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Abstract 
Learning Bayesian Belief Networks (BBN) from corpora and incorporating the extracted inferring knowledge with a Support Vector 
Machines (SVM) classifier has been applied to the automatic acquisition of verb subcategorization frames for Modern Greek. We have 
made use of minimal linguistic resources, such as basic morphological tagging and phrase chunking, to demonstrate that verb 
subcategorization, which is of great significance for developing robust natural language human computer interaction systems, could be 
achieved using large corpora, without having any general-purpose syntactic parser at all. Moreover, by taking advantage of the 
plethora in unlabeled data found in text corpora in addition to some available labeled examples, we overcome the expensive task of 
annotating the whole set of training data and the performance of the subcategorization frames learner is increased. We argue that a 
classifier generated from BBN and SVM is well suited for learning to identify verb subcategorization frames. Empirical results will 
support this claim. Performance has been methodically evaluated using two different corpora, one balanced and one domain-specific in 
order to determine the unbiased behavior of the trained models. Limited training data are proved to endow with satisfactory results. We 
have been able to achieve precision exceeding 90% on the identification of subcategorization frames which were not known 
beforehand. The obtained valid frames have been used to fill out the subcategorization field of verb entries in an HPSG-like lexicon 
using the LKB grammar development environment. 

1. Introduction  
Verb subcategorization is an important issue especially 

for parsing and grammar development as it provides the 
parser with syntactic and/or semantic information on a 
verb’s arguments, that is the set of restrictions the verb 
imposes on its arguments. In many natural language 
interface applications, the syntactic-semantic information 
extracted from subcategorization frames (SF) could prove 
to be essential since it often clarifies the agent and the 
receiver of an action.  

Verb subcategorization information is essential for the 
creation of HPSG-like lexicons. Handcrafting of such 
lexicons so as to implement an HPSG grammar that 
allows for a uniform and systematic description of a 
language. Filling the lexicon automatically with syntactic 
subcategorization information is an important step 
towards the completion of such a rich linguistic resource.  

Nowadays, with the impressive increase in the number 
of available text corpora and language resources in 
general, the need for fully annotated syntactic parsers 
could be alleviated by mining subcategorization 
information from large text corpora. Machine-readable 
dictionaries listing SF usually provide only expected 
frames rather than actual ones and are therefore 
incomplete or in many cases unavailable for some 
languages, including Modern Greek. Considering also that 
building verb subcategorization classifiers is difficult and 
time-consuming, learning classifiers from examples is 
advantageous.  

Previous work on learning SF focuses mainly on 
English (Brent, 1993; Manning, 1993; Briscoe and 
Carroll, 1998; Gahl, 1998). Basili et al. (1997) deal with 
Italian, De Lima (1997) and Eckle and Heid (1996) with 
German, Kawahara et al. (2000) with Japanese, Sarkar 
2000) with Czech. In the earlier of these approaches only 
a small number of frames are learned (Brent, 1993, 
Manning, 1993). In most of them, the entire set of frames 

is known beforehand and the training text used is usually 
fully parsed. 

The work presented in this paper is differentiated from 
previous research in three directions. Given that a wide-
coverage syntactic parser for Modern Greek is not yet 
available, we first employ a set of robust pre-processing 
techniques that reach the stage of basic shallow parsing 
for obtaining the necessary grammatical and syntactic 
information for the task at hand. Acquiring SF information 
from large corpora can be considered as a shallow parsing 
task since only key parts of the syntactic structure of a 
verb rather than detailed syntactic or semantic analysis is 
extracted. 

The need for annotated training data imposed by 
supervised learning methods cannot always be easily met. 
Especially in the task of detecting the arguments of a verb, 
which is not straightforward even for linguists, class 
labeling of the whole set of training data by hand can be 
very difficult as well as expensive. For that reason, as a 
second novelty, we present an approach that augments the 
given labeled training set with unlabeled instances in 
order to achieve classification improvement. More 
specifically, our method is based on the probabilistic 
analysis of support vector machines (SVM). Previous 
research on this topic (Sollich, 2001, Gao et al., 2001, 
Cristianini et al., 1998) has revealed the existence of a 
probabilistic interpretation of SVM concerning the kernel 
hyperparameters tuning. We are attempting to estimate the 
prior distribution of the latter using Bayesian belief 
network (BBN) learning theory. A more detailed analysis 
of the proposed framework is discussed in following 
sections. Again, experimental simulations demonstrate 
that the use of unlabeled data reduces classification error 
by up to 6%. In our work, by taking advantage of large-
size unlabeled corpora in addition to some available 
labeled examples, we overcome the expensive task of 
annotating the whole set of training data and we increase 
the performance of the learner compared to the 



performance after training with the set of a restricted 
number of labeled instances.  

