATION
Type=OUnit

“log”

CONTENT

ANNOTATION
Type=namedEntity

CHILDREN
ofType=OUnit

CHILDREN
ofType=edit

CHILDREN
ofType=segment

CHILDREN
ofType=namedEntity

Figure 3: Example metadata annotation

Figure 3 represents the organization of $QQRWDWLRQV
(with 5HJLRQV, $QFKRUV and 6LJQDO left out). Each
&KLOGUHQ element can contain a separate hierarchy, but
still make use of the OUnits for that speaker. In reality,
NEs could extend over speaker segment boundaries but
since ATLAS uses the reference mechanism to associate
OUnits, speaker segments and NEs independently, this is
trivial to represent. It is important to note that annotation
schemes that rely purely on inline SGML such as UTF 0
to markup text are not able to handle this type of
representation because SGML is strictly hierarchical.

Another interesting aspect of &KLOGUHQ is the fact that
parent $QQRWDWLRQV can use their linked subordinate
elements to derive their &RQWHQW and/or 5HJLRQ. In our
example, a speaker segment $QQRWDWLRQ derives its
5HJLRQ from the union of the 5HJLRQV referenced by its
subordinate OUnit $QQRWDWLRQV. This allows, for
example, the modification of sets of words without having
to modify every sentence that depend on them.

4. ATLAS Object Type Definitions with
MAIA

The ability to generate complex annotations means
that an application developer could be forced to devote a
significant portion of the development efforts (as was the
case in ATLAS’ previous implementation) to issues like
structural integrity or consistency checking. In order to
facilitate application development, ATLAS 2.0 introduced
the Meta-Annotation concept to address these needs.

A Meta-Annotation is an unambiguous way to
constrain ATLAS’ generic constructs for specific
applications. In essence, a Meta-Annotation corresponds
to a class definition in an object-oriented language. MAIA
(Meta-Annotation Infrastructure for ATLAS) implements
the Meta-Annotation concept for ATLAS. It provides a
scheme language that allows type definitions to be
declared using a simple, XML-based syntax. The ATLAS
framework can then dynamically and automatically
interpret these type definitions. MAIA also provides
services (such as the loading and saving of types) that can
be utilized by ATLAS implementations. MAIA
specifically addresses two issues that we examine next:
structural integrity and relations between $QQRWDWLRQV.

4.1. Structural integrity
The RT-02 annotation task that we are working with is

well defined and makes use of such concepts as speakers,
speaker segments, OUnits, etc. More generally, for any
given annotation task, users are not interested in working

with generic $QQRWDWLRQV. They want to work with
specific concepts such as OUnits or speaker segments.
ATLAS defines a very generic data model that is designed
to be able to model a wide range of annotation tasks.
Because of this genericity, ATLAS’ constructs are
minimally constrained (because under-specified by
design) and thus not optimally useful: a generic
$QQRWDWLRQ, for example, encompasses every possible
annotation that fits in ATLAS’ paradigm. A means of
constraining generic constructs is therefore needed in
order for the framework and ATLAS applications to
handle a particular $QQRWDWLRQ as an OUnit, for example.

The realization of the generic $QQRWDWLRQ in an OUnit
$QQRWDWLRQ is done via its type. Types are metadata that
are associated with an ATLAS construct to indicate that
this particular element models a concept specific to the
considered annotation task. Any ATLAS element to which
a given type is assigned will behave like any other
element of the same type. Moreover, elements with the
same type will share the same structure. ATLAS types are
thus very similar to classes in object-oriented parlance.
However, to be truly useful, ATLAS applications need to
be able to automatically interpret the type information
without requiring user intervention or developer effort.

MAIA offers this kind of service to application
developers by providing an unambiguous type definition
for the annotation task at hand. These type definitions are
then used by MAIA to automatically create type
constructs that allow the ATLAS framework (and
applications depending on it) to perform structural checks
by ensuring that elements that are supposed to be of a
given type have the correct structure and behave as
expected. This is automatically handled by the framework,
freeing developers of the burden of having to take care of
this. Applications can thus be written in terms of the
generic abstractions but still be automatically tailored to
custom needs by leveraging type information.