Finally, the complete set of frames for a particular verb 
is not known to us beforehand. It is learned automatically 
through the training process. It is more probable for 
subsets of a frame to be encountered within the 
environment of a verb, while the complete 
subcategorization information of the latter is unlikely to 
appear in a single occurrence of the verb. We take the 
above observations into account when trying to estimate 
the relative frequencies of co-occurrence of a verb with a 
frame in order to establish a baseline performance metric 
for the task at hand. 

We are incorporating two machine-learning methods 
that have revealed great potential for learning 
classification functions and have not been previously used 
for the detection of verb SF. We apply BBN learning from 
corpora and use the extracting network as an inference 
tool that enables automatic acquisition of SF for Modern 
Greek. Furthermore, we experiment with SVM, a recently 
well-founded technique in terms of computational 
learning theory that has been successfully applied in 
numerous classification problems including text 
categorization (Joachims, 1996), pattern recognition, face 
detection (Osuna et al., 1997) etc. Experimental results 
support the claim that both BBN and SVM are well-suited 
classifiers for the verb SF domain. 

Modern Greek (MG) is a ‘semi-free’ word order 
language. Position of the syntactic constituents in a 
sentence is a very weak indicator of the syntactic role of 
the constituent. Moreover, the existence of adverbs in the 
neighborhood of a verb is a major source of noise. 

2. Properties of Modern Greek 
As mentioned above, MG is a ‘free phrase-order’ 

language. Although words within a phrase have more or 
less fixed positions, phrases can form a sentence in almost 
any ordering. Noun phrases (NP) (a), prepositional 
phrases (PP) (b), adverbs (c) and secondary clauses (d) 
may function as arguments to verbs. Weak personal 
pronouns (WPP) may also function as arguments to verbs 
(e) when occurring within the verb phrase either in the 
genitive or accusative case. These arguments are not 
determined by their position but by their morphology 
(especially their case), by the preposition introducing a 
PP, by the keyword (conjunction, adverb or pronoun) 
introducing a secondary clause or by the lemma in the 
case of an adverb. The examples in Table 1 illustrate how 
a single verb (πιστεύω - to believe) can take as arguments 
all of the above syntactic constituents. The brackets 
located next to a word describe the type of phrase and the 
case of the word. 
 

a. Πιστεύω την Ελένη 
    Believe Helen[NPacc] 
    I believe Helen 
b. Πιστεύω στο Θεό 
    Believe in[PREP] God[acc] 
    I believe in God 
c. Έτσι πιστεύω 
    So[ADV] believe 
    I believe so 
d. Πιστεύω πως θα έρθει 
    Believe that[CONJ] come 

    I believe that he will come 
e. Σε πιστεύω 
    You[WPPacc] believe 
    I believe you 

Table 1: Examples of various syntactic constituents of the 
verb “πιστεύω” (to believe) 

3. Head driven Phrase Structure Grammar 
(HPSG) 

HPSG is an approach to constraint-based grammatical 
theory that attempts to present a model of human language 
based on the logic of typed feature structures. Types are 
hierarchically ordered in an inheritance hierarchy and 
specify a set of features that are appropriate for them as 
well as the values that these features take. 

Lexicalism is one of the main characteristics of HPSG, 
i.e. lexical entries provide a very important part of the 
linguistic (syntactic and semantic) information. The 
interaction between the information of lexical entries 
enables linguistic processing. 

Figure 1. A representation of the lexicon entry for “ate” in 
the HPSG formalism 

 
A representation of part of a typed feature structure for 

the lexical entry of the verb ate is shown in figure 1. Every 
linguistic entity (words, phrases, sentences) in HPSG is 
represented by sign, a type that contains the phonological, 
syntactic and semantic information of the entity. The 
synsem (abbreviated as SS in the figure) feature of a sign 
contains all the syntactic and semantic information 
associated with that sign. The nonlocal feature (omitted in 
the figure) of synsem is used to represent information 
concerning long-distance relationships while the local 
feature (LOC) includes the feature category (CAT) for 
categorial and subcategorization information and the 
content (CONT) and context/background (CX|BG) feature 
to accommodate selectional restrictions (Androutsopoulos 
and Dale, 2000). For almost every phrasal structure, there 
is a daughter node (head-daughter) with a set of properties 
which are relevant at the level of the mother node. These 
properties constitute the head feature structure of type 
head (subtype of local). 

The output of the combination of one or more feature 
structures in a particular way is specified by a handful of 
phrase structure schemata, the grammar rules. They are 
defined as general as possible and are therefore quite 
powerful. During the application of a schema, feature 
unification is handled by a set of HPSG principles that 



determine the validity of the output sign and ensure the 
well-formedness of phrases in higher tree levels. The 
Head Feature Principle, for example, makes sure that in 
every headed phrase, the value of the head feature of the 
mother and the value of the head feature of the head-
daughter are unified. As an example of a rule, the head-
complement schema takes a word and its complement and 
constructs a phrase that takes no complements (the value 
of the comps feature (COMPS) introduced by the type 
category will be an empty list). A complete and detailed 
presentation of HPSG can be found in Sag and Wasow 
(1999). 

In the present work we are concerned with the 
automatic acquisition of the information required by the 
CAT field. In the example, ate requires a subject that is a 
linguistic entity with a noun head in the nominative case 
and a complement which is a linguistic entity with a noun 
head in the accusative case. It should be noted that the 
COMPS field is actually a list of possibly more than one 
element. We describe a methodology with which verb 
subcategorization information may be acquired directly 
from corpora in order to enable the construction of an 
HPSG-like lexicon that contains such information. The 
index numbers 1 and 2 in the boxes are used to denote the 
fact that the syntactical subject and object of ate are 
identical to the eater (of semantic type animate) and to 
what is being eaten (of semantic type edible) respectively. 

4. 

5. 

Corpus pre-processing 
Only limited linguistic resources have been exploited 

for the pre-processing of the corpora, given the fact that 
we want to bypass the need of a wide-coverage syntactic 
parser. More specifically, pre-processing was realized in 
the following stages: 

• Basic morphological tagging 
• Chunking 
• Headword detecting for noun, i.e. the word the 

grammatical properties of which are inherited by the 
phrase 

• Filtering 
MG is a highly inflected language, rich in morphology. 

Case and voice information is essential for frame 
detection. In more detail, morphological tagging (Sgarbas 
et al., 1999) includes  

• part-of-speech tagging for all words  
• case tagging for nouns, adjectives and pronouns 
• voice tagging for verbs 
• lemmatising of conjunctions 
Most words belonging to a closed-class part-of-speech 

category are divided into subcategories depending on their 
type (for example personal / relative / interrogative 
pronouns). We use information like this instead of the 
lemma of the word, to decrease the number of the tag 
classes used. It is important, however, not to leave out 
necessary knowledge by omitting the lemma. More 
specifically, type tagging consists of: 

• type tagging for pronouns (distinguishing among 
relative, interrogative and the rest of the pronouns) 

• type tagging for conjunctions (distinguishing 
between coordinate and subordinate conjunctions). 

The phrase chunker (Stamatatos et al., 2000) is based 
on very limited linguistic resources, i.e. a small keyword 
lexicon containing some 450 keywords (closed-class 
words) and a suffix lexicon of 300 of the most common 

word suffixes in MG. It robustly detects the boundaries of 
intrasentential noun phrases, prepositional phrases, verb 
phrases, adverbial phrases and conjunctions. 

Identifying the headword of a noun phrase, i.e. the 
word that holds the morphological information (case, 
number) of the whole phrase, also proves to be very 
helpful for our task as its morphological tag is all the 
information that is needed regarding the phrase. 