4.2. Relations between Annotations
Another aspect of working with linguistic data, apart

from concept modeling, is the difficulty of dealing with
relations between these concepts. In our explanation of the
&KLOGUHQ concept, we specified that speaker $QQRWDWLRQV
are linked to NE, verbal edit and speaker segment
$QQRWDWLRQV whereas speaker segment $QQRWDWLRQV are
linked to OUnit $QQRWDWLRQV. To make a truly valuable
product, an ATLAS implementation should be able to
automatically enforce this kind of very specific constraint
without hindering the generic data model or requiring
code to be written.

MAIA automatically takes care of these details by
linking type constructs together and ensuring that, for
example, when subordinates are added to an $QQRWDWLRQ,
they are of the right type. MAIA will eventually support
more elaborate typing including support for value and
range constraints.

5. Conclusion
We have demonstrated that ATLAS can be used to

model both simple and complex annotation tasks. Since its
early incarnation, the ATLAS framework evolved to
incorporate numerous enhancements allowing improved
modeling of annotations with respect to hierarchical
relationships. The Java instantiation of ATLAS (jATLAS,

2000) has been re-implemented to take into account these
changes and is now currently in Beta version, available for
download on the ATLAS web site (ATLAS, 1999).

The introduction of the MAIA concept now also
provides a way to model the semantic dimension that was
originally left (purposely) out of ATLAS, allowing
ATLAS users to define rich associations and constraints
between the different aspects of their annotation task.
Specific annotation tasks can be modeled with MAIA in
an unambiguous way thus allowing ATLAS applications
to automatically interpret type information and perform
the tedious task of integrity and consistency checking for
the application. MAIA is still very much a work in
progress and it will be detailed in a forthcoming paper.

At this time, we would like to invite people interested
in using ATLAS for their annotation needs to send us
descriptions of their annotation tasks to help them get
started with MAIA and ATLAS annotation modeling and
helps us improve our work by examining how well these
different requirements are comprehended by the current
ATLAS framework.

6. References
AG, 1999. Annotation Graphs.

[http://www.ldc.upenn.edu/AG/]
AIF, 1999. ATLAS Interchange Format.

[http://www.nist.gov/speech/atlas/develop/aif.html]
ATLAS, 1999. Architecture and Tools for Linguistic

Analysis Systems. [http://www.nist.gov/speech/atlas/]
Bird, S. and Liberman, M., 1999. A formal framework for

linguistic annotation. Technical report MS-CIS-99-01,
Department of Computer and Information Science,
University of Pennsylvania. Revised version appeared
in Speech Communications 33 (1,2), pp 23-60.

Bird, S., Day, D., Garofolo, J., Henderson, J., Laprun C.
and Liberman, M., 2000. ATLAS: A flexible and
extensible architecture for linguistic annotation in
Proceedings of LREC 2000 (Athens, Greece, May
2000), pp 1699-1706.

Garofolo, J., Lamel, L., Fisher, W., Fiscus, J., Pallett, D.,
Dahlgren, N., NIST, 1986. The DARPA TIMIT
acoustic-phonetic continuous speech corpus CDROM.
[http://www.ldc.upenn.edu/lol/docs/TIMIT.html]

Garofolo, J., Fiscus, J., Martin, A., Pallett, D., Przybocki,
M., 2002, NIST Rich Transcription 2002 Evaluation: A
Preview, Proceedins of LREC 2002.

jATLAS, 2000. jATLAS, a Java implementation of the
ATLAS framework.
[http://www.nist.gov/speech/atlas/jatlas/]

MAIA, 2002. Meta-Annotation Infrastructure for ATLAS.
[http://www.nist.gov/speech/atlas/develop/maia.html]

NIST, 1998. A Universal Transcription Format (UTF)
annotation specification for evaluation of spoken
language technology corpora.
[http://www.nist.gov/speech/tests/bnr/hub4_98/utf-1.0-
v2.ps]

RT-02, 2002. Rich Transcription evaluation for 2002 (RT-
02). [http://nist.gov/speech/tests/rt/rt2002/]

	1928: 1928
	1929: 1929
	1930: 1930
	1931: 1931
	1932: 1932