A filtering stage follows which frees the corpus from 
noise like abbreviations, certain punctuation marks and 
other constituents that do not contribute to the SF 
detection task. Noun phrases inherit their part-of-speech 
tag (noun/adjective basically) from the part-of-speech 
value of their headword. Prepositional phrases and 
secondary clauses are labeled according to the 
preposition/conjunction introducing them respectively. 

In our approach, the same verb may appear in the 
corpora in both the active and the passive voice. In this 
case the verb is considered to be two distinct verbs as its 
syntactic behavior may differ significantly depending on 
its voice. 

Detection of verb environments 
The environment of a verb is formed by the phrases 

preceding and following it. We name the number of these 
phrases the window size of the verb. We have carried out 
a number of experiments concerning the window size of a 
verb. Windows of sizes [-2+3], that is two phrases 
preceding and three phrases following the verb, [-2+2] and 
[-1+2] were tried. It is very likely for a correct frame to 
co-occur with one or more adjuncts in a real sentence and 
thus contain noise. As a consequence for almost every 
environment, not the entire environment (the entire 
window size), but a subset of the environment is a correct 
frame of the verb. Therefore all possible subsets (Sarkar 
and Zeman, 2000) of the above environments were 
produced by forming all possible permutations of their 
constituent-phrases. The frequency of a subset increases 
by adding to its count every time it is solidly formed in a 
permutation (see Figure 1). 

In figure 2, we could distinguish two environments for 
the verb “αγγίζω” (to touch), environment A and B 
respectively. Environment A is consisted of a noun phrase 
in the nominative case (N1), a prepositional phrase (P5) 
and a noun phrase in the accusative case (N3), while B is 
consisted of two noun phrases, N1 and N2, in the 
nominative and the accusative case respectively. The 
parentheses next to each environment symbolize the 
number of occurrences in the corpus. For environment A, 
we calculate every single permutation of its subsets taking 
a left to right orientation, excluding duplicate ones (for 
example N1 P5 and not P5 N1). This is done in two steps, 
calculating the counts of the pair subsets first and then 
permutating them to obtain counts for the smallest subset 
available. The same procedure takes place for 
environment B. As a final stage, counts for every subset 
that exists in both environments are added (for example 
N1 occurred two times in environment A - after the 
permutations - and one time in environment B). 

Upon completion of the procedure described above, 
we were able to formulate input data. We consider as 
potential SF both the original environment extracted from 
the corpora and all computed subsets as well. 



 

 

Figure 2. Subsets and their counts of environments A (in 
plain font) and B (in bold). By calculating every 

permutation of environments A and B respectively, we 
obtain the frequency of occurrence of every subset (shown 
in parentheses). As a last phase, frequencies of subsets of 

both environments are added. 
 

5.1. 

5.2. 

5.3. 

6. 

6.1. 

N 1  P 5  N 3  ( 1 )

N 1 P 5 ( 1 )
N 1 N 3 ( 1 )
P 5 N 3 ( 1 )

N 1 ( 1 )  +  ( 1 )  + ( 1 )  = 3
P 5 ( 1 )  +  ( 1 )  = 2 N 2 ( 1 )
N 3 ( 1 )  +  ( 1 )  = 2

N 1  N 2  ( 1 )

E n v i r o n m e n t  A

E n v i r o n m e n t  B The LKB grammar development 
LKB (Copestake and Flickinger, 2000) is a grammar 

development environment for grammars in a typed feature 
structure formalism that aims, however, to be independent 
of a particular linguistic framework. It has been 
implemented so that grammar loading time is short so as 
to enable easy validation of changes made to it. Having 
constructed a central type hierarchy for the grammar, the 
lexicon can be filled by verb entries containing 
subcategorization information we have acquired with the 
methodology described so far. Below follows the entry for 
the transitive verb ate for LKB. A set of square brackets 
denotes a feature structure.  

 
ate : = verb & 
[ SUBJ <[HEAD nominal &[CASE nom]]>, 
COMPS  <[HEAD nominal &[CASE acc]]>]. 

Bayesian Networks 
Feature Selection A Bayesian Belief Network (BBN) is a significant 

knowledge representation and reasoning tool, under 
conditions of uncertainty. (Mitchell, 1997). Given a set of 
variables D = <X1, X2…XN>, where each variable Xi 
could take values from a set Val(Xi), a BBN describes the 
probability distribution over this set of variables. We use 
capital letters as X,Y to denote variables and lower case 
letters as x,y to denote values taken by these variables. 
Formally, a BBN is an annotated directed acyclic graph 
(DAG) that encodes a joint probability distribution. We 
denote a network B as a pair B=<G,Θ>, (Pearl, 1988) 
where G is a DAG whose nodes symbolize the variables 
of D, and Θ refers to the set of parameters that quantifies 
the network. G embeds the following conditional 
independence assumption:  

We intend to study the behavior of learning SF form 
large corpora by combining labeled and unlabeled 
examples. This section describes the parameters needed to 
formulate the vectors of data instances. Labeled and 
unlabeled data differ only in one variable, which is of 
course the class label. 

Features of our training data were categorized in 
grammatical and numerical ones. Grammatical features 
consisted of the window size, varying from [-2+3] to [-
1+2], along with seven more morphosyntactic categories, 
characterizing the type of phrase, the case, the preposition 
used, the presence or absence of an adverb, the type and 
tense of the verb. 

As for the numerical features, our goal is to determine 
if a candidate SF is highly associated with a specific verb. 
To this end, the following counts are required: 

Each variable Xi is independent of its non-descendants 
given its parents. 

• the count of a given environment with a given 
verb v, (k1). 

Θ includes information about the probability 
distribution of a value xi of a variable Xi, given the values 
of its immediate predecessors. The unique joint 
probability distribution over <X1, X2…XN> that a network 
B describes can be computed using:  

• the count of a given verb v, (v1). 
• the count of a given environment with every 

other verb except for v, (k2). 
• the count of every other verb except for verb v, 

(v2). ∏
=

=
N

i
iiNB XparentsxPXXP

1
1 ))(|()...(   Another numerical feature which plays a significant 

role is the Number of Distinct Elements (NDE) which is 
calculated as: NDE = number of distinct elements each 
environment has (for example: NDE(N1 P5 N3)=3). Learning BBN from data 

In the process of efficiently detecting verb SF, prior 
knowledge about the impact each feature has on the 
classification of a candidate SF as valid or not, is not 
straightforward. Thus, a BBN should be learned from the 
training data provided. Learning a BBN unifies two 
processes: learning the graphical structure and learning the 
parameters Θ for that structure. In order to seek out the 
optimal parameters for a given corpus of complete data, 
we directly use the empirical conditional frequencies 
extracted from the data (Cooper and Herskovits, 1992).  

Distinguishing the subject from the 
complements 

Every valid frame may be a set of verb complements 
and optionally a subject (Unlike English, in Modern Greek 
the presence of the subject is not obligatory). After having 
identified the valid frames for a verb, the part of the frame 
that corresponds to the subject may be easily identified for 
non-copular verbs using empirical rules as it is always 
nominal and in the nominative case unlike the rest of the 
complements. For copular verbs, the predicate (also 
nominal and in the nominative case) normally can be also 
empirically distinguished from the subject by making use 
of information like its pos category (in most of the cases it 
is an adjective). 

We use the following equation along with Bayes 
theorem to determine the relation r (or Bayes factor) of 
two candidate networks B1 and B2 respectively: 
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where: 
P(B|D) is the probability of a network B given data D. 
P(D|B) is the probability the network gives to data D. 
P(D) is the ‘general’ probability of data. 
P(B) is the probability of the network before seen the 

data. 
Applying equation (1) to (2), we get: 
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BPBDP
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Having not seen the data, no prior knowledge is 
obtainable and thus no straightforward method of 
computing P(B1) and P(B2) is feasible. A common way to 
deal with this is to assume that every network has the 
same probability with all the others. 

The probability the model gives to the data can be 
extracted using the following formula (Glymour and 
Cooper, 1999): 
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where: 
Γ is the gamma function. 
n equals to the number of variables. 
ri denotes the number of values in i:th variable. 
qi denotes the number of possible different value 

combinations the parent variables can take. 
Nij depicts the number of rows in data that have j:th 

value combinations for parents of i:th variable. 
Nijk corresponds to the number of rows that have k:th 

value for the i:th variable and which also have j:th value 
combinations for parents of i:th variable. 

Ξ is the equivalent sample size, a parameter that 
determines how readily we change our beliefs about the 
quantitative nature of dependencies when we see the data. 
In our study, we follow a simple choice inspired by 
Jeffreys (1939) prior. Ξ equals to the average number of 
values variables have, divided by 2. 

Given the great number of possible networks produced 
by the learning process, a search algorithm has to be 
applied. We follow greedy search with one modification: 
instead of comparing all candidate networks, we consider 
investigating the set that resembles the current best model 
most. 

In general, a BBN is capable of computing the 
probability distribution for any partial subset of variables, 
given the values or distributions of any subset of the 
remaining variables. Note that the values have to be 
discretised, and different discretisation size affects the 
network. As we shall discuss in the result section, BBN 
are a significant tool for knowledge representation, 
visualising the relationships between features and subsets 
of them. This fact has a significant result on identifying 
which features are actually affect the class variable, thus 
reducing training data size without any significant impact 
in the performance. 

7. Support Vector Machines 
Support Vector Machines (SVM) are in fact learning 

models designed to automatically trade-off accuracy and 
complexity by trying to minimize an upper bound on the 
generalization error (Cristianini et al., 1998). The most 
important advantage of SVM is that contrary to other 
machine learning techniques, it behaves robustly even in 

high dimensional feature problems. SVM are based on the 
Structural Risk Minimization principle (Vapnik, 1995). 
The basic idea of this theory is to find a hypothesis h for 
which we could guarantee the lowest true error. By “true 
error” we denote the probability that a hypothesis will 
make an error when classifying a random unseen test 
vector. SVM are a new machine learning technique that 
have been applied to numerous classification and pattern 
recognition problems such as text classification, shallow 
parsing and face recognition with noteworthy results. 
(Joachims, 1996) 

We focus on two-class classification problems. Let us 
denote a training set D as a pair {(xi,yi)}, i=1 to N with 
each input vector xi∈ℜm and each binary label vector yi 
∈{-1,+1} corresponding to the two classes. SVM 
performs a mapping φ from the input space ℜm to the 
“feature” space ℜn. In the case where data are linearly 
separable in ℜn, a vector w ∈ℜn ban be defined such that  

1)( ≥+ bxw T φ            if yi = 1      (4) 

1)( −≤+ bxwTφ            if yi = -1     (5) 

where b∈ℜ is a scalar. 
A hyperplane w  is assembled for which the 

distance between itself and the positive and negative 
examples is maximized. We should also take into 
consideration that a hyperplane in space ℜn may represent 
a nonlinear decision surface in space ℜm. It can be shown 
(Cortes and Vapnik, 1996) that the vector w which will 
produce the “optimal” hyperplane, can be computed by 
minimizing ||w||

bxT +)(φ

2 and the resultant equation could be 
written as a linear combination of φ(x)’s . Thus, we obtain 
the following mathematical formulation: 
 

)φ(χyaw ιi
Ν

1ι i∑ =
= , where ai>=0 

Let us symbolize the vector of ai’s as A=(a1…ai…aN). 
A can be found by solving the following quadratic 
programming (QP) problem: 
Maximize W(A)=AT 1-1/2 AT QA (6) 

Subject to: A≥0, ATY=0 where Y=(y1…..yn) 
 is a symmetric matrix with elements Qij = yiyjφ(xi)Τφ(xj)  

In order to obtain Qij, we can find a kernel K(.,.) such 
that K(xi,xj)=φ(xi)Tφ(xj). In that way Qij becomes 
yiyjK(xi,xj). As an example, note that the kernel of a 
polynomial classifier is k(xi,yj)=(xi

Txj +1)d. Besides, 
notice that there are no local optima in (6) since Q is 
always positive and semi-definite. There are numerous 
kernel functions with good generalization capabilities. 

For those examples from the training data along the 
margins of the decision boundary the corresponding ai’s 
are greater than zero (taken from Kuhn-Tucker theorem), 
these examples are called support vectors. 

Concerning the testing process, provided a test vector 
x∈ℜn, we first compute: 

h= w =bφ(x)T + b)x,K(xya ji
Ν

1ι i +∑ =
  

The class label for each xi is assigned by applying the 
following empirical rule: 



Label=1, if s>=s0 
Label=-1,if otherwise  

The threshold s0 is of course user defined. The SVM 
algorithm tries to minimize:  

∑
=

+
N

i
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1

2||||
2
1 ξ   

where parameters ξi measure the degree of margin 
constraints violation. They should satisfy equations (4), 
(5) when added to the right part of each. The penalty 
coefficient C is a user-defined parameter that controls the 
amount of ‘slack’ allowed. 

8. Significance of Unlabeled data 
In the learning process, taking into consideration 

unlabeled data alone will result in a random, insufficient 
classifier, since there is no information about the class 
label (Castelli & Cover, 1995). Despite this fact, notice 
that unlabeled data do embed information about the joint 
distribution over features other than the class label (Nigam 
et al., 2000). This observation allows the use of unlabeled 
data along with a small set of labeled data to improve 
performance in certain domains.  

 

 

Figure 3. Data generated by two Gaussian distributions. 
Parameters of each distribution can be recovered using 

unlimited amount of unlabeled data. Class differentiation 
could then be learned using labeled data 

 
To illustrate this, consider the following example. 

Suppose that we have instances that have been generated 
by a Gaussian mixture model. Figure 3 depicts that data 
are generated by two Gaussian distributions, one per class, 
with unknown parameters. The two classes are defined by 
the shaded and unshaded areas of the graph. The boundary 
d, which is called Bayes-optimal decision boundary and 
can classify instances into the two classes, could be 
calculated provided that one knows the Gaussian mixture 
parameters such as the mean and variance of each 
Gaussian distribution along with the mixing parameter 
between them. This example is analytically discussed by 
Nigam et al. (2000). 

Suppose now that we have an unlimited number of 
unlabeled data while only a finite number of labeled ones. 
It has been proven (McLachlan & Krishnan 1997, section 
2,7) that the Gaussian distribution parameters could be 
retrieved from unlabeled data alone, provided that they 
have been originated from a Gaussian mixture model. 

Nevertheless, without labeled data it is impossible to 
assign the class labels to each of the distributions. Castelli 
& Cover, (1995) argued that the problem of using labeled 
data to determine the class of a Gaussian distribution 
converges exponentially quickly in the number of labeled 
training instances. 

It is noteworthy to point out that the above statements 
rely on the critical assumption that both labeled and 
unlabeled data have been originated by the same 
parametric model. However, this restriction rarely holds in 
real-world domains, such as the identification of verb 
subcategorization frames from large corpora, where 
semantics of the language play an important role in the 
decision of whether a candidate SF is valid or not. This 
argument raises the issue of using unlabeled data in cases 
where assumptions are being violated 

For our task, we exploit the ability of Bayesian 
networks to encode prior knowledge and the classification 
ability of SVM. Applying BBN to SVM is quite 
straightforward. First, we only use the labeled data set, 
denoted by Sl, along with the prior knowledge mentioned 
above to learn the most probable network Bl. We then try 
to classify the set of unlabeled instances Sun using the 
conditional probability table associated with Bl. The new 
classified set S`un is merged with Sl to form 

l The objective now is to learn a new 
network B

.S  S S un
'+=

S from the unified data set S given again the 
same prior knowledge as before. This could be done 
without any risk since this kind of knowledge is uniform 
to all instances. Upon completion of this procedure, we 
are able to estimate the prior distribution of θ(x). This 
distribution is used to define the parameters of the kernel 
that we will use. For our approach, we used the 
polynomial kernel. As a final step, we train a SVM 
classifier from S, using the calculated prior distribution 
θ(x) 

9. Experimental Results 
The corpora used for our study are the balanced 

ILSP/ELEFTHEROTYPIA Greek Corpus (consisting of 
1.6 million words of political, social and sports content, 
taken from a wide circulation newspaper), the balanced 
ESPRIT-860  Corpus for Modern Greek of approximately 
300.000 words and a significant part of the corpus of 
economic news created for the DELOS  project consisting 
of approximately 32M of raw text (Sintichakis et al., 
2000). 

We define precision as the percentage of correct 
frames to all the frames which were acquired. 

tionsive predic# of posit
esified framctly ident# of correprecision =  

Table 2 tabulates the experimental results obtained 
from both corpora using Bayesian Networks, Support 
Vector Machines and our hybrid algorithm of using 
Bayesian inference knowledge and inserting it into the 
SVM hyperparameters, noted as B-SVM. For the task of 
identifying a valid SF using additional unlabeled 
examples, we have conducted the experiments using 
approximately 6.500 unlabeled instances from each 
corpus. Additionally, in order to obtain a more inclusive 
view of the task, we provide results using statistical 
machine learning algorithms such as relative frequency 



(RF), T-score and LLR metrics (Dunning, 1993). 
 
DELOS METHOD 
Window BBN SVM B-SVM RF T LLR 
[-1+2] 70.4 73.3 75.8 43.1 57.5 68.1 
[-2+2] 72 75.3 78.9 43.6 59 69.3 
[-2+3] 71.3 74.6 78.3 43.3 58 68.5 

ILSP METHOD 
Window BBN SVM B-SVM RF T LLR 
[-1+2] 83.9 87.2 90 79.4 71 78.2 
[-2+2] 86.3 90 94.2 82.8 73 80.1 
[-2+3] 85.7 89 93.4 80.3 72.6 78.7 

Table 2: Experimental results obtained from the two 
corpora 

 
By observing the obtained results, we could claim that 

both BBN and SVM perform significantly better than the 
other machine learning algorithms by a factor that varies 
from 5 to almost 30%, a fact that supports the argue that 
BBN and SVM are well suited for the task of verb 
subcategorization identification (Maragoudakis et al, 
2001). Furthermore, by incorporating bayesian knowledge 
into the SVM classifier and using a set of unlabeled 
examples, we achieve a 3-6% improvement. 

The size of the window is also found to be of great 
importance when dealing with verb subcategorization. As 
demonstrated by the results, a window size of [-2+2] is the 
best choice for MG SF detection. Another interesting 
observation is that DELOS corpus performs worse than 
ILSP. There are two possible reasonable explanations; 
DELOS corpus is an economic corpus with a 
morphologically narrower set of elements surrounding a 
verb. The other reason is that economists use to develop 
their own terms and expressions, thus making it difficult 
for an automatic system to adjust, unless these terms co-
occur with the verbs many times. 

10.

11.

 Conclusion 
The identification of verb SF could contribute to the 

significant improvement of natural language human 
computer interaction systems since they could embed 
important information about the syntactic-semantic 
constituents of a verb. This process is considered to be a 
shallow parsing task due to the fact that only specific parts 
of the syntactic information of a verb are extracted. This 
paper has presented a group of machine learning 
algorithms that aim to address the issue of automatically 
learning verb subcategorization frames from large text 
corpora. 

New frames not known beforehand were learned 
throughout the training process. More specifically, 
Bayesian belief networks, Support Vector Machines, 
Relative Frequencies, T-score and Log Likelihood Ratio 
were applied to the task at hand, using balanced as well as 
domain-specific corpora. Using minimal linguistic 
resources, i.e. basic morphological tagging and phrase 
chunking, verb environments were identified and every 
environment subset was formulated. Thus, the need for 
fully annotated input data is alleviated. 

Given the obvious high cost of hand-labeling the data 
and the vast volumes of available text (in the web, in 
corpora, etc.), a novel method of using unlabeled 

examples to supplement limited labeled data has been 
studied. Parameters needed by SVM are learned via BBN 
learning from labeled and unlabeled examples. The 
resulting classifier outperforms all other techniques 
mentioned. Our idea can be used for other languages as 
well with slight modifications. For example, for a not 
“free word order” language one would only have to 
calculate permutations of an environment treating 
duplicate pairs as different (N1 P5≠P5 N1).  

We have shown how the information obtained about 
the arguments of a verb can be used to fill the 
corresponding fields of an HPSG lexicon in the LKB 
grammar development environment. A next step would be 
the automatic detection of verb selectional restrictions so 
as to provide a more complete picture concerning verb 
local dependencies. 
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